-
-
Notifications
You must be signed in to change notification settings - Fork 50
Use Cases and Tutorials
Mike Morgan edited this page Jan 11, 2026
·
1 revision
Real-world implementation examples and complete code samples for Cortex Linux.
- Automated Debugging
- DevOps Optimization
- Architecture Planning
- Code Review Automation
- System Monitoring and Analysis
- Configuration Optimization
- Documentation Generation
Automatically analyze error logs and provide actionable debugging suggestions.
#!/usr/bin/env python3
"""
Automated error log analysis using Cortex AI
"""
from cortex import AI
import sys
import json
from pathlib import Path
from datetime import datetime
class ErrorAnalyzer:
def __init__(self):
self.ai = AI()
def analyze_error_log(self, log_path: str) -> dict:
"""Analyze error log file and return structured analysis."""
log_content = Path(log_path).read_text()
query = f"""
Analyze this error log and provide:
1. Error classification (type, severity)
2. Root cause analysis
3. Suggested fixes with code examples
4. Prevention strategies
Error log:
{log_content}
"""
result = self.ai.reason(query, context={
"application": "web_server",
"language": "Python",
"environment": "production"
})
return {
"timestamp": datetime.now().isoformat(),
"log_file": log_path,
"analysis": result.result,
"confidence": result.confidence
}
def analyze_stack_trace(self, stack_trace: str) -> dict:
"""Analyze Python stack trace."""
query = f"""
Analyze this Python stack trace:
{stack_trace}
Provide:
- Error location and type
- Call chain analysis
- Suggested fixes
- Related documentation links
"""
result = self.ai.debug(
error_log=stack_trace,
context={"language": "Python"}
)
return {
"error_type": result.analysis.get("error_type"),
"location": result.analysis.get("location"),
"suggestions": result.suggestions,
"code_fixes": result.code_fixes
}
def main():
analyzer = ErrorAnalyzer()
if len(sys.argv) < 2:
print("Usage: error_analyzer.py <log_file>")
sys.exit(1)
log_file = sys.argv[1]
print(f"Analyzing {log_file}...")
analysis = analyzer.analyze_error_log(log_file)
print("\n" + "="*80)
print("ERROR ANALYSIS")
print("="*80)
print(f"File: {analysis['log_file']}")
print(f"Timestamp: {analysis['timestamp']}")
print(f"Confidence: {analysis['confidence']:.2%}")
print("\nAnalysis:")
print(analysis['analysis'])
# Save to file
output_file = f"{log_file}.analysis.json"
with open(output_file, 'w') as f:
json.dump(analysis, f, indent=2)
print(f"\nAnalysis saved to: {output_file}")
if __name__ == "__main__":
main()#!/bin/bash
# Automated error log analyzer
LOG_FILE="${1:-/var/log/app/error.log}"
OUTPUT_DIR="/var/log/app/analysis"
mkdir -p "$OUTPUT_DIR"
# Analyze error log
ANALYSIS=$(cortex-ai debug "$LOG_FILE" --format json)
# Extract key information
ERROR_TYPE=$(echo "$ANALYSIS" | jq -r '.analysis.error_type')
SEVERITY=$(echo "$ANALYSIS" | jq -r '.analysis.severity')
SUGGESTIONS=$(echo "$ANALYSIS" | jq -r '.suggestions[]')
# Generate report
REPORT_FILE="$OUTPUT_DIR/error_analysis_$(date +%Y%m%d_%H%M%S).md"
cat > "$REPORT_FILE" << EOF
# Error Analysis Report
**Timestamp**: $(date)
**Log File**: $LOG_FILE
**Error Type**: $ERROR_TYPE
**Severity**: $SEVERITY
## Suggested Fixes
$SUGGESTIONS
## Full Analysis
\`\`\`
$(echo "$ANALYSIS" | jq -r '.analysis')
\`\`\`
EOF
echo "Analysis complete: $REPORT_FILE"# Integration with monitoring system
import subprocess
from cortex import AI
def monitor_and_debug():
"""Monitor application and auto-debug on errors."""
ai = AI()
# Watch log file
process = subprocess.Popen(
['tail', '-f', '/var/log/app/error.log'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
error_buffer = []
for line in process.stdout:
line = line.decode('utf-8')
# Detect error lines
if 'ERROR' in line or 'Exception' in line:
error_buffer.append(line)
# Analyze when buffer reaches threshold
if len(error_buffer) >= 10:
error_text = '\n'.join(error_buffer)
result = ai.debug(
error_log=error_text,
context={"application": "monitored_app"}
)
# Send alert
send_alert(result)
error_buffer = []Automatically analyze and optimize infrastructure configurations (Ansible, Terraform, Kubernetes).
#!/usr/bin/env python3
"""
Optimize Ansible playbooks using Cortex AI
"""
from cortex import AI
from pathlib import Path
import yaml
class AnsibleOptimizer:
def __init__(self):
self.ai = AI()
def optimize_playbook(self, playbook_path: str) -> dict:
"""Analyze and optimize Ansible playbook."""
playbook_content = Path(playbook_path).read_text()
result = self.ai.optimize(
target="ansible_playbook",
content=playbook_content,
goals=["performance", "maintainability", "best_practices"]
)
return {
"original": playbook_content,
"optimizations": result.optimizations,
"improved_playbook": self._apply_optimizations(
playbook_content,
result.optimizations
)
}
def _apply_optimizations(self, original: str, optimizations: list) -> str:
"""Apply suggested optimizations to playbook."""
# Implementation would apply code changes
# This is a simplified version
optimized = original
for opt in optimizations:
if 'optimized_code' in opt:
# Apply optimization
pass
return optimized
# Example usage
optimizer = AnsibleOptimizer()
result = optimizer.optimize_playbook("deploy.yml")
print("Optimizations suggested:")
for opt in result['optimizations']:
print(f"- {opt['description']}")
print(f" Improvement: {opt['improvement_estimate']}")#!/bin/bash
# Terraform configuration optimizer
TERRAFORM_DIR="${1:-.}"
# Analyze Terraform files
for tf_file in $(find "$TERRAFORM_DIR" -name "*.tf"); do
echo "Analyzing $tf_file..."
ANALYSIS=$(cortex-ai optimize "$tf_file" \
--target terraform \
--goals "cost_optimization,security,best_practices" \
--format json)
# Extract recommendations
RECS=$(echo "$ANALYSIS" | jq -r '.optimizations[] | "\(.type): \(.description)"')
echo "Recommendations for $tf_file:"
echo "$RECS"
echo ""
done
# Generate optimization report
cortex-ai plan "Optimize Terraform infrastructure" \
--requirements "Reduce costs, improve security, follow best practices" \
--config "$TERRAFORM_DIR" \
--output terraform_optimization_plan.md#!/usr/bin/env python3
"""
Kubernetes resource optimization
"""
from cortex import AI
import yaml
import json
class K8sOptimizer:
def __init__(self):
self.ai = AI()
def optimize_deployment(self, deployment_yaml: str) -> dict:
"""Optimize Kubernetes deployment."""
deployment = yaml.safe_load(deployment_yaml)
# Extract resource requests/limits
resources = self._extract_resources(deployment)
query = f"""
Analyze this Kubernetes deployment and optimize:
1. Resource requests and limits
2. Replica count
3. Health checks
4. Security contexts
Current configuration:
{json.dumps(resources, indent=2)}
"""
result = self.ai.optimize(
target="kubernetes_deployment",
content=deployment_yaml,
goals=["resource_efficiency", "high_availability", "security"]
)
return {
"current": deployment,
"recommendations": result.optimizations,
"optimized": yaml.safe_load(result.optimizations[0]['optimized_code'])
}
def _extract_resources(self, deployment: dict) -> dict:
"""Extract resource configuration."""
containers = deployment.get('spec', {}).get('template', {}).get('spec', {}).get('containers', [])
resources = {}
for container in containers:
resources[container['name']] = container.get('resources', {})
return resources
# Example
optimizer = K8sOptimizer()
with open('deployment.yaml') as f:
deployment_yaml = f.read()
result = optimizer.optimize_deployment(deployment_yaml)
print("Optimization recommendations:")
for rec in result['recommendations']:
print(f"- {rec['description']}")Use Cortex AI to assist in system architecture design and technology selection.
#!/usr/bin/env python3
"""
Architecture planning assistant
"""
from cortex import AI
import json
from typing import Dict, List
class ArchitecturePlanner:
def __init__(self):
self.ai = AI()
def design_system(self, requirements: Dict) -> Dict:
"""Design system architecture based on requirements."""
query = f"""
Design a system architecture based on these requirements:
Functional Requirements:
{requirements.get('functional', [])}
Non-Functional Requirements:
{requirements.get('non_functional', {})}
Constraints:
{requirements.get('constraints', [])}
Provide:
1. High-level architecture diagram (textual)
2. Technology stack recommendations
3. Component breakdown
4. Data flow
5. Security considerations
6. Scalability strategy
"""
result = self.ai.plan(
task="Design system architecture",
requirements=json.dumps(requirements),
format="markdown"
)
return {
"architecture": result.plan,
"estimated_complexity": result.risk_level,
"confidence": result.confidence
}
def compare_technologies(self, technologies: List[str], use_case: str) -> Dict:
"""Compare technology options for a use case."""
query = f"""
Compare these technologies for the use case: {use_case}
Technologies: {', '.join(technologies)}
Provide comparison on:
1. Performance
2. Scalability
3. Ease of use
4. Community support
5. Cost
6. Best fit recommendation
"""
result = self.ai.reason(query)
return {
"comparison": result.result,
"recommendation": self._extract_recommendation(result.result)
}
def _extract_recommendation(self, comparison_text: str) -> str:
"""Extract recommendation from comparison text."""
# Simple extraction - could be improved with NLP
if "recommend" in comparison_text.lower():
# Extract recommendation
pass
return "See comparison above"
# Example usage
planner = ArchitecturePlanner()
requirements = {
"functional": [
"User authentication and authorization",
"Real-time data processing",
"RESTful API",
"Web dashboard"
],
"non_functional": {
"scalability": "Handle 1M+ users",
"availability": "99.9% uptime",
"latency": "< 100ms API response"
},
"constraints": [
"Must use open-source technologies",
"Budget: $10k/month infrastructure",
"Team size: 5 developers"
]
}
architecture = planner.design_system(requirements)
print(architecture['architecture'])
# Technology comparison
tech_comparison = planner.compare_technologies(
["PostgreSQL", "MongoDB", "Cassandra"],
"Storing user profiles and session data"
)
print(tech_comparison['comparison'])#!/bin/bash
# Generate microservices architecture plan
REQUIREMENTS_FILE="requirements.json"
# Create requirements
cat > "$REQUIREMENTS_FILE" << EOF
{
"application_type": "e-commerce platform",
"expected_users": "100000",
"features": [
"User management",
"Product catalog",
"Shopping cart",
"Payment processing",
"Order management"
],
"constraints": {
"budget": "$5000/month",
"team_size": 8,
"timeline": "6 months"
}
}
EOF
# Generate architecture plan
cortex-ai plan "Design microservices architecture for e-commerce platform" \
--requirements "$REQUIREMENTS_FILE" \
--format markdown \
--output architecture_plan.md
# Generate technology recommendations
cortex-ai reason "Recommend technology stack for microservices e-commerce platform with 100k users, $5k/month budget" \
--output tech_stack.md
echo "Architecture plan generated: architecture_plan.md"
echo "Technology recommendations: tech_stack.md"Automatically review code changes and provide feedback.
#!/usr/bin/env python3
"""
Pre-commit hook for automated code review
"""
from cortex import AI
import subprocess
import sys
from pathlib import Path
class CodeReviewer:
def __init__(self):
self.ai = AI()
def review_diff(self, diff: str) -> dict:
"""Review git diff and provide feedback."""
query = f"""
Review this code diff and provide feedback on:
1. Code quality and style
2. Potential bugs
3. Security issues
4. Performance concerns
5. Best practices
Diff:
{diff}
"""
result = self.ai.reason(query, context={
"review_type": "code_review",
"severity": "critical"
})
return {
"review": result.result,
"confidence": result.confidence,
"should_block": self._should_block_commit(result.result)
}
def _should_block_commit(self, review_text: str) -> bool:
"""Determine if commit should be blocked."""
blocking_keywords = [
"security vulnerability",
"critical bug",
"data leak",
"SQL injection",
"XSS vulnerability"
]
review_lower = review_text.lower()
return any(keyword in review_lower for keyword in blocking_keywords)
def main():
reviewer = CodeReviewer()
# Get staged changes
result = subprocess.run(
['git', 'diff', '--cached'],
capture_output=True,
text=True
)
if not result.stdout:
print("No changes to review")
sys.exit(0)
# Review changes
review = reviewer.review_diff(result.stdout)
print("="*80)
print("CODE REVIEW")
print("="*80)
print(review['review'])
print("="*80)
if review['should_block']:
print("\n⚠️ BLOCKING ISSUES DETECTED")
print("Please address the issues above before committing.")
sys.exit(1)
else:
print("\n✓ Review complete. No blocking issues.")
sys.exit(0)
if __name__ == "__main__":
main()#!/bin/bash
# Setup pre-commit hook
HOOK_FILE=".git/hooks/pre-commit"
cat > "$HOOK_FILE" << 'EOF'
#!/bin/bash
python3 /path/to/code_reviewer.py
EOF
chmod +x "$HOOK_FILE"
echo "Pre-commit hook installed"#!/usr/bin/env python3
"""
Automated PR review using Cortex AI
"""
from cortex import AI
import requests
import os
class PRReviewer:
def __init__(self):
self.ai = AI()
self.github_token = os.getenv('GITHUB_TOKEN')
def review_pr(self, repo: str, pr_number: int):
"""Review GitHub pull request."""
# Fetch PR diff
diff = self._fetch_pr_diff(repo, pr_number)
# Review code
review = self.ai.reason(
f"Review this pull request diff:\n\n{diff}\n\n"
"Provide feedback on code quality, bugs, security, and best practices."
)
# Post review comment
self._post_review_comment(repo, pr_number, review.result)
def _fetch_pr_diff(self, repo: str, pr_number: int) -> str:
"""Fetch PR diff from GitHub."""
url = f"https://api.github.com/repos/{repo}/pulls/{pr_number}"
headers = {"Authorization": f"token {self.github_token}"}
response = requests.get(f"{url}.diff", headers=headers)
return response.text
def _post_review_comment(self, repo: str, pr_number: int, comment: str):
"""Post review comment to PR."""
url = f"https://api.github.com/repos/{repo}/pulls/{pr_number}/comments"
headers = {
"Authorization": f"token {self.github_token}",
"Accept": "application/vnd.github.v3+json"
}
# Post as review comment
# Implementation details...Continuously monitor system metrics and provide intelligent analysis.
#!/usr/bin/env python3
"""
System metrics monitoring and analysis
"""
from cortex import AI
import psutil
import json
from datetime import datetime
from typing import Dict
class SystemAnalyzer:
def __init__(self):
self.ai = AI()
def collect_metrics(self) -> Dict:
"""Collect system metrics."""
return {
"timestamp": datetime.now().isoformat(),
"cpu": {
"percent": psutil.cpu_percent(interval=1),
"count": psutil.cpu_count(),
"per_cpu": psutil.cpu_percent(percpu=True, interval=1)
},
"memory": {
"total": psutil.virtual_memory().total,
"available": psutil.virtual_memory().available,
"percent": psutil.virtual_memory().percent,
"used": psutil.virtual_memory().used
},
"disk": {
"total": psutil.disk_usage('/').total,
"used": psutil.disk_usage('/').used,
"percent": psutil.disk_usage('/').percent
},
"network": {
"bytes_sent": psutil.net_io_counters().bytes_sent,
"bytes_recv": psutil.net_io_counters().bytes_recv
}
}
def analyze_metrics(self, metrics: Dict) -> Dict:
"""Analyze system metrics and provide recommendations."""
metrics_json = json.dumps(metrics, indent=2)
query = f"""
Analyze these system metrics and provide:
1. Health assessment
2. Performance issues
3. Resource bottlenecks
4. Optimization recommendations
5. Alerts for critical issues
Metrics:
{metrics_json}
"""
result = self.ai.reason(query)
return {
"metrics": metrics,
"analysis": result.result,
"confidence": result.confidence,
"alerts": self._extract_alerts(result.result)
}
def _extract_alerts(self, analysis: str) -> list:
"""Extract alert-worthy issues from analysis."""
alerts = []
# Simple keyword-based extraction
if "critical" in analysis.lower() or "urgent" in analysis.lower():
alerts.append("Critical issue detected")
return alerts
# Continuous monitoring
analyzer = SystemAnalyzer()
while True:
metrics = analyzer.collect_metrics()
analysis = analyzer.analyze_metrics(metrics)
print(f"[{analysis['metrics']['timestamp']}] System Analysis:")
print(analysis['analysis'])
if analysis['alerts']:
print("⚠️ ALERTS:", analysis['alerts'])
time.sleep(300) # Analyze every 5 minutes#!/bin/bash
# Nginx configuration optimizer
NGINX_CONFIG="/etc/nginx/nginx.conf"
BACKUP_DIR="/etc/nginx/backups"
# Create backup
mkdir -p "$BACKUP_DIR"
cp "$NGINX_CONFIG" "$BACKUP_DIR/nginx.conf.$(date +%Y%m%d_%H%M%S)"
# Analyze and optimize
OPTIMIZATION=$(cortex-ai optimize "$NGINX_CONFIG" \
--target nginx \
--goals "performance,security" \
--format json)
# Extract optimized configuration
OPTIMIZED_CONFIG=$(echo "$OPTIMIZATION" | jq -r '.optimizations[0].optimized_code')
# Save optimized config
echo "$OPTIMIZED_CONFIG" > "$NGINX_CONFIG.optimized"
# Test configuration
if nginx -t -c "$NGINX_CONFIG.optimized"; then
echo "Optimized configuration is valid"
echo "Review changes: diff $NGINX_CONFIG $NGINX_CONFIG.optimized"
echo "Apply with: cp $NGINX_CONFIG.optimized $NGINX_CONFIG && systemctl reload nginx"
else
echo "Optimized configuration has errors"
echo "Keeping original configuration"
fi#!/usr/bin/env python3
"""
Generate API documentation from code
"""
from cortex import AI
import ast
import inspect
class DocGenerator:
def __init__(self):
self.ai = AI()
def generate_docstring(self, function_code: str) -> str:
"""Generate docstring for a function."""
query = f"""
Generate a comprehensive docstring for this Python function following Google style:
{function_code}
Include:
- Description
- Args with types
- Returns with type
- Raises
- Examples
"""
result = self.ai.reason(query)
return result.result
def generate_api_docs(self, module_path: str) -> str:
"""Generate complete API documentation for a module."""
# Parse module and extract functions/classes
# Generate documentation for each
# Format as Markdown
# Implementation...
pass
# Example
generator = DocGenerator()
function_code = """
def process_user_data(user_id: int, data: dict) -> bool:
# Process user data
return True
"""
docstring = generator.generate_docstring(function_code)
print(docstring)- Explore More Examples: Check GitHub repository for additional examples
- API Reference: AI Integration Guide
- Contributing: Developer Documentation
Last updated: 2024