Skip to content
Open

Dvi #191

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions python/DELETE.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#%%
import matplotlib.pyplot as plt
import numpy as np
import common
from cpp_sym_midpoint import cpp_sym_mid
from common import (r0,th0,ph0,vpar0,timesteps,get_val,get_der,mu,qe,m,c,)
from field_correct_test import field
from plotale import plot_orbit, plot_mani, plot_cost_function
#from manifolds import surf_R

f = field()

dt = 600
nt = 1000

# Initial Conditions
z = np.zeros([3, nt + 1])
z[:, 0] = [r0, th0, ph0]

f.evaluate(r0, th0, ph0)
v = np.zeros(3)
p = np.zeros(3)

v[0] = vpar0*f.co_hr
v[1] = vpar0*f.co_hth
v[2] = vpar0*f.co_hph
p[0] = v[0]
p[1] = v[1] + qe/c*f.co_Ath
p[2] = v[2] + qe/c*f.co_Aph

P = np.zeros([3,nt+1])
P[:,0] = p

print(P)

# Symplectic midpoint
for kt in range(nt):

z[:,kt+1] = cpp_sym_mid(z[:,kt])


plot_orbit(z)
plt.plot(z[0,:5]*np.cos(z[1,:5]), z[0,:5]*np.sin(z[1,:5]), "o")
plt.show()
121 changes: 121 additions & 0 deletions python/cp_runge_kutta.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# %%
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import root
from scipy.interpolate import lagrange
import common
from common import (f,r0,th0,ph0,pph0,timesteps,get_val,get_der,mu,qe,m,c,)
from plotting import plot_orbit, plot_cost_function

B0 = 1.0 # magnetic field modulus normalization
iota0 = 1.0 # constant part of rotational transform
a = 0.5 # (equivalent) minor radius
R0 = 1.0 # (equivalent) major radius

z0_cpp = np.array([r0, th0, ph0])

metric = lambda z: {
"_11": 1,
"_22": z[0]**2,
"_33": (1 + z[0]*np.cos(z[1]))**2,
"^11": 1,
"^22": 1/z[0]**2,
"^33": 1/(1 + z[0]*np.cos(z[1]))**2,
"d_11": [0,0,0],
"d_22": [2*z[0], 0,0],
"d_33": [2*(1+z[0]*np.cos(z[1]))*np.cos(z[1]), -2*(1+z[0]*np.cos(z[1]))*np.sin(z[1]), 0],
}

def field_Ath(r, th, ph):
Ath = B0*(r**2/2 - r**3/(3*R0)*np.cos(th))
dAth = np.array((B0*(r - r**2/R0*np.cos(th)), B0*r**3*np.sin(th)/(3*R0), 0))
return Ath, dAth

def field_Aph(r, th, ph):
Aph = -B0*iota0*(r**2/2-r**4/(4*a**2))
dAph = np.array((-B0*iota0*(r-r**3/a**2), 0, 0))
return Aph, dAph


def field_B(r, th, ph):
B = B0*(iota0*(r-r**3/a**2)/(R0+r*np.cos(th)) + (1-r*np.cos(th)/R0))
#dB = np.array((iota0*(1-3*r**2/a**2)/(R0+r*np.cos(th)) - iota0*(r-r**3/a**2)/(R0+r*np.cos(th))**2 * np.cos(th) - np.cos(th)/R0,
# iota0*(r-r**3/a**2)/(R0+r*np.cos(th))**2 *r*np.sin(th) + r*np.sin(th), 0))
return B


#Initial Conditions
Ath = np.empty(1)
Aph = np.empty(1)
dAth = np.empty(3)
dAph = np.empty(3)
B = np.empty(1)
#dB = np.empty(3)
Ath, dAth = field_Ath(r0, th0, ph0)
Aph, dAph = field_Aph(r0, th0, ph0)
B = field_B(r0, th0, ph0)

g = metric(z0_cpp[:])
ctrv = np.zeros(3)
ctrv[0] = np.sqrt(g['^11']*mu*2*B/3)
ctrv[1] = np.sqrt(g['^22']*mu*2*B/3)
ctrv[2] = np.sqrt(g['^33']*mu*2*B/3)
p = np.zeros(3)
p[0] = g['_11']*ctrv[0]
p[1] = g['_22']*ctrv[1] + qe/c * Ath
p[2] = g['_33']*ctrv[2] + qe/c * Aph
pold = p

#Initial Conditions Runge-Kutta
z0_cpp = np.array([r0, th0, ph0, p[0], p[1], p[2]])
print(z0_cpp)

def momenta_cpp(t, x):
Ath = np.empty(1)
Aph = np.empty(1)
dAth = np.empty(3)
dAph = np.empty(3)
#B = np.empty(1)
#dB = np.empty(3)
Ath, dAth = field_Ath(x[0], x[1], x[2])
Aph, dAph = field_Aph(x[0], x[1], x[2])
#B = field_B(x[0], x[1], x[2])
g = metric(x[:3])

ctrv = np.empty(3)
ctrv[0] = 1/m *g['^11'] *(x[3])
ctrv[1] = 1/m *g['^22'] *(x[4] - qe/c*Ath)
ctrv[2] = 1/m *g['^33'] *(x[5] - qe/c*Aph)

xdot = np.empty(6)
xdot[0] = 1/m * g['^11']*x[3]
xdot[1] = 1/m * g['^22']*(x[4] - qe/c*Ath)
xdot[2] = 1/m * g['^33']*(x[5] - qe/c*Aph)
xdot[3] = qe/c*(ctrv[1]*dAth[0] + ctrv[2]*dAph[0]) + m/2*(g['d_11'][0]*ctrv[0]**2 + g['d_22'][0]*ctrv[1]**2 + g['d_33'][0]*ctrv[2]**2)
xdot[4] = qe/c*(ctrv[1]*dAth[1] + ctrv[2]*dAph[1]) + m/2*(g['d_11'][1]*ctrv[0]**2 + g['d_22'][1]*ctrv[1]**2 + g['d_33'][1]*ctrv[2]**2)
xdot[5] = qe/c*(ctrv[1]*dAth[2] + ctrv[2]*dAph[2]) + m/2*(g['d_11'][2]*ctrv[0]**2 + g['d_22'][2]*ctrv[1]**2 + g['d_33'][2]*ctrv[2]**2)

return xdot

sol_cpp = solve_ivp(
momenta_cpp, [0, 7000], z0_cpp, method="RK45", rtol=1e-9, atol=1e-9,
)


nt = len(sol_cpp.t)
print(nt) # This will print the number of time steps the solver used
print(7000/nt)
z = np.zeros([3, nt])
z[0,:] = sol_cpp.y[0]
z[1,:] = sol_cpp.y[1]
z[2,:] = sol_cpp.y[2]


plot_orbit(z)
plt.plot(z[0,:5]*np.cos(z[1,:5]), z[0,:5]*np.sin(z[1,:5]), "o")
plt.show()



# %%
221 changes: 221 additions & 0 deletions python/cp_sym_midpoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
# %%
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import root
from scipy.interpolate import lagrange
import common
from common import (r0,th0,ph0,vpar0,timesteps,get_val,get_der,mu,qe,m,c,)
from field_correct_test import field
from plotale import plot_orbit, plot_mani, plot_cost_function


f = field()

dt = 1
nt = 1000
print(dt*nt)
metric = lambda z: {
"_ii": np.array([1, z[0]**2, (1 + z[0]*np.cos(z[1]))**2]),
"^ii": np.array([1, 1/z[0]**2, 1/(1 + z[0]*np.cos(z[1]))**2]),
"d_11": np.array([0,0,0]),
"d_22": np.array([2*z[0], 0,0]),
"d_33": np.array([2*(1+z[0]*np.cos(z[1]))*np.cos(z[1]), -2*(1+z[0]*np.cos(z[1]))*np.sin(z[1]), 0]),
}


def dLdx(v, dAth, dAph, g):
ret = np.zeros(3)
ret = (m/2*(g['d_11']*v[0]**2 + g['d_22']*v[1]**2 + g['d_33']*v[2]**2) + qe/c*(dAth*v[1] + dAph*v[2]))
return ret


def F(x, xold, pold):
global p
ret = np.zeros(3)

xmid = (x + xold)/2
vmid = (x - xold)/dt

f.evaluate(xmid[0], xmid[1], xmid[2])
Amid = np.array([0, f.co_Ath, f.co_Aph])
g = metric(xmid)
pmid = pold + dt/2 * dLdx(vmid, f.co_dAth, f.co_dAph, g)
p = pold + dt * dLdx(vmid, f.co_dAth, f.co_dAph, g)
# d/dt p = d/dt dL/dq. = dL/dq
ret = x - xold - dt/m*g['^ii']*(pmid - qe/c*Amid)
return ret


# Initial Conditions
z = np.zeros([3, nt + 1])
z[:, 0] = [r0, th0, ph0]

f.evaluate(r0, th0, ph0)
g = metric(z[:,0])

vel = np.zeros([3, nt + 1])
vel[0,0] = np.sqrt(g['^ii'][0]*mu*2*f.B)
vel[1,0] = 0 #-np.sqrt(g['^22']*mu*2*f.B/3)
vel[2,0] = 0 #-np.sqrt(g['^33']*mu*2*f.B/3)
p = np.zeros(3)
p[0] = g['_ii'][0]*vel[0,0]
p[1] = g['_ii'][1]*vel[1,0] + qe/c * f.co_Ath
p[2] = g['_ii'][2]*vel[2,0] + qe/c * f.co_Aph

vper = np.zeros(nt)
vpar = np.zeros(nt)
v = np.zeros(nt)

'''
v = np.zeros(3)
p = np.zeros(3)
vel = np.zeros([3, nt + 1])

p[0] = vel[0,0]
p[1] = vel[1,0] + qe/c*f.co_Ath
p[2] = vel[2,0] + qe/c*f.co_Aph
'''

from time import time
tic = time()
for kt in range(nt):
pold = p

sol = root(F, z[:,kt], method='hybr',tol=1e-12,args=(z[:,kt], pold))
z[:,kt+1] = sol.x

f.evaluate(z[0,kt+1], z[1,kt+1], z[2,kt+1])
g = metric(z[:,kt+1])
vel[:,kt+1] = 1/m * g['^ii']*(p - qe/c*np.array([0, f.co_Ath, f.co_Aph]))

vper[kt] = np.sqrt(g['^ii'][0]*mu*2*f.B)
vpar[kt] = np.sqrt(np.sum(vel[:,kt+1]**2)) - vper[kt]
v[kt] = np.sum(vel[:,kt+1])


q_cp = z
v_cp = vel


'''
t = np.linspace(0, nt, nt)

# k = nt
k = 100

plt.plot(t[:k], vpar[:k], linewidth=0.5, c='r', label='vpar')

plt.plot(t[:k], vper[:k], linewidth=0.5, c='g', label='vper')

plt.plot(t[:k], v[:k], linewidth=0.5, c='b', label='v')
plt.show()


plt.hist(v, bins=30, color='blue', edgecolor='black', alpha=0.7)
plt.hist(vpar, bins=30, color='red', edgecolor='black', alpha=0.7)
plt.hist(vper, bins=30, color='green', edgecolor='black', alpha=0.7)

plt.xlabel("Value")
plt.ylabel("Frequency")
plt.title("Histogram of velocity")
plt.grid(True, linestyle="--", alpha=0.5)
plt.show()



plot_mani(q_cp)
plt.show()

fig, ax = plt.subplots()
plot_orbit(q_cp, ax = ax)
plt.plot(q_cp[0,:100]*np.cos(q_cp[1,:100]), q_cp[0,:100]*np.sin(q_cp[1,:100]), "o")
plt.show()
'''






'''
dt, nt = timesteps(steps_per_bounce=8, nbounce=100)
print(dt)
print(nt)

f = field()
dt = 1
nt = 10000

z = np.zeros([3, nt + 1])
z[:, 0] = [r0, th0, ph0]

metric = lambda z: {
"_11": 1,
"_22": z[0]**2,
"_33": (1 + z[0]*np.cos(z[1]))**2,
"^11": 1,
"^22": 1/z[0]**2,







"^33": 1/(1 + z[0]*np.cos(z[1]))**2,
"d_11": [0,0,0],
"d_22": [2*z[0], 0,0],
"d_33": [2*(1+z[0]*np.cos(z[1]))*np.cos(z[1]), -2*(1+z[0]*np.cos(z[1]))*np.sin(z[1]), 0],
}

def implicit_p(p, pold, Ath, Aph, dAth, dAph, g):
ret = np.zeros(3)

ctrv = np.zeros(3)
ctrv[0] = 1/m *g['^11'] *(p[0])
ctrv[1] = 1/m *g['^22'] *(p[1] - qe/c*Ath)
ctrv[2] = 1/m *g['^33'] *(p[2] - qe/c*Aph)

ret[0] = p[0] - pold[0] - dt*(qe/c*(ctrv[1]*dAth[0] + ctrv[2]*dAph[0]) + m/2*(g['d_11'][0]*ctrv[0]**2 + g['d_22'][0]*ctrv[1]**2 + g['d_33'][0]*ctrv[2]**2))
ret[1] = p[1] - pold[1] - dt*(qe/c*(ctrv[1]*dAth[1] + ctrv[2]*dAph[1]) + m/2*(g['d_11'][1]*ctrv[0]**2 + g['d_22'][1]*ctrv[1]**2 + g['d_33'][1]*ctrv[2]**2))
ret[2] = p[2] - pold[2] - dt*(qe/c*(ctrv[1]*dAth[2] + ctrv[2]*dAph[2]) + m/2*(g['d_11'][2]*ctrv[0]**2 + g['d_22'][2]*ctrv[1]**2 + g['d_33'][2]*ctrv[2]**2))

return ret

#Initial Conditions
f.evaluate(r0, th0, ph0)
g = metric(z[:,0])
ctrv = np.zeros(3)
ctrv[0] = np.sqrt(g['^11']*mu*2*f.B)
ctrv[1] = 0 #-np.sqrt(g['^22']*mu*2*f.B/3)
ctrv[2] = 0 #-np.sqrt(g['^33']*mu*2*f.B/3)
p = np.zeros(3)
p[0] = g['_11']*ctrv[0]
p[1] = g['_22']*ctrv[1] + qe/c * f.co_Ath
p[2] = g['_33']*ctrv[2] + qe/c * f.co_Aph
pold = p

from time import time
tic = time()
for kt in range(nt):

sol = root(implicit_p, p, method='hybr',tol=1e-12,args=(pold, f.co_Ath, f.co_Aph, f.co_dAth, f.co_dAph, g))
p = sol.x
pold = p

z[0,kt+1] = z[0,kt] + dt/m * g['^11']*(p[0])
z[1,kt+1] = z[1,kt] + dt/m * g['^22']*(p[1] - qe/c*f.co_Ath)
z[2,kt+1] = z[2,kt] + dt/m * g['^33']*(p[2] - qe/c*f.co_Aph)

f.evaluate(z[0, kt+1], z[1, kt+1], z[2, kt+1])
g = metric(z[:,kt+1])

p = np.zeros(3)
p[0] = g['_11']*m*(z[0,kt+1]-z[0,kt])/dt
p[1] = g['_22']*m*(z[1,kt+1]-z[1,kt])/dt + qe/c*f.co_Ath
p[2] = g['_33']*m*(z[2,kt+1]-z[2,kt])/dt + qe/c*f.co_Aph
'''



# %%
Loading