Skip to content

DisQS/MachineLearning-Percolation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MachineLearning-Percolation

Machine learning code to study the phase transition in 2D percolation Modules/Libraries needed for data generation

module load GCCcore/11.2.0 
module load Python/3.9.6
pip install --user imageio
module load GCC/11.2.0
module load OpenMPI/4.1.1 matplotlib/3.4.3
module load IPython

or install

sudo apt install python
pip3 install numpy
pip3 install pandas
pip3 install matplotlib
pip3 install operators

Modules/Libraries needed for data ML training

module load GCC/11.3.0 OpenMPI/4.1.4 PyTorch/1.12.1-CUDA-11.7.0
module load IPython
module load matplotlib
pip install --user torchvision
pip install --user seaborn
pip install --user tqdm
pip install --user torch-summary
pip install --user scikit-learn

or install (PyTorch 1.12.1 with CUDA-11.7.0 was used for the implementation)

pip3 install torch torchvision torchaudio
pip3 install --user torchvision
pip3 install --user seaborn
pip3 install --user tqdm
pip3 install --user torch-summary
pip3 install --user scikit-learn

Creation of the dataset The codes to generate the percolation lattices can be found in the MakePerco/ directory. To generate 1000 configuration with L=100 and p \in [0.1,0.9,0.1] use:

MakePerco/perco_SLURM.sh ./TestData/ 100 1000 9000 1000 1000

ML training and testing Five different directories in MLCode to launch ML training. To launch test for spanning from saved model, first change absolute path leading to MLtools.py in the Train-Pytorch-class_span.py file, then use the command

./MLCode/perco_ML_training_sulis.sh ./trained_model/ 12345678 ./MLCode/class_span/Train-Pytorch-class_span.py  1

About

Machine learning code to study the phase transition in percolation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •