Drug repurposing of bromodomain inhibitors as a novel therapeutic lead for lymphatic filariasis guided by multi-species transcriptomics
Matthew Chung
2019-09-17
The repository contains scripts and input_data_files to replicate the transcriptomics analysis in the manuscript. Additionally, the Supplementary Data for the manuscript is stored here.
R scripts were run using Windows 10 x64 with RStudio v1.1.447 using this R session:
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggdendro_0.1-20 pvclust_2.0-0 dendextend_1.9.0 factoextra_1.0.5 gridExtra_2.3 reshape_0.8.8
[7] ggplot2_3.1.0 gtools_3.8.1 WGCNA_1.66 fastcluster_1.1.25 dynamicTreeCut_1.63-1 edgeR_3.24.0
[13] limma_3.38.2
loaded via a namespace (and not attached):
[1] matrixStats_0.54.0 robust_0.4-18 fit.models_0.5-14 bit64_0.9-7 doParallel_1.0.14 RColorBrewer_1.1-2
[7] rprojroot_1.3-2 prabclus_2.2-6 tools_3.5.0 backports_1.1.2 R6_2.3.0 rpart_4.1-13
[13] Hmisc_4.1-1 DBI_1.0.0 lazyeval_0.2.1 BiocGenerics_0.28.0 colorspace_1.3-2 trimcluster_0.1-2.1
[19] nnet_7.3-12 withr_2.1.2 tidyselect_0.2.5 bit_1.1-14 compiler_3.5.0 preprocessCore_1.44.0
[25] Biobase_2.42.0 htmlTable_1.12 labeling_0.3 diptest_0.75-7 scales_1.0.0 checkmate_1.8.5
[31] DEoptimR_1.0-8 mvtnorm_1.0-8 robustbase_0.93-3 stringr_1.3.1 digest_0.6.18 foreign_0.8-70
[37] rmarkdown_1.10 rrcov_1.4-4 base64enc_0.1-3 pkgconfig_2.0.2 htmltools_0.3.6 htmlwidgets_1.3
[43] rlang_0.3.0.1 rstudioapi_0.8 RSQLite_2.1.1 impute_1.56.0 bindr_0.1.1 mclust_5.4.1
[49] acepack_1.4.1 dplyr_0.7.6 magrittr_1.5 modeltools_0.2-22 GO.db_3.6.0 Formula_1.2-3
[55] Matrix_1.2-14 Rcpp_1.0.0 munsell_0.5.0 S4Vectors_0.20.1 viridis_0.5.1 stringi_1.2.4
[61] whisker_0.3-2 yaml_2.2.0 MASS_7.3-51.1 flexmix_2.3-14 plyr_1.8.4 blob_1.1.1
[67] parallel_3.5.0 ggrepel_0.8.0 crayon_1.3.4 lattice_0.20-35 splines_3.5.0 locfit_1.5-9.1
[73] knitr_1.20 pillar_1.3.0 fpc_2.1-11.1 codetools_0.2-15 stats4_3.5.0 glue_1.3.0
[79] evaluate_0.12 latticeExtra_0.6-28 data.table_1.11.8 foreach_1.4.4 gtable_0.2.0 purrr_0.2.5
[85] kernlab_0.9-27 assertthat_0.2.0 viridisLite_0.3.0 class_7.3-14 survival_2.41-3 pcaPP_1.9-73
[91] tibble_1.4.2 iterators_1.0.10 AnnotationDbi_1.44.0 memoise_1.1.0 IRanges_2.16.0 bindrcpp_0.2.2
No non-standard hardware is required.
RStudio installation is required along with the packages listed as follows:
[1] ggdendro_0.1-20 pvclust_2.0-0 dendextend_1.9.0 factoextra_1.0.5 gridExtra_2.3 reshape_0.8.8
[7] ggplot2_3.1.0 gtools_3.8.1 WGCNA_1.66 fastcluster_1.1.25 dynamicTreeCut_1.63-1 edgeR_3.24.0
[13] limma_3.38.2
Typical install time for RStudio and the listed packages should be <15 min
Open Rmd scripts using RStudio and alter the input files to the files listed in the (3) input_data_files folder.
The scripts folder contains three Rmd scripts used for the transcriptome analysis of each organism:
a) aaegypti_transcriptome_v2.Rmd
b) bmalayi_transcriptome_v2.Rmd
c) wbm_transcriptome_v2.Rmd
Each of the three scripts takes these inputs:
a) geneinfo - table containing functional annotation for the analyzed genes
b) counts - matrix of read counts for each gene, constructed as described in the Materials and Methods
c) tpm - matrix of TPM for each gene
d) groups - used to assign groups and colors for the different samples
e) output directory path
Change the "Input file paths" code block to run the scripts on your local system.
Contains the output html files generated from the Rmd files in (1) scripts using the R package knitr. These are the expected outputs from each of the three scripts.
For each of the Rmd files, the inputs are:
geneinfo.path <- aaegypti_gene.info
counts.path <- aaegypti_counts.tsv
tpm.path <- aaegypti_tpm.tsv
groups.path <- aaegypti_groups.tsv
geneinfo.path <- bmalayi_gene.info
counts.path <- bmalayi_counts.tsv
tpm.path <- bmalayi_tpm.tsv
groups.path <- bmalayi_groups.tsv
geneinfo.path <- wbm_gene.info
counts.path <- wbm_counts.tsv
tpm.path <- wbm_tpm.tsv
groups.path <- wbm_groups.tsv
Each of these scripts should take <30 min.