readme_content = """
This repository demonstrates how to implement Linear Regression from scratch using Python and NumPy.
It explains the mathematics (slope & intercept formulas), provides a simple implementation, and shows predictions.
For a simple linear regression model:
` y = β₀ + β₁x `
Where:
- β₀ (Intercept) = Mean of
y− β₁ × Mean ofx - β₁ (Slope) = Σ((xᵢ − x̄)(yᵢ − ȳ)) / Σ((xᵢ − x̄)²)
-
Slope (β₁):
` β₁ = (Σ(xᵢ − x̄)(yᵢ − ȳ)) / (Σ(xᵢ − x̄)²) ` -
Intercept (β₀):
` β₀ = ȳ − β₁x̄ `
