This is a repo that contains relevant info regarding CUT&RUN and CUT&Tag computational analysis and interpretation, including protocols, pipelines, peak calling algorithms, benchmarking articles, and applications of these techniques.
CUT&RUN was first described in this article by Pete Skene and Steve Henikoff, published in eLife in 2017:
Peter J Skene & Steven Henikoff. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife (2017). https://doi.org/10.7554/eLife.21856
This was followed by a detailed protocol for CUT&RUN by Peter Skene et al. in Nature Protocols in 2018:
Peter J Skene, Jorja G Henikoff, & Steven Henikoff. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nature Protocols (2018). https://doi.org/10.1038/nprot.2018.015
Next came an improvement on the original protocol that expanded antibody compatibility by using pAG-MNase instead of pA-MNase, a salt ion modification to the digestion step, and normalization using the E. coli DNA that is carried over from purification of the MNase enzyme. This was described by Michael Meers et al. in eLife in 2019:
Michael P Meers, Terri D Bryson, Jorja G Henikoff, & Steven Henikoff. Improved CUT&RUN chromatin profiling tools. eLife (2019). https://doi.org/10.7554/eLife.46314
Hatice S. Kaya-Okur, Steven J. Wu, Christine A. Codomo, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Comm (2019). https://doi.org/10.1038/s41467-019-09982-5
Hatice S. Kaya-Okur, Derek H. Janssens, Jorja G. Henikoff, Kami Ahmad, & Steven Henikoff. Efficient low-cost chromatin profiling with CUT&Tag. Nature Protocols (2020). https://doi.org/10.1038/s41596-020-0373-x
Derek H. Janssens, et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nature Genetics (2021). https://doi.org/10.1038/s41588-021-00941-9
Derek H. Janssens, Dominik J. Otto, et al. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells. Genome Biology (2022). https://doi.org/10.1186/s13059-022-02642-w
Mechanism of BAF nucleosome eviction with RNAPII (this paper uses CUT&Tag, CUTAC, CUT&RUN, & CUT&RUN.ChIP):
Sandipan Brahma & Steven Henikoff. The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nature Genetics (2023). https://doi.org/10.1038/s41588-023-01603-8
Marek Bartosovic, Mukund Kabbe, & Gonçalo Castelo-Branco. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nature Biotechnology (2021). https://doi.org/10.1038/s41587-021-00869-9
Steven J. Wu, Scott N. Furlan, et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nature Biotechnology (2021). https://doi.org/10.1038/s41587-021-00865-z
Chenxu Zhu, et al., Bing Ren. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nature Methods (2021). https://doi.org/10.1038/s41592-021-01060-3
Michael P. Meers, et al., Steven Henikoff. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nature Biotechnology (2022). https://doi.org/10.1038/s41587-022-01522-9
Derek H. Janssens, Jacob E. Greene, et al., Steven Henikoff. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Nature Protocols (2023). https://doi.org/10.1038/s41596-023-00905-9
Steven Henikoff, Jorja G Henikoff, Hatice S Kaya-Okur, & Kami Ahmad. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. eLife (2020). https://doi.org/10.7554/eLife.63274
Steven Henikoff, Jorja G Henikoff, & Kami Ahmad. Simplified Epigenome Profiling Using Antibody-tethered Tagmentation. Bio-protocol (2021). https://doi.org/10.21769/BioProtoc.4043
Steven Henikoff, et al. Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nature Communications (2023). https://doi.org/10.1038/s41467-023-41666-z
Steven Henikoff, Ye Zheng, et al. RNA polymerase II at histone genes predicts outcome in human cancer. Science (2025). https://doi.org/10.1126/science.ads2169
Michael P. Meers, Dan Tenenbaum, & Steven Henikoff. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics & Chromatin (2019). https://doi.org/10.1186/s13072-019-0287-4
Yong Zhang, et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biology (2008). https://doi.org/10.1186/gb-2008-9-9-r137
Jianxing Feng, Tao Liu, Yong Zhang. Using MACS to Identify Peaks from ChIP-Seq Data. Current Protocols in Bioinformatics (2011). https://doi.org/10.1002/0471250953.bi0214s34
Jianxing Feng, Tao Liu, et al. Identifying ChIP-seq enrichment using MACS. Nature Protocols (2012). https://doi.org/10.1038/nprot.2012.101
Su Wang, et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nature Protocols (2013). https://doi.org/10.1038/nprot.2013.150
John M. Gaspar. Improved peak-calling with MACS2. bioRxiv (2018). https://doi.org/10.1101/496521
William M. Yashar, et al. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biology (2022). https://doi.org/10.1186/s13059-022-02707-w
Leyla Abbasova, Paulina Urbanaviciute, Di Hu, Joy N. Ismail, Brian M. Schilder, Alexi Nott, Nathan G. Skene, & Sarah J. Marzi. CUT&Tag recovers up to half of ENCODE ChIP-seq histone acetylation peaks. Nature Communications (2025). https://doi.org/10.1038/s41467-025-58137-2
Amin Nooranikhojasteh, Ghazaleh Tavallaee, & Elias Orouji. Benchmarking peak calling methods for CUT&RUN. Bioinformatics (2025). https://doi.org/10.1093/bioinformatics/btaf375
Félix Raimundo, Pacôme Prompsy, Jean-Philippe Vert, & Céline Vallot. A benchmark of computational pipelines for single-cell histone modification data. Genome Biology (2023). https://doi.org/10.1186/s13059-023-02981-2
https://dx.doi.org/10.17504/protocols.io.zcpf2vn
https://dx.doi.org/10.17504/protocols.io.bcuhiwt6
https://dx.doi.org/10.17504/protocols.io.14egn292zg5d/v4
https://dx.doi.org/10.17504/protocols.io.bjk2kkye
https://www.protocols.io/view/cut-amp-tag-data-processing-and-analysis-tutorial-5jyl8py98g2w/v2
Fred Hutch Choosing Genomic Tools Book
https://hutchdatascience.org/Choosing_Genomics_Tools/cutrun-and-cuttag.html
https://github.com/FredHutch/SEACR
https://macs3-project.github.io/MACS/
Simone Picelli et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Research (2014). https://doi.org/10.1101/gr.177881.114
- nf-core/cutandrun
- TrimGalore
- Bowtie2
- Samtools
- deepTools
- Picard
- bedtools
- UCSC bigWig track format utilities
- IGV
- MultiQC
Note: This is not meant to be an exhaustive list. However, it should include the most relavent articles and the common/effective tools used for analyzing and visualizing CUT&RUN and CUT&Tag data. If there are any glaring ommisions, please feel free to post an issue on this repo.