|
67 | 67 | metavar='N', help='Input image dimension, uses model default if empty') |
68 | 68 | parser.add_argument('--input-size', default=None, nargs=3, type=int, |
69 | 69 | metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') |
| 70 | +parser.add_argument('--use-train-size', action='store_true', default=False, |
| 71 | + help='force use of train input size, even when test size is specified in pretrained cfg') |
70 | 72 | parser.add_argument('--crop-pct', default=None, type=float, |
71 | 73 | metavar='N', help='Input image center crop pct') |
72 | 74 | parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', |
@@ -164,10 +166,15 @@ def validate(args): |
164 | 166 | param_count = sum([m.numel() for m in model.parameters()]) |
165 | 167 | _logger.info('Model %s created, param count: %d' % (args.model, param_count)) |
166 | 168 |
|
167 | | - data_config = resolve_data_config(vars(args), model=model, use_test_size=True, verbose=True) |
| 169 | + data_config = resolve_data_config( |
| 170 | + vars(args), |
| 171 | + model=model, |
| 172 | + use_test_size=not args.use_train_size, |
| 173 | + verbose=True |
| 174 | + ) |
168 | 175 | test_time_pool = False |
169 | 176 | if args.test_pool: |
170 | | - model, test_time_pool = apply_test_time_pool(model, data_config, use_test_size=True) |
| 177 | + model, test_time_pool = apply_test_time_pool(model, data_config) |
171 | 178 |
|
172 | 179 | if args.torchscript: |
173 | 180 | torch.jit.optimized_execution(True) |
|
0 commit comments