Skip to content

aailab-kaist/DATE

Repository files navigation

Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models (DATE) (NeurIPS 2025)

| paper | openreview | code | poster, slide, video |


This repository contains the official PyTorch implementation of "Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models" in NeurIPS 2025.

Byeonghu Na, Minsang Park, Gyuwon Sim, Donghyeok Shin, HeeSun Bae, Mina Kang, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon

KAIST, NAVER Cloud, summary.ai


Diffusion Adaptive Text Embedding (DATE) is a test-time method that dynamically updates text embeddings during diffusion sampling process.


Requirements

We utilized CUDA 11.4 and Python 3.8.

pip install -r requirements.txt

Sampling with DATE

DATE performs gradient-based updates of text embeddings at selected diffusion timesteps. The update frequency and magnitude are controlled at inference time.

  • Text-conditioned evaluation function: CLIP score
python generate_date_clip.py \
--steps=50 --scheduler=DDIM --save_path=gen_images --bs=4 --w=8 --skip_freq=10 \
--num_upt_prompt=1 --lr_upt_prompt=0.5 --name=TEST
  • Text-conditioned evaluation function: ImageReward
python generate_date_ir.py \
--steps=50 --scheduler=DDIM --save_path=gen_images --bs=4 --w=8 --skip_freq=10 \
--num_upt_prompt=1 --lr_upt_prompt=0.5 --name=TEST

Key Arguments

  • --steps: number of diffusion sampling steps
  • --scheduler: diffusion sampler (e.g., DDIM)
  • --bs: batch size
  • --w: classifier-free guidance scale
  • --skip_freq: frequency of text embedding updates
  • --num_upt_prompt: number of gradient steps per update
  • --lr_upt_prompt: update scale ($\rho$)

Evaluation

  • Zero-shot FID
python evaluation/fid.py <directory_of_generated_images> <path_of_coco_npz_file>
  • CLIP score
python evaluation/clip_score.py --text_path=subset.csv --img_path=<directory_of_generated_images>
  • ImageReward
python evaluation/image_reward.py --text_path=subset.csv --img_path=<directory_of_generated_images>

Acknowledgements

This codebase builds upon and is inspired by:

Citation

@inproceedings{
na2025diffusion,
title={Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models},
author={Byeonghu Na and Minsang Park and Gyuwon Sim and Donghyeok Shin and HeeSun Bae and Mina Kang and Se Jung Kwon and Wanmo Kang and Il-chul Moon},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={https://openreview.net/forum?id=cHi8QxGrZH}
}

About

Official PyTorch implementation for Diffusion Adaptive Text Embedding (DATE) in NeurIPS 2025.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages