Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions math/deret_taylor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
# macam - macam deret taylor
# https://en.wikipedia.org/wiki/Taylor_series
import math


def faktorial(n: int) -> int:
"""
Fungsi untuk kalkulasi faktorial
parameter :
n = bilangan bulat
return :
hasil = hasil dari operasi faktorial
"""
if n == 1 or n == 0:
return 1
if n > 1:
return n * faktorial(n - 1)
else:
return ValueError("Nilai Tidak valid")


def sin(x: float) -> float:
"""
Fungsi untuk kalkulasi dari deret sin.
Input dari fungsi ini dikonvergensi menjadi
radian.
>>> sin(0)
0.0
>>> sin(45)
0.7071067811865475
"""
result = 0.0
interable = 10
radian = x * math.pi / 180
for i in range(interable + 1):
numerator = math.pow(radian, (1 + i * 2)) * math.pow(-1, i)
detector = faktorial((1 + 2 * i))
result = result + (numerator / detector)
return float(result)


def cos(x: float) -> float:
"""
Fungsi untuk kalkulasi dari deret cosinus.
Input dari fungsi ini dikonvergensi menjadi
radian.
>>> cos(0)
1.0
>>> cos(45)
0.7071067811865475
"""
result = 0.0
interable = 10
radian = x * math.pi / 180
for i in range(interable):
numerator = math.pow(radian, 2 * i) * math.pow(-1, i)
detector = faktorial(2 * i)
result = result + (numerator / detector)
return float(result)


def euler(x: int = 1) -> float:
"""
Fungsi untuk kalkulasi dari deret
taylor euler e^x
>>> euler(1)
2.7182815255731922
>>> euler(2)
7.3887125220458545
"""
result = 0.0
interable = 10
for i in range(interable):
numerator = math.pow(x, (i))
detector = faktorial(i)
result = result + (numerator / detector)
return float(result)


def ln(x: float) -> float:
"""
Fungsi untuk melakukan kalkulasi deret taylor
ln(x + 1).Dengan batas -1 < x <= 1.
>>> ln(0.5)
0.4054346478174603
>>> ln(1)
0.6456349206349207
"""
if x > -1 and x <= 1:
result = 0.0
interable = 10
for i in range(1, interable + 1):
numerator = math.pow(x, i) * math.pow(-1, i + 1)
detector = i
result = result + (numerator / detector)
return float(result)
else:
return ValueError("Angka tidak valid")


def main(args=None):
import doctest

doctest.testmod()

# test untuk fungsi cos
print(cos(0))
print(cos(45))

# test untuk fungsi sin
print(sin(0))
print(sin(45))

# test untuk fungsi euler
print(euler(1))
print(euler(2))

# test untuk fungsi ln(1 + x)
print(ln(0.5))
print(ln(1))


if __name__ == "__main__":
main()
Loading