This project demonstrates how to model time-varying volatility in financial returns using ARCH and GARCH models. The dataset used is the S&P 500 index (^GSPC) from Yahoo Finance.
volatility-modeling/
βββ .venv/ # Python virtual environment
βββ data/ # Folder for storing downloaded data
βββ notebooks/ # Jupyter notebooks
β βββ arch_garch_model.ipynb
βββ outputs/ # Plots or generated model outputs
βββ test_imports.py # Test for library imports
βββ requirements.txt # Installed Python packages
βββ README.md # Project overview
- Clone the repo and navigate to the folder.
- Create a virtual environment:
python3 -m venv .venv source .venv/bin/activate - Install dependencies:
pip install -r requirements.txt - Launch the notebook:
jupyter notebook notebooks/arch_garch_model.ipynb
- Python
archfor GARCH modelsyfinancefor market datamatplotlibfor visualization
- Estimated conditional volatility from a GARCH(1,1) model
- Comparison with raw return series
Amanda Achiangia
BSc Applied Mathematics (Financial Mathematics), York University
Aspiring Quantitative Finance Professional
LinkedIn | GitHub


