Skip to content

mrjoneidi/Simplification-Legal-Texts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

26 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“œ Persian Legal Text Simplification Leveraging Transformer-Based Models

Bachelor's Project Β· Mohammadreza Joneidi Jafari Β· Supervisor: Prof. Nikoofard

πŸ” Introduction

This project evaluates encoder-decoder models (mlongT5 and parsT5) for simplifying complex Persian legal texts into plain language. We compared these 2 tuned models with 2 Persian LLM models based on Llama. Key contributions:

  • Optimizer Comparison: AdamW vs. LAMB vs. SGD (AdamW achieved best performance).
  • Unlimiformer Integration: Handles long legal documents effectively for parsT5 model.
  • Rigorous Metrics: ROUGE, BERTScore, and custom readability scores.

πŸ† Key Results

Model Comparison (AdamW Optimizer)

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore-f1
ParsT5 (1 Block) 38.08% 15.83% 19.41% 73.71%
ParsT5 (3 Blocks) 38.4% 15.61% 23.18% 75.13%
mlongT5 (1 Blocks) 27.94% 1.77% 11.22% 64.89%
mlongT5 (3 Blocks) 25.36% 1.23% 10.81% 49.46%
PersianLlaMA-13B 28.64% 9.81% 13.67% 70.80%
AVA Llama_3_V2 30.07% 10.33% 16.39% 70.87%

🌐 Model Hosted on Hugging Face You can access and use this model directly via the Hugging Face Hub:

Link: simplification-legal-text


πŸ› οΈ Technologies

Models & Training

  • Models: mlongT5 (12-block), parsT5 (12-block), Unlimiformer (long-context).
  • Optimizers: AdamW (best), LAMB, SGD.
  • Framework: PyTorch + HuggingFace transformers.
  • Hardware: (Specify GPUs/TPUs if applicable).

πŸ”— Links


Dataset

  • 16,000+ Persian legal texts (decision texts, dates)
  • Split: 85% train, 5% validation, 10% test.
  • Preprocessing: Scraping, manual labeling for simplification.

Contact

For questions, collaborations, or access to the full dataset, feel free to reach out:

πŸ“§ Email: m.r.joneidi.02@gmail.com

πŸ”— LinkedIn: Mohammadreza Joneidi Jafari

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published