Skip to content

KNQuoc/MCP_With_Cedar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cedar MCP Server - Complete Documentation

where the MCP server is at:

  • it turns on.
  • it uses Clade Code best (so far), if on Cursor then please use any Claude models at least/GPT o models, GPT-5 is dogshit at being a guide, haiku can answer knowledge-based questions well enough
  • it talks to the user properly (acts as an expert and acts moreso as “your guide” rather than “your one-shotter”)
  • it uses the proper tools to search for each range of knowledge, refers back to a tool every time it tries to go to new knowledge space (aka every question)
  • i think for beginners who wants a guide on Cedar, the MCP does a good enough job to get the user to get from 0-20% comfortably (give or take 3%)
  • product completion wise, it feels like its at around 85-90% (90% of the rest of the work is refining the I/O)

Quick Navigation


Quick Start

Important Context for AI Agents

Cedar CLI creates COMPLETE projects! The npx cedar-os-cli plant-seed command doesn't just install packages - it creates a full working application with:

  • Demo frontend (Next.js/React) with Cedar pre-integrated
  • Mastra backend already initialized with Cedar-OS
  • All Cedar packages and dependencies pre-installed
  • Working example components and configuration

DO NOT create a Next.js project first - plant-seed handles everything!

Installation

# Create and activate virtualenv (recommended)
python -m venv .venv
source .venv/bin/activate  # zsh/bash

# Install (editable for console scripts)
pip install -e .

# Or install dependencies directly
pip install mcp pydantic python-dotenv supabase openai

Run the Server

# As a module
python -m cedar_mcp

# Or as console script (after pip install -e .)
cedar-modular-mcp

# With debug logging
CEDAR_LOG_LEVEL=DEBUG python -m cedar_mcp

IDE Integration

Claude Code Integration

Option 1: Global Installation (available in all projects)

# Install globally for all Claude Code sessions
claude mcp add cedar --scope user python -- -m cedar_mcp

# Verify installation
claude mcp list

Option 2: Project-Specific Installation

# Install only for current project
claude mcp add cedar --scope project python -- -m cedar_mcp

# This creates a .mcp.json file in your project root

Option 3: Manual Configuration Add to ~/.claude.json (global) or .mcp.json (project):

{
  "mcpServers": {
    "cedar": {
      "type": "stdio",
      "command": "python",
      "args": ["-m", "cedar_mcp"],
      "env": {
        "CEDAR_LOG_LEVEL": "info",
        "CEDAR_DOCS_PATH": "/path/to/local/docs"
      }
    }
  }
}

Cursor Integration

Add to ~/.cursor/mcp.json:

{
  "mcpServers": {
    "cedar-agentic-server": {
      "command": "/ABS/PATH/TO/REPO/cedar-test/.venv/bin/python",
      "args": ["-m", "cedar_mcp"],
      "env": {
        "CEDAR_ENV": "development",
        "CEDAR_LOG_LEVEL": "info",
        "PYTHONPATH": "/ABS/PATH/TO/REPO/cedar-test",
        "CEDAR_DOCS_PATH": "/ABS/PATH/TO/LOCAL/DOCS"
      }
    }
  }
}

After configuration, restart your IDE. The Cedar MCP server will start automatically.

Railway Deployment

Deploy to Railway (Cloud Hosting)

The Cedar MCP Server can be deployed to Railway as a web service with HTTP/WebSocket endpoints:

Quick Deploy Steps

  1. Push to GitHub

    git add .
    git commit -m "Add Railway deployment"
    git push origin main
  2. Deploy on Railway

    • Go to Railway.app
    • Click "New Project" → "Deploy from GitHub repo"
    • Select your repository
    • Railway will auto-detect the Python project
  3. Configure Environment Variables in Railway Dashboard

    Required:

    CEDAR_LOG_LEVEL=INFO
    CEDAR_MCP_SIMPLIFIED_OUTPUT=true
    

    Optional (for semantic search):

    SUPABASE_URL=your_supabase_url
    SUPABASE_KEY=your_supabase_key
    OPENAI_API_KEY=your_openai_key
    
  4. Access Your Deployed Server

    Railway provides a URL like https://your-app.up.railway.app

    Test endpoints:

    # Health check
    curl https://your-app.up.railway.app/health
    
    # List tools
    curl https://your-app.up.railway.app/tools
    
    # Execute tool
    curl -X POST https://your-app.up.railway.app/tool \
      -H "Content-Type: application/json" \
      -d '{"tool": "searchDocs", "arguments": {"query": "voice setup"}}'

Railway Configuration Files

The repository includes Railway-specific files:

  • railway.json - Railway deployment configuration
  • cedar_mcp/web_server.py - HTTP/WebSocket wrapper for MCP
  • DEPLOYMENT.md - Detailed deployment guide

Note: The web wrapper translates HTTP/WebSocket requests to MCP protocol calls, making the stdio-based MCP server accessible via web endpoints.

Environment Configuration (Local Development)

Create a .env file in the cedar-test directory:

# Optional: Semantic Search Configuration
SUPABASE_URL=your_supabase_url
SUPABASE_KEY=your_supabase_key
OPENAI_API_KEY=your_openai_key

# Optional: Custom Documentation Paths
CEDAR_DOCS_PATH=/path/to/cedar_llms_full.txt
MASTRA_DOCS_PATH=/path/to/mastra_llms_full.txt

# Output Configuration
CEDAR_MCP_SIMPLIFIED_OUTPUT=true  # Simplifies tool output

# Logging
CEDAR_LOG_LEVEL=INFO  # debug, info, warning, error

Overview

The Cedar MCP (Model Context Protocol) Server is an intelligent assistant system designed to provide expert guidance for Cedar-OS implementations. It serves as an authoritative knowledge base and implementation advisor for developers working with Cedar-OS, a comprehensive framework for building AI-powered applications with voice, chat, and interactive features.

Key Features

  • Expert Knowledge System: Comprehensive documentation search with semantic and keyword-based retrieval
  • Intelligent Installation Guidance: Project analysis and adaptive installation recommendations
  • Specialized Domain Experts: Dedicated tools for Voice, Spells, and Mastra backend features
  • Documentation Enforcement: Mandatory documentation verification to prevent hallucination
  • Multi-Source Documentation: Supports both Cedar-OS and Mastra documentation
  • Semantic Search: Optional vector-based search using Supabase and OpenAI embeddings
  • Project-Aware Recommendations: Analyzes existing project structure to provide contextual advice

Purpose

The MCP server acts as a bridge between AI assistants (like Claude) and the Cedar-OS documentation ecosystem, ensuring that:

  1. All responses are grounded in actual documentation
  2. Installation approaches are tailored to project requirements
  3. Common mistakes are prevented through proactive guidance
  4. Expert knowledge is consistently accessible

Architecture Overview

System Design

cedar_mcp/
│
├── Core Layer (server.py)
│   ├── MCP Server Instance
│   ├── Tool Registration
│   ├── Request Routing
│   └── Documentation Enforcement
│
├── Services Layer (services/)
│   ├── Documentation Indexing (docs.py)
│   ├── Semantic Search (semantic_search.py)
│   ├── Feature Resolution (feature.py)
│   └── Requirements Clarification (clarify.py)
│
├── Tools Layer (tools/)
│   ├── Search Tools
│   │   ├── SearchDocs (search_docs.py)
│   │   └── SearchMastraDocs (search_mastra_docs.py)
│   │
│   ├── Specialist Tools
│   │   ├── VoiceSpecialist (voice_specialist.py)
│   │   ├── SpellsSpecialist (spells_specialist.py)
│   │   └── MastraSpecialist (mastra_specialist.py)
│   │
│   ├── Installation Tools
│   │   └── CheckInstall (check_install.py)
│   │
│   └── Planning Tools
│       ├── GetRelevantFeature (get_relevant_feature.py)
│       ├── ClarifyRequirements (clarify_requirements.py)
│       └── ConfirmRequirements (confirm_requirements.py)
│
└── Configuration Layer (shared.py)
    ├── Constants & Rules
    ├── Expert Persona Configuration
    ├── Installation Guidelines
    └── Utility Functions

Design Principles

  1. Separation of Concerns: Clear boundaries between services (business logic) and tools (MCP interface)
  2. Documentation-First: All responses must be grounded in searchable documentation
  3. Adaptive Intelligence: Tools analyze context and provide tailored recommendations
  4. Fail-Safe Patterns: Multiple fallback strategies for installation and implementation
  5. Expert Emulation: System behaves as a senior Cedar architect would

Project Layout

cedar-test/
├── cedar_mcp/
│   ├── __init__.py              # Package initialization
│   ├── __main__.py              # Entry point for module execution
│   ├── server.py                # Main MCP server (315 lines)
│   ├── shared.py                # Shared constants and utilities (450 lines)
│   ├── services/                # Business logic layer
│   │   ├── clarify.py          # Requirements clarification
│   │   ├── docs.py             # Documentation indexing and search
│   │   ├── feature.py          # Feature mapping logic
│   │   ├── mastra_docs.py      # Mastra documentation service
│   │   └── semantic_search.py  # Vector search integration
│   └── tools/                  # MCP tools layer
│       ├── check_install.py
│       ├── clarify_requirements.py
│       ├── confirm_requirements.py
│       ├── get_relevant_feature.py
│       ├── mastra_specialist.py
│       ├── search_docs.py
│       ├── search_mastra_docs.py
│       ├── spells_specialist.py
│       └── voice_specialist.py
├── docs/                        # Documentation files
│   ├── cedar_llms_full.txt
│   └── mastra_llms_full.txt
├── pyproject.toml              # Entrypoints & build config
├── requirements.txt            # Runtime dependencies
└── README.md                   # This file

Complete Tool Reference

Tool Registry

Tool Name Purpose Mandatory Usage Description
checkInstall Installation analysis YES - At conversation start Analyzes project structure and recommends best Cedar installation approach
searchDocs Cedar documentation search YES - Before any Cedar answer Primary documentation search with keyword and semantic capabilities
searchMastraDocs Mastra documentation search YES - For Mastra questions Searches Mastra backend documentation
voiceSpecialist Voice feature expertise YES - For voice questions Expert guidance for voice implementation
spellsSpecialist Spells/interaction expertise YES - For Spells questions Guidance for AI-powered interactions
mastraSpecialist Backend expertise YES - For Mastra questions Mastra backend and agent guidance
getRelevantFeature Feature mapping Optional Maps user goals to Cedar features
clarifyRequirements Requirement questions Optional Generates clarifying questions
confirmRequirements Requirement validation Optional Validates and plans implementation

Detailed Tool Descriptions

🔍 searchDocs

Primary documentation search interface with mandatory usage enforcement.

Input Schema:

{
  "query": "string", // Search query
  "limit": 5, // Result limit (optional)
  "use_semantic": true, // Use vector search (optional)
  "doc_type": "auto" // "cedar" | "mastra" | "auto"
}

Output:

{
  "results": [
    {
      "source": "file path",
      "heading": "section heading",
      "content": "documentation excerpt",
      "matchCount": 10,
      "matchedTokens": {"token": count},
      "citations": {
        "approxSpan": {"start": 123, "end": 145}
      }
    }
  ]
}

🛠️ checkInstall

Intelligent project analysis and installation recommendation.

Project Analysis Features:

  • Directory structure examination
  • Package.json dependency analysis
  • Framework detection (Next.js, React, Vue)
  • Cedar/Mastra presence checking
  • Backend component identification

Installation Strategies:

  1. Empty Directory → npx cedar-os-cli plant-seed --yes
  2. Existing Cedar → npm install
  3. Existing Next.js/React → npx cedar-os-cli add-sapling --yes
  4. Backend Only → npx cedar-os-cli plant-seed --yes
  5. Unknown Structure → Adaptive recommendation

Input Schema:

{
  "command": "string", // Command to analyze (optional)
  "packages": ["array"], // Package list (optional)
  "context": "string" // Context description (optional)
}

🎤 voiceSpecialist

Expert guidance for voice feature implementation.

Specializations:

  • Voice components (VoiceIndicator, VoiceButton, VoiceSettings)
  • Microphone permission handling
  • Real-time audio processing
  • WebRTC integration
  • OpenAI Realtime API
  • Browser compatibility

Actions:

  • search: Find voice documentation
  • guide: Implementation guidance
  • troubleshoot: Diagnose issues
  • explore: Discover capabilities

Input Schema:

{
  "action": "search", // "search" | "guide" | "troubleshoot" | "explore"
  "query": "string", // Your question
  "focus": "general" // "components" | "permissions" | "integration" | "setup"
}

✨ spellsSpecialist

Expert guidance for Cedar Spells (AI-powered interactions).

Specializations:

  • Spell architecture and lifecycle
  • Radial menus and gestures
  • Hotkey configurations
  • QuestioningSpell and TooltipMenuSpell
  • Custom spell creation
  • Event handling patterns

Core Concepts:

  • Activation modes: TOGGLE, HOLD, TRIGGER
  • Event types: Hotkey, MouseEvent, SelectionEvent
  • Lifecycle: onActivate, onDeactivate
  • Component integration with useSpell hook

Input Schema:

{
  "action": "search", // "search" | "guide" | "troubleshoot" | "explore"
  "query": "string", // Your question
  "focus": "general" // "creating" | "activation" | "components" | "lifecycle" | "patterns"
}

đź”§ mastraSpecialist

Expert guidance for Mastra backend integration.

Specializations:

  • Agent architecture
  • Workflow design
  • Tool integration
  • Memory systems
  • MCP setup
  • Authentication

Input Schema:

{
  "query": "string", // Search query
  "limit": 5 // Result limit
}

🎯 getRelevantFeature

Maps user goals to Cedar features.

Feature Categories:

  • AI Chat System
  • Voice Interaction
  • Floating Chat Widget
  • AI Content Assistant
  • AI Actions (Spells)
  • Contextual AI
  • Agent Backend
  • State Management
  • Interactive UI
  • Search & Q&A

Input Schema:

{
  "goal": "string", // What you want to achieve
  "context": "string" // Optional project context
}

âť“ clarifyRequirements

Generates clarifying questions for requirements.

Question Categories:

  • Scope and user goals
  • Framework constraints
  • Integration needs
  • UI/UX requirements

Input Schema:

{
  "goal": "string",
  "known_constraints": ["array"]
}

âś… confirmRequirements

Validates requirements and generates implementation plan.

Input Schema:

{
  "confirmations": {
    "requirement_id": true/false
  }
}

Documentation System

Documentation Sources

  1. Cedar Documentation (cedar_llms_full.txt)

    • Comprehensive Cedar-OS component documentation
    • API references and implementation examples
    • Best practices and patterns
    • Voice, Chat, Spells, and UI components
  2. Mastra Documentation (mastra_llms_full.txt)

    • Backend framework documentation
    • Agent and workflow guides
    • Tool development documentation
    • Memory and persistence strategies

Search Strategies

Semantic Search (When Available)

  • Requires Supabase and OpenAI configuration
  • Uses vector embeddings for conceptual matching
  • 512-dimension embeddings with text-embedding-3-small
  • Similarity threshold filtering

Keyword Search (Fallback)

  • Intelligent tokenization with stop-word filtering
  • Weighted scoring (headings 3x body text)
  • Pattern matching with suffix variants
  • Special weighting for domain-specific terms

Citation System

The system provides multi-level citations:

  1. Source File: Path to documentation file
  2. Heading: Section within documentation
  3. Line Numbers: Exact line references [file:L123-L145]
  4. URL: Original documentation URL when available
  5. Token Matches: Shows which search terms matched

Built-in Documentation

The server embeds curated content from Cedar-OS docs:

  • Introduction to Cedar
  • Getting Started guides
  • Chat implementation
  • Agent Input Context
  • Agentic State management
  • Voice features
  • Spells system

You can augment with local docs via CEDAR_DOCS_PATH.


Usage Guide

Typical Workflow

  1. Initial Setup Check

    User: "I want to add Cedar to my project"
    AI: [Calls checkInstall] → Analyzes project → Recommends approach
    
  2. Feature Implementation

    User: "Add voice features to my chat"
    AI: [Calls voiceSpecialist] → Searches documentation → Provides implementation guide
    
  3. Troubleshooting

    User: "RadialMenu not appearing"
    AI: [Calls spellsSpecialist with action="troubleshoot"] → Diagnoses issue
    

Best Practices

  1. Always Start with checkInstall: Ensures proper Cedar setup
  2. Use Specialist Tools: Get domain-specific guidance
  3. Verify with Documentation: All advice should reference docs
  4. Follow Installation Sequence: Try recommended approach first

Common Patterns

Adding Cedar to New Project

1. checkInstall → Empty directory detected
2. Recommends: npx cedar-os-cli plant-seed --yes
3. Creates complete project structure

Integrating with Existing Next.js

1. checkInstall → Existing Next.js detected
2. Recommends: npx cedar-os-cli add-sapling --yes
3. Preserves existing code, adds Cedar

Implementing Voice Features

1. voiceSpecialist("search", "VoiceButton setup")
2. Returns documentation with examples
3. voiceSpecialist("guide", "microphone permissions")
4. Provides implementation steps

Core Components

CedarModularMCPServer (server.py)

The main server class that orchestrates all MCP operations.

Key Responsibilities:

  • Initialize and manage documentation indexes (Cedar and Mastra)
  • Register and coordinate all tools
  • Enforce documentation search requirements
  • Track tool usage and validation
  • Handle MCP protocol communication

Critical Features:

  • Dual Documentation Support: Maintains separate indexes for Cedar and Mastra docs
  • Tool Registration System: Dynamic registration of all available tools
  • Requirements Gate: Optional confirmation system for guided workflows
  • Semantic Search Integration: Automatic detection and use of vector search when available
  • Documentation Enforcement: Tracks and validates documentation searches

Shared Configuration (shared.py)

Central configuration hub containing all constants, rules, and shared utilities.

Major Components:

  1. Installation Commands & Rules

    • Primary install: "npx cedar-os-cli plant-seed --yes"
    • Comprehensive adaptive installation guide
    • Smart detection of project type
  2. Expert Persona Configuration

    • Behavioral guidelines for AI assistant
    • Emphasis on searching before creating
    • Component location awareness
  3. Error Handling Patterns

    • Common error signatures requiring documentation search
    • Protocol for handling Cedar-related errors
  4. Implementation Rules

    • Critical facts about Cedar component locations
    • Mandatory scanning procedures
    • Import verification requirements

Services Layer

DocsIndex Service (services/docs.py)

Sophisticated documentation indexing and search system.

Features:

  • Multi-format support (.txt, .md, .json)
  • Dual parsing modes for Cedar and Mastra
  • Intelligent chunking with metadata
  • Hybrid search (semantic + keyword)
  • Line-level citations

SemanticSearchService (services/semantic_search.py)

Vector-based search using Supabase and OpenAI.

Components:

  • OpenAI text-embedding-3-small model
  • Supabase vector database
  • Cosine similarity matching
  • Graceful fallback to keyword search

FeatureResolver Service (services/feature.py)

Maps user goals to relevant Cedar features through keyword and use case matching.

RequirementsClarifier Service (services/clarify.py)

Generates clarifying questions and validates setup requirements.


Development Guide

Adding New Tools

  1. Create tool class in tools/ directory
  2. Implement required methods:
    • list_tool(): Returns MCP tool definition
    • handle(): Processes tool invocation
  3. Register in server.py _init_tools() method
  4. Add to tool_handlers dictionary

Example template:

class NewSpecialistTool:
    name = "newSpecialist"

    def __init__(self, docs_index: DocsIndex):
        self.docs_index = docs_index

    def list_tool(self) -> McpTool:
        return McpTool(
            name=self.name,
            description="[MANDATORY] Tool description",
            inputSchema={...}
        )

    async def handle(self, arguments: Dict[str, Any]) -> List[TextContent]:
        # Implementation
        pass

Adding Documentation Sources

  1. Place documentation file in docs/ directory
  2. Update path resolution in server.py
  3. Implement parser in DocsIndex if needed
  4. Configure environment variable for path

Extending Search Capabilities

  1. Keyword Search: Modify tokenization in DocsIndex.search()
  2. Semantic Search: Adjust embedding parameters in SemanticSearchService
  3. Ranking: Update scoring algorithm in search methods

Error Handling Patterns

Follow established patterns:

try:
    # Main logic
    result = await operation()
except SpecificException as e:
    logger.error(f"Specific error: {e}")
    # Return error response
except Exception as e:
    logger.exception(f"Unexpected error: {e}")
    # Fallback behavior

API Reference

MCP Protocol Implementation

The server implements the standard MCP protocol:

Available Methods

  1. list_tools(): Returns all available tools
  2. call_tool(name, arguments): Executes specific tool
  3. list_resources(): Lists available resources
  4. read_resource(uri): Reads specific resource

Resource URIs

  • cedar://docs: Cedar documentation metadata
  • mastra://docs: Mastra documentation metadata

Tool Response Format

Standard response structure:

interface ToolResponse {
  action?: string; // Action performed
  results?: Array<any>; // Main results
  error?: string; // Error message if failed
  note?: string; // Additional notes
  INSTRUCTION?: string; // Usage instructions
  [key: string]: any; // Additional fields
}

Search Result Format

interface SearchResult {
  source: string; // Documentation source
  heading?: string; // Section heading
  content: string; // Content excerpt
  url?: string; // Original URL
  matchCount?: number; // Keyword match count
  matchedTokens?: Record<string, number>; // Token hit map
  similarity?: number; // Semantic similarity score
  citations?: {
    source: string;
    approxSpan: {
      start: number;
      end: number;
    };
    tokenLines: Record<string, number[]>;
  };
}

Advanced Features

Semantic Search Integration

When configured with Supabase and OpenAI:

  1. Automatic Detection: System detects availability of credentials
  2. Hybrid Approach: Tries semantic first, falls back to keyword
  3. Vector Storage: Uses Supabase vector database
  4. Embedding Model: OpenAI text-embedding-3-small (512 dimensions)

Multi-Documentation Support

System maintains separate indexes for different documentation sources:

  • Cedar Index: Primary Cedar-OS documentation
  • Mastra Index: Backend framework documentation
  • Extensible: Easy to add new documentation sources

Project Intelligence

CheckInstallTool provides sophisticated project analysis:

  1. Framework Detection: Identifies Next.js, React, Vue, etc.
  2. Dependency Analysis: Checks for Cedar/Mastra presence
  3. Structure Recognition: Understands project organization
  4. Adaptive Recommendations: Tailors approach to project state

Documentation Enforcement

Multiple layers ensure documentation-based responses:

  1. Tool Descriptions: Marked as "MANDATORY"
  2. Server Tracking: Logs documentation searches
  3. Result Instructions: Include "BASE ANSWER ON DOCUMENTATION"
  4. Expert Persona: Emphasizes documentation verification

Troubleshooting

Common Issues

  1. "Not in docs" responses

    • Ensure documentation files are properly loaded
    • Check file paths in environment variables
    • Verify documentation parsing in logs
  2. Semantic search not working

    • Verify Supabase and OpenAI credentials
    • Check network connectivity
    • Review error logs for API issues
  3. Tools not appearing

    • Ensure proper tool registration in server.py
    • Check MCP client configuration
    • Verify server is running without errors
  4. Installation recommendations incorrect

    • Update project analysis logic in CheckInstallTool
    • Verify directory structure detection
    • Check package.json parsing

Debug Mode

Enable detailed logging:

CEDAR_LOG_LEVEL=DEBUG python -m cedar_mcp

Testing Tools

Test individual tools:

from cedar_mcp.tools.search_docs import SearchDocsTool
from cedar_mcp.services.docs import DocsIndex

# Initialize
docs_index = DocsIndex("path/to/docs.txt")
tool = SearchDocsTool(docs_index)

# Test search
import asyncio
results = asyncio.run(tool.handle({"query": "voice setup"}))
print(results)

Performance Considerations

Optimization Strategies

  1. Documentation Indexing: Chunks are created once at startup
  2. Search Caching: Consider implementing result caching
  3. Concurrent Tool Calls: Tools can be called in parallel
  4. Simplified Output: Reduces payload size significantly

Scalability

  • Memory Usage: Proportional to documentation size
  • Search Performance: O(n) for keyword search, O(log n) for vector
  • Tool Execution: Async design allows concurrent operations

Security Considerations

API Key Management

  • Store keys in environment variables
  • Never commit .env files
  • Use secure key rotation practices

Input Validation

  • All tool inputs are validated against schemas
  • Path traversal prevention in file operations
  • SQL injection prevention in database queries

Output Sanitization

  • Documentation content is truncated to prevent oversized responses
  • Sensitive information filtered from error messages

Configuration Examples

Minimal Configuration (Keyword Search Only)

# .env
CEDAR_LOG_LEVEL=INFO
CEDAR_MCP_SIMPLIFIED_OUTPUT=true

Full Configuration (With Semantic Search)

# .env
CEDAR_LOG_LEVEL=INFO
CEDAR_MCP_SIMPLIFIED_OUTPUT=true
SUPABASE_URL=https://xxxxx.supabase.co
SUPABASE_KEY=eyJhbGciOiJIUzI1NiIs...
OPENAI_API_KEY=sk-...
CEDAR_DOCS_PATH=/custom/path/to/cedar_docs.txt
MASTRA_DOCS_PATH=/custom/path/to/mastra_docs.txt

Development Configuration

# .env
CEDAR_LOG_LEVEL=DEBUG
CEDAR_MCP_SIMPLIFIED_OUTPUT=false
# Verbose output for debugging

Notes

  • MCP requires an initialization handshake; prefer running inside Claude Code or Cursor to interact with tools
  • Stop the server with Ctrl+C
  • The server includes built-in Cedar documentation, so it can answer without network access
  • You can augment with local docs via CEDAR_DOCS_PATH

Support

For issues, questions, or contributions:

  • GitHub Issues: [Repository Issues URL]
  • Documentation: Cedar-OS Documentation
  • Community: Cedar Community Forum

This documentation represents the complete architecture and functionality of the Cedar MCP Server. For the latest updates, refer to the source code and inline documentation.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages