Scaffold created: 2025-12-15 21:11:25
A modular reinforcement-learning + visualization project where a DQN agent learns to land a rocket on a pad. Focus: watchable learning (Q-values, intent vectors, replays, curriculum), no sound.
rocket_lander/core packagemain.pyentrypoint (to be implemented)outputs/checkpoints + run exportstests/future test suite
Run training without Pygame rendering via headless_train.py, then optionally spin up a short visualization of the trained policy:
# Train for the configured number of episodes (headless)
python headless_train.py --episodes 500
# Skip training and visualize the latest checkpoint for 3 episodes
python headless_train.py --skip-train --visualize --visualize-episodes 3
- Move your current single-file lander into:
rocket_lander/terrain.pyrocket_lander/lander.pyrocket_lander/agent.pyrocket_lander/trainer.pyrocket_lander/game_loop.py
- Keep constants in
rocket_lander/config.py. - Add features incrementally: particles, Q-bars, showcase, replay, ghost.