Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions fastdeploy/model_executor/layers/sample/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
top_k_top_p_sampling,
)
from fastdeploy.platforms import current_platform
from fastdeploy.utils import data_processor_logger
from fastdeploy.worker.output import LogprobsTensors, SamplerOutput

if current_platform.is_cuda():
Expand Down Expand Up @@ -223,6 +224,8 @@ def __init__(self, fd_config: FDConfig = None):
self.early_stopper = early_stopper_cls()
self.early_stopper.initialize(fd_config.parallel_config.max_num_seqs, fd_config.early_stop_config)

self.entropy_list = [[] for _ in range(fd_config.parallel_config.max_num_seqs)]

def apply_logits_processor(
self,
ids: int,
Expand Down Expand Up @@ -317,6 +320,40 @@ def gather_logprobs(

return LogprobsTensors(indices, top_logprobs, token_ranks)

def calculate_logits_entropy(self, logits, share_inputs, temperature):
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
real_seq_lens = paddle.where(
share_inputs["seq_lens_encoder"][:real_bsz].squeeze(1) != 0,
paddle.ones([1], dtype="int32"),
share_inputs["seq_lens_this_time"].squeeze(1),
)

def get_entropy(logits):
a0 = logits - paddle.max(logits, axis=-1, keepdim=True)
ea0 = paddle.exp(a0)
z0 = paddle.sum(ea0, axis=-1, keepdim=True)
p0 = ea0 / z0
return paddle.sum(p0 * (paddle.log(z0) - a0), axis=-1)

batch_indices = paddle.arange(real_bsz, dtype="int32")
batch_id_per_token = paddle.repeat_interleave(batch_indices, real_seq_lens)
# print(f"[Sampler][entropy] batch_id_per_token: {batch_id_per_token}")
for i in range(logits.shape[0]):
if temperature[batch_id_per_token[i]] > 0 and temperature[batch_id_per_token[i]] != 1.0:
logits[i] = logits[i].scale_(1 / temperature[batch_id_per_token[i]])

entropy_tensor = get_entropy(logits)
entropy = entropy_tensor.tolist()

for i in range(real_bsz):
for _ in range(real_seq_lens[i]):
self.entropy_list[i].append(entropy.pop(0))
if share_inputs["stop_flags"][i] and len(self.entropy_list[i]) != 0:
data_processor_logger.info(
f"req_id: {share_inputs['req_ids'][i]}, entropy: {sum(self.entropy_list[i])/len(self.entropy_list[i])}"
)
self.entropy_list[i] = []

def forward_cuda(
self,
logits: paddle.Tensor,
Expand Down Expand Up @@ -374,6 +411,19 @@ def forward_cuda(
logprobs_tensors=logprobs_tensors,
)

# print(f"[Sampler] req_ids: {share_inputs['req_ids']}")
# print(f"[Sampler] next_tokens: {next_tokens}")
# print(f"[Sampler] seq_lens_this_time: {share_inputs['seq_lens_this_time']}")
# print(f"[Sampler] seq_lens_encoder: {share_inputs['seq_lens_encoder']}")
# print(f"[Sampler] logits: {logits}")
# print(f"[Sampler] temperature: {sampling_metadata.temperature}")
# print(f"[Sampler] stop_flags: {share_inputs['stop_flags']}")
# print(f"[Sampler] entropy_list: {self.entropy_list}")

self.calculate_logits_entropy(
paddle.clone(logits), sampling_metadata.share_inputs, sampling_metadata.temperature
)

return sampler_output


Expand All @@ -393,6 +443,7 @@ def __init__(self, fd_config: FDConfig):
self.speculative_max_candidate_len = fd_config.speculative_config.max_candidate_len
self.speculative_benchmark_mode = fd_config.speculative_config.benchmark_mode
self.speculative_tokens_num = fd_config.speculative_config.num_speculative_tokens
self.entropy_list = [[] for _ in range(fd_config.parallel_config.max_num_seqs)]

def pre_process(self, skip_idx_list: List[int] = []):
"""pre process before running"""
Expand Down Expand Up @@ -499,6 +550,58 @@ def gather_logprobs(

return LogprobsTensors(indices, top_logprobs, token_ranks)

def calculate_logits_entropy(self, logits, share_inputs, temperature):
# get accepted logits
real_bsz = share_inputs["seq_lens_this_time"].shape[0]
total_accepted_num = paddle.sum(share_inputs["accept_num"])
real_seq_lens = paddle.where(
share_inputs["seq_lens_encoder"][:real_bsz].squeeze(1) != 0,
paddle.ones([1], dtype="int32"),
share_inputs["seq_lens_this_time"].squeeze(1),
)
# print(f"[entropy] real_seq_lens: {real_seq_lens}")
seq_start_idx = paddle.concat([paddle.zeros([1], dtype="int32"), paddle.cumsum(real_seq_lens, dtype="int32")])
# print(f"[entropy] seq_start_idx: {seq_start_idx}")
repeated_starts = paddle.repeat_interleave(seq_start_idx[:-1], share_inputs["accept_num"][:real_bsz])
# print(f"[entropy] repeated_starts: {repeated_starts}")
offsets = paddle.concat([paddle.arange(share_inputs["accept_num"][i].item()) for i in range(real_bsz)]).astype(
"int32"
)
# print(f"[entropy] offsets: {offsets}")
accepted_idx = repeated_starts + offsets
# print(f"[entropy] accepted_idx: {accepted_idx}")

accepted_logits = paddle.empty([total_accepted_num, logits.shape[1]], dtype=logits.dtype)
# print(f"[entropy] accepted_logits shape: {accepted_logits.shape}")
for i in range(total_accepted_num):
accepted_logits[i] = logits[accepted_idx[i]]

def get_entropy(logits):
a0 = logits - paddle.max(logits, axis=-1, keepdim=True)
ea0 = paddle.exp(a0)
z0 = paddle.sum(ea0, axis=-1, keepdim=True)
p0 = ea0 / z0
return paddle.sum(p0 * (paddle.log(z0) - a0), axis=-1)

batch_indices = paddle.arange(share_inputs["accept_num"].shape[0], dtype="int32")
batch_id_per_token = paddle.repeat_interleave(batch_indices, share_inputs["accept_num"])
# print(f"[SpeculativeSampler][entropy] batch_id_per_token: {batch_id_per_token}")
for i in range(accepted_logits.shape[0]):
if temperature[batch_id_per_token[i]] > 0 and temperature[batch_id_per_token[i]] != 1.0:
accepted_logits[i] = accepted_logits[i].scale_(1 / temperature[batch_id_per_token[i]])

entropy_tensor = get_entropy(accepted_logits)
entropy = entropy_tensor.tolist()

for i in range(real_bsz):
for _ in range(share_inputs["accept_num"][i]):
self.entropy_list[i].append(entropy.pop(0))
if share_inputs["stop_flags"][i] and len(self.entropy_list[i]) != 0:
data_processor_logger.info(
f"req_id: {share_inputs['req_ids'][i]}, entropy: {sum(self.entropy_list[i])/len(self.entropy_list[i])}"
)
self.entropy_list[i] = []

def forward_cuda(
self,
logits: paddle.Tensor,
Expand All @@ -509,6 +612,7 @@ def forward_cuda(
reject_all_drafts: bool = False,
think_end_id: int = -1,
line_break_id: int = -1,
is_dummy_run: bool = False,
) -> paddle.Tensor:
logits = apply_speculative_penalty_multi_scores(
sampling_metadata.pre_token_ids,
Expand Down Expand Up @@ -631,6 +735,19 @@ def forward_cuda(
cu_batch_token_offset=share_inputs["cu_batch_token_offset"],
)

if not is_dummy_run:
# print(f"[SpeculativeSampler] req_ids: {share_inputs['req_ids']}")
# print(f"[SpeculativeSampler] accept_tokens: {share_inputs['accept_tokens']}")
# print(f"[SpeculativeSampler] accept_num: {share_inputs['accept_num']}")
# print(f"[SpeculativeSampler] seq_lens_this_time: {share_inputs['seq_lens_this_time']}")
# print(f"[SpeculativeSampler] seq_lens_encoder: {share_inputs['seq_lens_encoder']}")
# print(f"[SpeculativeSampler] logits: {logits}")
# print(f"[SpeculativeSampler] temperature: {sampling_metadata.temperature}")
# print(f"[SpeculativeSampler] stop_flags: {share_inputs['stop_flags']}")
# print(f"[SpeculativeSampler] entropy_list: {self.entropy_list}")

self.calculate_logits_entropy(logits, share_inputs, sampling_metadata.temperature)

return sampler_output


Expand Down
Loading