Skip to content

Commit ce65a7b

Browse files
committed
Update vit_relpos w/ some additional weights, some cleanup to match recent vit updates, more MLP log coord experiments.
1 parent 5862172 commit ce65a7b

File tree

1 file changed

+145
-49
lines changed

1 file changed

+145
-49
lines changed

timm/models/vision_transformer_relpos.py

Lines changed: 145 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
import logging
99
from functools import partial
1010
from collections import OrderedDict
11+
from dataclasses import dataclass
1112
from typing import Optional, Tuple
1213

1314
import torch
@@ -16,7 +17,7 @@
1617
from torch.utils.checkpoint import checkpoint
1718

1819
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
19-
from .helpers import build_model_with_cfg, named_apply
20+
from .helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply
2021
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, to_2tuple
2122
from .registry import register_model
2223

@@ -47,9 +48,16 @@ def _cfg(url='', **kwargs):
4748
'vit_relpos_base_patch16_224': _cfg(
4849
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth'),
4950

51+
'vit_srelpos_small_patch16_224': _cfg(
52+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth'),
53+
'vit_srelpos_medium_patch16_224': _cfg(
54+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth'),
55+
56+
'vit_relpos_medium_patch16_cls_224': _cfg(
57+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth'),
5058
'vit_relpos_base_patch16_cls_224': _cfg(
5159
url=''),
52-
'vit_relpos_base_patch16_gapcls_224': _cfg(
60+
'vit_relpos_base_patch16_clsgap_224': _cfg(
5361
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth'),
5462

5563
'vit_relpos_small_patch16_rpn_224': _cfg(url=''),
@@ -59,35 +67,43 @@ def _cfg(url='', **kwargs):
5967
}
6068

6169

62-
def gen_relative_position_index(win_size: Tuple[int, int], class_token: int = 0) -> torch.Tensor:
63-
# cut and paste w/ modifications from swin / beit codebase
64-
# cls to token & token 2 cls & cls to cls
70+
def gen_relative_position_index(
71+
q_size: Tuple[int, int],
72+
k_size: Tuple[int, int] = None,
73+
class_token: bool = False) -> torch.Tensor:
74+
# Adapted with significant modifications from Swin / BeiT codebases
6575
# get pair-wise relative position index for each token inside the window
66-
window_area = win_size[0] * win_size[1]
67-
coords = torch.stack(torch.meshgrid([torch.arange(win_size[0]), torch.arange(win_size[1])])).flatten(1) # 2, Wh, Ww
68-
relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
69-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
70-
relative_coords[:, :, 0] += win_size[0] - 1 # shift to start from 0
71-
relative_coords[:, :, 1] += win_size[1] - 1
72-
relative_coords[:, :, 0] *= 2 * win_size[1] - 1
76+
q_coords = torch.stack(torch.meshgrid([torch.arange(q_size[0]), torch.arange(q_size[1])])).flatten(1) # 2, Wh, Ww
77+
if k_size is None:
78+
k_coords = q_coords
79+
k_size = q_size
80+
else:
81+
# different q vs k sizes is a WIP
82+
k_coords = torch.stack(torch.meshgrid([torch.arange(k_size[0]), torch.arange(k_size[1])])).flatten(1)
83+
relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww
84+
relative_coords = relative_coords.permute(1, 2, 0) # Wh*Ww, Wh*Ww, 2
85+
_, relative_position_index = torch.unique(relative_coords.view(-1, 2), return_inverse=True, dim=0)
86+
7387
if class_token:
74-
num_relative_distance = (2 * win_size[0] - 1) * (2 * win_size[1] - 1) + 3
75-
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
76-
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
88+
# handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias
89+
# NOTE not intended or tested with MLP log-coords
90+
max_size = (max(q_size[0], k_size[0]), max(q_size[1], k_size[1]))
91+
num_relative_distance = (2 * max_size[0] - 1) * (2 * max_size[1] - 1) + 3
92+
relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0])
7793
relative_position_index[0, 0:] = num_relative_distance - 3
7894
relative_position_index[0:, 0] = num_relative_distance - 2
7995
relative_position_index[0, 0] = num_relative_distance - 1
80-
else:
81-
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
82-
return relative_position_index
96+
97+
return relative_position_index.contiguous()
8398

8499

85100
def gen_relative_log_coords(
86101
win_size: Tuple[int, int],
87102
pretrained_win_size: Tuple[int, int] = (0, 0),
88-
mode='swin'
103+
mode='swin',
89104
):
90-
# as per official swin-v2 impl, supporting timm swin-v2-cr coords as well
105+
assert mode in ('swin', 'cr', 'rw')
106+
# as per official swin-v2 impl, supporting timm specific 'cr' and 'rw' log coords as well
91107
relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0], dtype=torch.float32)
92108
relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1], dtype=torch.float32)
93109
relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
@@ -100,12 +116,22 @@ def gen_relative_log_coords(
100116
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
101117
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
102118
relative_coords_table *= 8 # normalize to -8, 8
103-
scale = math.log2(8)
119+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
120+
1.0 + relative_coords_table.abs()) / math.log2(8)
104121
else:
105-
# FIXME we should support a form of normalization (to -1/1) for this mode?
106-
scale = math.log2(math.e)
107-
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
108-
1.0 + relative_coords_table.abs()) / scale
122+
if mode == 'rw':
123+
# cr w/ window size normalization -> [-1,1] log coords
124+
relative_coords_table[:, :, 0] /= (win_size[0] - 1)
125+
relative_coords_table[:, :, 1] /= (win_size[1] - 1)
126+
relative_coords_table *= 8 # scale to -8, 8
127+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
128+
1.0 + relative_coords_table.abs())
129+
relative_coords_table /= math.log2(9) # -> [-1, 1]
130+
else:
131+
# mode == 'cr'
132+
relative_coords_table = torch.sign(relative_coords_table) * torch.log(
133+
1.0 + relative_coords_table.abs())
134+
109135
return relative_coords_table
110136

111137

@@ -115,19 +141,29 @@ def __init__(
115141
window_size,
116142
num_heads=8,
117143
hidden_dim=128,
118-
class_token=False,
144+
prefix_tokens=0,
119145
mode='cr',
120146
pretrained_window_size=(0, 0)
121147
):
122148
super().__init__()
123149
self.window_size = window_size
124150
self.window_area = self.window_size[0] * self.window_size[1]
125-
self.class_token = 1 if class_token else 0
151+
self.prefix_tokens = prefix_tokens
126152
self.num_heads = num_heads
127153
self.bias_shape = (self.window_area,) * 2 + (num_heads,)
128-
self.apply_sigmoid = mode == 'swin'
154+
if mode == 'swin':
155+
self.bias_act = nn.Sigmoid()
156+
self.bias_gain = 16
157+
mlp_bias = (True, False)
158+
elif mode == 'rw':
159+
self.bias_act = nn.Tanh()
160+
self.bias_gain = 4
161+
mlp_bias = True
162+
else:
163+
self.bias_act = nn.Identity()
164+
self.bias_gain = None
165+
mlp_bias = True
129166

130-
mlp_bias = (True, False) if mode == 'swin' else True
131167
self.mlp = Mlp(
132168
2, # x, y
133169
hidden_features=hidden_dim,
@@ -155,10 +191,11 @@ def get_bias(self) -> torch.Tensor:
155191
self.relative_position_index.view(-1)] # Wh*Ww,Wh*Ww,nH
156192
relative_position_bias = relative_position_bias.view(self.bias_shape)
157193
relative_position_bias = relative_position_bias.permute(2, 0, 1)
158-
if self.apply_sigmoid:
159-
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
160-
if self.class_token:
161-
relative_position_bias = F.pad(relative_position_bias, [self.class_token, 0, self.class_token, 0])
194+
relative_position_bias = self.bias_act(relative_position_bias)
195+
if self.bias_gain is not None:
196+
relative_position_bias = self.bias_gain * relative_position_bias
197+
if self.prefix_tokens:
198+
relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0])
162199
return relative_position_bias.unsqueeze(0).contiguous()
163200

164201
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
@@ -167,18 +204,18 @@ def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None):
167204

168205
class RelPosBias(nn.Module):
169206

170-
def __init__(self, window_size, num_heads, class_token=False):
207+
def __init__(self, window_size, num_heads, prefix_tokens=0):
171208
super().__init__()
209+
assert prefix_tokens <= 1
172210
self.window_size = window_size
173211
self.window_area = window_size[0] * window_size[1]
174-
self.class_token = 1 if class_token else 0
175-
self.bias_shape = (self.window_area + self.class_token,) * 2 + (num_heads,)
212+
self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,)
176213

177-
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * self.class_token
214+
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens
178215
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
179216
self.register_buffer(
180217
"relative_position_index",
181-
gen_relative_position_index(self.window_size, class_token=self.class_token),
218+
gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0),
182219
persistent=False,
183220
)
184221

@@ -306,11 +343,32 @@ class VisionTransformerRelPos(nn.Module):
306343
"""
307344

308345
def __init__(
309-
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
310-
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=1e-6,
311-
class_token=False, fc_norm=False, rel_pos_type='mlp', shared_rel_pos=False, rel_pos_dim=None,
312-
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='skip',
313-
embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=RelPosBlock):
346+
self,
347+
img_size=224,
348+
patch_size=16,
349+
in_chans=3,
350+
num_classes=1000,
351+
global_pool='avg',
352+
embed_dim=768,
353+
depth=12,
354+
num_heads=12,
355+
mlp_ratio=4.,
356+
qkv_bias=True,
357+
init_values=1e-6,
358+
class_token=False,
359+
fc_norm=False,
360+
rel_pos_type='mlp',
361+
rel_pos_dim=None,
362+
shared_rel_pos=False,
363+
drop_rate=0.,
364+
attn_drop_rate=0.,
365+
drop_path_rate=0.,
366+
weight_init='skip',
367+
embed_layer=PatchEmbed,
368+
norm_layer=None,
369+
act_layer=None,
370+
block_fn=RelPosBlock
371+
):
314372
"""
315373
Args:
316374
img_size (int, tuple): input image size
@@ -345,19 +403,22 @@ def __init__(
345403
self.num_classes = num_classes
346404
self.global_pool = global_pool
347405
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
348-
self.num_tokens = 1 if class_token else 0
406+
self.num_prefix_tokens = 1 if class_token else 0
349407
self.grad_checkpointing = False
350408

351409
self.patch_embed = embed_layer(
352410
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
353411
feat_size = self.patch_embed.grid_size
354412

355-
rel_pos_args = dict(window_size=feat_size, class_token=class_token)
413+
rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens)
356414
if rel_pos_type.startswith('mlp'):
357415
if rel_pos_dim:
358416
rel_pos_args['hidden_dim'] = rel_pos_dim
417+
# FIXME experimenting with different relpos log coord configs
359418
if 'swin' in rel_pos_type:
360419
rel_pos_args['mode'] = 'swin'
420+
elif 'rw' in rel_pos_type:
421+
rel_pos_args['mode'] = 'rw'
361422
rel_pos_cls = partial(RelPosMlp, **rel_pos_args)
362423
else:
363424
rel_pos_cls = partial(RelPosBias, **rel_pos_args)
@@ -367,7 +428,7 @@ def __init__(
367428
# NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both...
368429
rel_pos_cls = None
369430

370-
self.cls_token = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) if self.num_tokens else None
431+
self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None
371432

372433
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
373434
self.blocks = nn.ModuleList([
@@ -434,7 +495,7 @@ def forward_features(self, x):
434495

435496
def forward_head(self, x, pre_logits: bool = False):
436497
if self.global_pool:
437-
x = x[:, self.num_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
498+
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
438499
x = self.fc_norm(x)
439500
return x if pre_logits else self.head(x)
440501

@@ -502,6 +563,41 @@ def vit_relpos_base_patch16_224(pretrained=False, **kwargs):
502563
return model
503564

504565

566+
@register_model
567+
def vit_srelpos_small_patch16_224(pretrained=False, **kwargs):
568+
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
569+
"""
570+
model_kwargs = dict(
571+
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False,
572+
rel_pos_dim=384, shared_rel_pos=True, **kwargs)
573+
model = _create_vision_transformer_relpos('vit_srelpos_small_patch16_224', pretrained=pretrained, **model_kwargs)
574+
return model
575+
576+
577+
@register_model
578+
def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs):
579+
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
580+
"""
581+
model_kwargs = dict(
582+
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
583+
rel_pos_dim=512, shared_rel_pos=True, **kwargs)
584+
model = _create_vision_transformer_relpos(
585+
'vit_srelpos_medium_patch16_224', pretrained=pretrained, **model_kwargs)
586+
return model
587+
588+
589+
@register_model
590+
def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs):
591+
""" ViT-Base (ViT-M/16) w/ relative log-coord position, class token present
592+
"""
593+
model_kwargs = dict(
594+
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
595+
rel_pos_dim=256, class_token=True, global_pool='token', **kwargs)
596+
model = _create_vision_transformer_relpos(
597+
'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **model_kwargs)
598+
return model
599+
600+
505601
@register_model
506602
def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs):
507603
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
@@ -514,14 +610,14 @@ def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs):
514610

515611

516612
@register_model
517-
def vit_relpos_base_patch16_gapcls_224(pretrained=False, **kwargs):
613+
def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs):
518614
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
519615
NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled
520616
Leaving here for comparisons w/ a future re-train as it performs quite well.
521617
"""
522618
model_kwargs = dict(
523619
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True, **kwargs)
524-
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_gapcls_224', pretrained=pretrained, **model_kwargs)
620+
model = _create_vision_transformer_relpos('vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **model_kwargs)
525621
return model
526622

527623

0 commit comments

Comments
 (0)