AI-powered house inspection application with computer vision and intelligent checklist generation.
![]() |
![]() |
![]() |
![]() |
![]() |
|
- Frontend: React, TypeScript, Vite, TailwindCSS, PWA
- Backend: NestJS, Prisma, PostgreSQL
- AI/ML: FastAPI, LangChain, LangGraph, OpenAI GPT-4
- Storage: MinIO (S3-compatible), AWS S3
- Cache: Redis, ElastiCache
- Infrastructure: Kubernetes (Minikube, EKS), Helm, Docker, Terraform, Ansible
- Monitoring: Prometheus, Grafana
The AI agents service uses LangGraph to orchestrate a sophisticated 6-agent pipeline with parallel processing:
flowchart TD
START([📸 Upload Images]) --> A1[🏠 Agent 1: House Classification]
A1 --> A2[📋 Agent 2: House Checklist]
A2 --> PARALLEL[🔄 Parallel Room Processing]
PARALLEL --> A3[🚪 Agent 3: Room Classification]
PARALLEL --> A4[✅ Agent 4: Room Checklist]
PARALLEL --> A5[🛋️ Agent 5: Products Analysis]
A3 --> A6[⚖️ Agent 6: Pros/Cons Analysis]
A4 --> A6
A5 --> A6
A6 --> END([📊 Final Report])
classDef startEnd fill:#e1f5fe
classDef agents fill:#f3e5f5
classDef parallel fill:#e8f5e8
class START,END startEnd
class A1,A2,A3,A4,A5,A6 agents
class PARALLEL parallel
Key Features:
- Parallel Processing: Rooms analyzed concurrently for 3-5x speedup
- LangSmith Tracing: Live workflow monitoring at smith.langchain.com
- Rate Limiting: Intelligent throttling (90K TPM, 500 RPM)
- State Management: Persistent checkpointing with memory
- Error Handling: Automatic retries with state preservation
git clone https://github.com/InonELGABSI/houseScanner.git
cd houseScanner
# Setup environment files
cp client-pwa/.env.template client-pwa/.env
cp backend/.env.template backend/.env
cp agents-service/.env.template agents-service/.env
# Add your OpenAI API key to agents-service/.env
# OPENAI_API_KEY=your-key-here
# Start infrastructure and services
cd ansible && ansible-playbook dev-infra-setup.yml
cd .. && docker compose -f docker-compose.dev.yml up -dAccess: http://localhost:5173 (Login: housescanner@gmail.com / 12121212)
# Start Minikube, build images, and deploy
make dev-setup
# Start port forwarding
make dev-portsAccess: http://localhost:3001
📖 Detailed instructions: DEV_SETUP.md
Simple deployment using Ansible to provision EC2 + RDS + S3.
cd ansible
ansible-playbook prod-all-steps.ymlCost: ~$50-60/month
Production-grade deployment with EKS, RDS, ElastiCache, and monitoring.
cd k8s/terraform/environments/prod
terraform init && terraform apply
cd ../../../
make prod-build && make prod-deployCost: ~$150-200/month
📖 Detailed instructions: PROD_SETUP.md
├── client-pwa/ # React PWA frontend
├── backend/ # NestJS API
├── agents-service/ # FastAPI AI service (LangGraph)
├── ansible/ # Infrastructure automation
│ ├── dev-* # Local development playbooks
│ └── prod-* # AWS production playbooks
├── k8s/ # Kubernetes manifests
│ ├── helm/ # Helm charts
│ ├── terraform/ # AWS infrastructure
│ └── environments/ # Dev/prod configs
├── scripts/ # Build and deployment scripts
└── .github/ # CI/CD workflows
- DEV_SETUP.md - Complete development environment guide (Docker Compose + Kubernetes)
- PROD_SETUP.md - Production deployment guide (Ansible + Terraform/EKS)
MIT




