S.H.A.D.E. is a privacy-first, local-only scorecard to assess Shadow AI maturity: Savoir, Harmoniser, Anticiper, Définir, Eduquer.
- Author: Fabrice Willot
- Website: https://fabrice.willot.be/
- Page: https://fabrice.willot.be/framework-shadowai/
docs/index.html— the local-only interactive tool (stores data in your browser localStorage)docs/about.html— explanation / licensing / warnings / contribution infodocs/assets/— minimal shared styling
No tracking, no analytics, no account.
Data stays on the user’s device (localStorage). Export/Import is done with local files.
- Code: MIT — see
LICENSE - Content / method / wording: CC BY 4.0 — see
LICENSE-CONTENT
Open docs/index.html in your browser.
Tip: for clipboard API to work everywhere, serve locally (optional):
python -m http.serverthen openhttp://localhost:8000/docs/
If you enable GitHub Pages, point it to /docs.
If you use the SHADE Framework in your work, please cite:
Willot, F. (2026). SHADE Framework: A Holistic Methodology for Shadow AI Governance (Version 1.0). Zenodo.
https://doi.org/10.5281/zenodo.18220695