Skip to content
This repository was archived by the owner on Nov 21, 2023. It is now read-only.
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 170 additions & 0 deletions tools/infer_simple_video.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
#!/usr/bin/env python


"""Perform inference on a single video file and save
output as a new video file.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from collections import defaultdict
import argparse
import cv2 # NOQA (Must import before importing caffe2 due to bug in cv2)
import glob
import logging
import os
import sys
import time

from caffe2.python import workspace

from detectron.core.config import assert_and_infer_cfg
from detectron.core.config import cfg
from detectron.core.config import merge_cfg_from_file
from detectron.utils.io import cache_url
from detectron.utils.logging import setup_logging
from detectron.utils.timer import Timer
import detectron.core.test_engine as infer_engine
import detectron.datasets.dummy_datasets as dummy_datasets
import detectron.utils.c2 as c2_utils
import detectron.utils.vis as vis_utils

c2_utils.import_detectron_ops()

# OpenCL may be enabled by default in OpenCV3; disable it because it's not
# thread safe and causes unwanted GPU memory allocations.
cv2.ocl.setUseOpenCL(False)


def parse_args():
parser = argparse.ArgumentParser(description='End-to-end inference')
parser.add_argument(
'--cfg',
dest='cfg',
help='cfg model file (/path/to/model_config.yaml)',
default=None,
type=str
)
parser.add_argument(
'--wts',
dest='weights',
help='weights model file (/path/to/model_weights.pkl)',
default=None,
type=str
)
parser.add_argument(
'--output-name',
dest='output_name',
help='output name of video along with entire path',
required = True,
type=str
)
parser.add_argument(
'--video-dir',
dest='video_dir',
help='path to video file',
required= True,
type=str
)
parser.add_argument(
'--always-out',
dest='out_when_no_box',
help='output image even when no object is found',
action='store_true'
)
parser.add_argument(
'--thresh',
dest='thresh',
help='Threshold for visualizing detections',
default=0.5,
type=float
)
parser.add_argument(
'--kp-thresh',
dest='kp_thresh',
help='Threshold for visualizing keypoints',
default=2.0,
type=float
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()


def main(args):
logger = logging.getLogger(__name__)

merge_cfg_from_file(args.cfg)
cfg.NUM_GPUS = 1
args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE)
assert_and_infer_cfg(cache_urls=False)

assert not cfg.MODEL.RPN_ONLY, \
'RPN models are not supported'
assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \
'Models that require precomputed proposals are not supported'

model = infer_engine.initialize_model_from_cfg(args.weights)
dummy_coco_dataset = dummy_datasets.get_coco_dataset()

vs = cv2.VideoCapture(args.video_dir)
writer = None
count = 0

while True:
grab,im = vs.read()
if not grab:
break
count += 1
timers = defaultdict(Timer)
t = time.time()
with c2_utils.NamedCudaScope(0):
cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all(
model, im, None, timers=timers
)
logger.info('Inference time: {:.3f}s'.format(time.time() - t))
for k, v in timers.items():
logger.info(' | {}: {:.3f}s'.format(k, v.average_time))
if count == 1:
logger.info(
' \ Note: inference on the first image will be slower than the '
'rest (caches and auto-tuning need to warm up)'
)

image_ret = vis_utils.vis_one_image_opencv(
im,
cls_boxes,
cls_segms,
cls_keyps,
dataset=dummy_coco_dataset,
show_box = True,
show_class=True,
thresh=args.thresh,
kp_thresh=args.kp_thresh,
)

cv2.imshow("img", image_ret)
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break

if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args.output_name, fourcc, 30,
(image_ret.shape[1], image_ret.shape[0]), True)

writer.write(image_ret)

writer.release()
vs.release()

if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
setup_logging(__name__)
args = parse_args()
main(args)