Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
314 changes: 314 additions & 0 deletions elfi/examples/example_bolfi_invocation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
import elfi
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as ss

from elfi import BOLFI
from matplotlib.animation import FuncAnimation, FFMpegWriter

seed = 0

# Number of minimum samples.
n_low = 1
# Number of maximum samples.
n = 5
np.random.seed(seed)
gauss_samples = ss.norm().rvs(size=n)
"""
t_plus_range = [0.36, 0.44]
t_plus = np.linspace(*t_plus_range, 200)
model = lambda t_plus: t_plus**2
x_range = [0.36, 0.44]
y_range = [-0.8, 1.5]
canvas = np.meshgrid(np.linspace(*x_range, 200),
np.linspace(*reversed(y_range), 200))
t_plus_samples = t_plus_range.copy()

fit_spline = []
fit_spline_uncertainty = []
fit_acq = []
fit_discrepancy = []
fit_acq_t_plus = []

prior = elfi.Prior('norm', 0.4, 0.02**2, name='t_+')
elfi_simulator = elfi.Simulator(
lambda *args, **_: model(args[0]) + ss.norm().rvs(size=1)[0],
prior, observed=model(0.415)
)
processed_data = elfi.Summary(lambda data: data, elfi_simulator)
distance = elfi.Distance('euclidean', processed_data)
log_distance = elfi.Operation(np.log, distance)
bolfi = elfi.BOLFI(
log_distance, initial_evidence=10, bounds={'t_+': t_plus_range}, seed=seed
)
for i in range(20):
bolfi.fit(n_evidence=10 + i + 1, bar=True)
#plt.plot(t_plus, bolfi.target_model.predict(t_plus, noiseless=True)[0])
#plt.show()
"""

t_plus_range = [0.36, 0.44]
t_plus = np.linspace(*t_plus_range, 200)


def model(t_plus):
return t_plus**2


x_range = [0.358, 0.442]
t_plus_eval = np.linspace(*x_range, 200)
y_range = [-0.012, 0.052]
canvas = np.meshgrid(np.linspace(*x_range, 200),
np.linspace(*reversed(y_range), 200))
t_plus_samples = t_plus_range.copy()

fit_spline = []
fit_spline_uncertainty = []
fit_acq = []
fit_discrepancy = []
fit_acq_t_plus = []

prior = elfi.Prior('norm', 0.4, 0.02, name='t_+')
elfi_simulator = elfi.Simulator(
lambda *args, **_: model(args[0]) + 0.001 * ss.norm().rvs(size=1)[0],
prior, observed=model(0.415)
)
processed_data = elfi.Summary(lambda data: data, elfi_simulator)
distance = elfi.Distance('euclidean', processed_data)
# log_distance = elfi.Operation(np.log, distance)


class Animate_GP:
def __init__(self, fig, ax, initial_evidence=0, frames=None):
self.bolfi = elfi.BOLFI(
distance,
initial_evidence=initial_evidence,
bounds={'t_+': t_plus_range},
seed=seed,
batch_size=10,
)
self.ax = ax
self.ax.set_xlim(*x_range)
self.ax.set_ylim(*y_range)
self.ax.xaxis.set_ticks([])
self.ax.yaxis.set_ticks([])
self.ax.set_xlabel("model parameter")
self.ax.set_ylabel("discrepancy")
self.initial_evidence = initial_evidence
self.line, = self.ax.plot([], [])
self.acq, = self.ax.plot([], [])
self.img = self.ax.imshow(
0 * canvas[0],
cmap='gist_yarg',
vmin=0,
vmax=1,
aspect='auto',
extent=[*x_range, *y_range]
)
self.pts, = self.ax.plot(
[], [], lw=0, marker='o',
color=plt.rcParams['axes.prop_cycle'].by_key()['color'][0]
)
trans = matplotlib.transforms.ScaledTranslation(
240/72, -10/72, fig.dpi_scale_trans
)
self.txt = self.ax.text(
0.0, 1.0, str(self.initial_evidence) + " samples ",
transform=ax.transAxes + trans, verticalalignment='top'
)
self.frames = frames

def __call__(self, i):
if self.frames is not None:
n_evidence = self.initial_evidence + self.frames[i]
else:
n_evidence = self.initial_evidence + i
self.bolfi.fit(n_evidence=n_evidence)
mean, var = self.bolfi.target_model.predict(
t_plus_eval, noiseless=True
)
self.line.set_data(t_plus_eval, mean)
eta_squared = 2 * np.log(
n_evidence**4 * np.pi**2 / 0.3
)
self.acq.set_data(t_plus_eval, mean - np.sqrt(eta_squared * var))
unc = (
np.exp(-(canvas[1] - mean.T)**2 / (2 * var.T))
/ np.sqrt(2 * np.pi * var.T)
)
self.ax.imshow(
unc,
cmap='gist_yarg',
vmin=0,
vmax=np.max(unc),
aspect='auto',
extent=[*x_range, *y_range]
)
self.pts.set_data(
self.bolfi.target_model._gp.X, self.bolfi.target_model._gp.Y
)
self.txt.set_text(str(n_evidence) + " samples")
return self.line, self.acq, self.img, self.pts, self.txt


initial_evidence = 3
frames = np.array([3, 4, 13, 14]) - initial_evidence

fig, ax = plt.subplots(figsize=(6, 4))
anim_gp = Animate_GP(fig, ax, initial_evidence=initial_evidence, frames=frames)
anim = FuncAnimation(
fig, anim_gp, frames=4, interval=200, blit=False, repeat=False
)

bolfi = elfi.BOLFI(
distance,
initial_evidence=initial_evidence,
bounds={'t_+': t_plus_range},
seed=seed,
batch_size=10,
)

likelihood_range = [0.405, 0.425]
likelihood_eval = np.linspace(*likelihood_range, 200)
gps_at_each_frame = []

fig_static, axes = plt.subplots(figsize=(6, 4), nrows=2, ncols=2)

for i, ax in enumerate(axes.flatten()):
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_xlim(*x_range)
ax.set_ylim(*y_range)
if frames is not None:
n_evidence = initial_evidence + frames[i]
else:
n_evidence = initial_evidence + i
bolfi.fit(n_evidence=n_evidence)
trans = matplotlib.transforms.ScaledTranslation(
126/72, -5/72, fig.dpi_scale_trans
)
mean, var = bolfi.target_model.predict(t_plus_eval, noiseless=True)
gps_at_each_frame.append(
bolfi.target_model.predict(likelihood_eval, noiseless=True)
)
ax.plot(t_plus_eval, mean)
eta_squared = 2 * np.log(
n_evidence**4 * np.pi**2 / 0.3
)
ax.plot(t_plus_eval, mean - np.sqrt(eta_squared * var))
unc = (
np.exp(-(canvas[1] - mean.T)**2 / (2 * var.T))
/ np.sqrt(2 * np.pi * var.T)
)
ax.imshow(
unc,
cmap='gist_yarg',
vmin=0,
vmax=np.max(unc),
aspect='auto',
extent=[*x_range, *y_range]
)
ax.scatter(
bolfi.target_model._gp.X, bolfi.target_model._gp.Y
)
ax.text(
0.0, 1.0, str(n_evidence) + " samples ",
transform=ax.transAxes + trans,
verticalalignment='top', horizontalalignment='right'
)
fig_static.supxlabel(r"Model parameter $\theta$")
fig_static.supylabel("Model-data distance")
fig_static.tight_layout()

posterior = bolfi.extract_posterior()
threshold = posterior.threshold
likelihood_yrange = [-0.0012, 0.0082]
likelihood_canvas = np.meshgrid(
np.linspace(*likelihood_range, 200),
np.linspace(*reversed(likelihood_yrange), 200)
)
mean, var = bolfi.target_model.predict(likelihood_eval, noiseless=True)
likelihood = ss.norm().cdf((threshold - mean) / np.sqrt(var))
normalizing = np.sum(
0.5
* (likelihood[:-1] + likelihood[1:])
* (t_plus_eval[1:] - t_plus_eval[:-1])
)

fig_int, (ax_gp, ax_int) = plt.subplots(figsize=(6, 4), nrows=2)
ax_gp.set_xlim(*likelihood_range)
ax_int.set_xlim(*likelihood_range)
ax_gp.xaxis.set_ticks([])
ax_int.xaxis.set_ticks([])
ax_gp.yaxis.set_ticks([])
ax_int.yaxis.set_ticks([])
ax_gp.set_ylabel(r"$\log||y_i(\theta)-y_i^\star||$")
ax_int.set_ylabel(r"$L_K(\theta)$")
ax_int.set_xlabel(r"Model parameter $\theta$")
trans_int = matplotlib.transforms.ScaledTranslation(
10/72, -5/72, fig_int.dpi_scale_trans
)
ax_gp.text(0.0, 1.0, '(a)', transform=ax_gp.transAxes + trans_int,
verticalalignment='top', fontsize=20)
ax_int.text(0.0, 1.0, '(b)', transform=ax_int.transAxes + trans_int,
verticalalignment='top', fontsize=20)
trans_samples = matplotlib.transforms.ScaledTranslation(
162/72, -10/72, fig.dpi_scale_trans
)
ax_gp.text(
0.0, 1.0, str(n_evidence) + " samples ",
transform=ax_gp.transAxes + trans_samples, verticalalignment='top'
)
ax_gp.plot(likelihood_eval, mean)
ax_gp.plot(likelihood_eval, mean - np.sqrt(eta_squared * var))
ax_gp.plot(likelihood_eval, [threshold] * len(likelihood_eval))
ax_gp.scatter(
bolfi.target_model._gp.X, bolfi.target_model._gp.Y
)
truncated_unc = (
np.exp(-(likelihood_canvas[1] - mean.T)**2 / (2 * var.T))
/ np.sqrt(2 * np.pi * var.T)
) / normalizing * (likelihood_canvas[1] < threshold)
ax_gp.imshow(
truncated_unc,
cmap='gist_yarg',
vmin=0,
vmax=np.max(truncated_unc),
aspect='auto',
extent=[*likelihood_range, *likelihood_yrange]
)
ax_int.plot(
likelihood_eval,
likelihood / normalizing,
color=plt.rcParams['axes.prop_cycle'].by_key()['color'][4]
)

fig_int.tight_layout()

eps_min = -0.005
eps_max = 0.04
threshold_eval = np.linspace(eps_min, eps_max, 200)
norm = matplotlib.colors.Normalize(eps_min, eps_max)
cmap = plt.get_cmap('viridis')
fig_eps, ax_eps = plt.subplots(
figsize=(4 * 2**0.5, 4), constrained_layout=True)
# mean, var = gps_at_each_frame[2]
for eps in threshold_eval:
likelihood_eps = ss.norm().cdf((eps - mean) / np.sqrt(var))
normalizing_eps = np.sum(
0.5
* (likelihood_eps[:-1] + likelihood_eps[1:])
* (t_plus_eval[1:] - t_plus_eval[:-1])
)
ax_eps.plot(
likelihood_eval,
likelihood_eps / normalizing_eps,
color=cmap(norm(eps))
)
ax_eps.set_title("Normalized Likelihoods")
fig_eps.colorbar(matplotlib.cm.ScalarMappable(
norm=norm, cmap=cmap
), ax=ax_eps, label="threshold")

plt.show()
Loading