Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions app/cli/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,7 @@ def register_model(
model_name=model_name,
model_path=model_path,
model_manager=ModelManager(model_service_type, config),
model_type=model_type.value,
training_type=t_type,
run_name=run_name,
model_config=m_config,
Expand Down
51 changes: 45 additions & 6 deletions app/management/tracker_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,36 @@ def log_model_config(config: Dict[str, str]) -> None:

mlflow.log_params(config)

@staticmethod
def _set_model_version_tags(
client: MlflowClient,
model_name: str,
version: str,
model_type: str,
validation_status: Optional[str] = None,
) -> None:
"""
Sets standard tags on a model version for serving and discovery.

Args:
client (MlflowClient): The MLflow client to use for setting tags.
model_name (str): The name of the registered model.
version (str): The version of the model.
model_type (str): The type of the model (e.g., "medcat_snomed").
validation_status (Optional[str]): The status of the model validation (e.g., "pending").
"""
try:
client.set_model_version_tag(
name=model_name, version=version, key="model_uri", value=f"models:/{model_name}/{version}"
)
client.set_model_version_tag(name=model_name, version=version, key="model_type", value=model_type)
if validation_status is not None:
client.set_model_version_tag(
name=model_name, version=version, key="validation_status", value=validation_status
)
except Exception:
logger.warning("Failed to set tags on version %s of model %s", version, model_name)

@staticmethod
def log_model(
model_name: str,
Expand Down Expand Up @@ -381,6 +411,7 @@ def save_pretrained_model(
model_name: str,
model_path: str,
model_manager: ModelManager,
model_type: str,
training_type: Optional[str] = "",
run_name: Optional[str] = "",
model_config: Optional[Dict] = None,
Expand All @@ -394,6 +425,7 @@ def save_pretrained_model(
model_name (str): The name of the model.
model_path (str): The path to the pretrained model.
model_manager (ModelManager): The instance of ModelManager used for model saving.
model_type (str): The type of the model (e.g., "medcat_snomed").
training_type (Optional[str]): The type of training used for the model.
run_name (Optional[str]): The name of the run for identification purposes.
model_config (Optional[Dict]): The configuration of the model to save.
Expand Down Expand Up @@ -423,6 +455,10 @@ def save_pretrained_model(
mlflow.set_tags(tags)
model_name = model_name.replace(" ", "_")
TrackerClient.log_model(model_name, model_path, model_manager, model_name)
client = MlflowClient()
versions = client.search_model_versions(f"name='{model_name}'", order_by=["version_number DESC"])
if versions:
TrackerClient._set_model_version_tags(client, model_name, versions[0].version, model_type)
TrackerClient.end_with_success()
except KeyboardInterrupt:
TrackerClient.end_with_interruption()
Expand Down Expand Up @@ -502,6 +538,7 @@ def save_model(
filepath: str,
model_name: str,
model_manager: ModelManager,
model_type: str,
validation_status: str = "pending",
) -> str:
"""
Expand All @@ -511,6 +548,7 @@ def save_model(
filepath (str): The artifact path of the model to save.
model_name (str): The name of the model.
model_manager (ModelManager): The instance of ModelManager used for model saving.
model_type (str): The type of the model (e.g., "medcat_snomed").
validation_status (str): The status of the model validation (default: "pending").

Returns:
Expand All @@ -523,18 +561,19 @@ def save_model(

if not mlflow.get_tracking_uri().startswith("file:/"):
TrackerClient.log_model(model_name, filepath, model_manager, model_name)
versions = self.mlflow_client.search_model_versions(f"name='{model_name}'")
self.mlflow_client.set_model_version_tag(
name=model_name,
version=versions[0].version,
key="validation_status",
value=validation_status,
versions = self.mlflow_client.search_model_versions(
f"name='{model_name}'", order_by=["version_number DESC"]
)
if versions:
TrackerClient._set_model_version_tags(
self.mlflow_client, model_name, versions[0].version, model_type, validation_status
)
else:
TrackerClient.log_model(model_name, filepath, model_manager)

artifact_uri = mlflow.get_artifact_uri(model_name)
mlflow.set_tag("training.output.model_uri", artifact_uri)
mlflow.set_tag("training.output.model_type", model_type)

return artifact_uri

Expand Down
1 change: 1 addition & 0 deletions app/trainers/huggingface_llm_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,7 @@ def run(
retrained_model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down
2 changes: 2 additions & 0 deletions app/trainers/huggingface_ner_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,6 +254,7 @@ def run(
retrained_model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down Expand Up @@ -739,6 +740,7 @@ def _compute_loss(
retrained_model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down
7 changes: 6 additions & 1 deletion app/trainers/medcat_deid_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
14 changes: 12 additions & 2 deletions app/trainers/medcat_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down Expand Up @@ -472,7 +477,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
7 changes: 6 additions & 1 deletion app/trainers/metacat_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
41 changes: 37 additions & 4 deletions tests/app/monitoring/test_tracker_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import datasets
import pytest
import pandas as pd
from unittest.mock import Mock, call, ANY
from unittest.mock import Mock, call, patch, ANY
from app.management.tracker_client import TrackerClient
from app.data import doc_dataset
from app.domain import TrainerBackend
Expand Down Expand Up @@ -161,15 +161,30 @@ def test_save_model(mlflow_fixture):
mlflow_client.search_model_versions.return_value = [version]
tracker_client.mlflow_client = mlflow_client

artifact_uri = tracker_client.save_model("path/to/file.zip", "model_name", model_manager, "validation_status")
artifact_uri = tracker_client.save_model(
"path/to/file.zip", "model_name", model_manager, "model_type", "validation_status"
)

assert "artifacts/model_name" in artifact_uri
model_manager.log_model.assert_called_once_with("model_name", "path/to/file.zip", "model_name")
mlflow_client.set_model_version_tag.assert_called_once_with(name="model_name", version="1", key="validation_status", value="validation_status")
mlflow_client.search_model_versions.assert_called_once_with(
"name='model_name'", order_by=["version_number DESC"]
)
assert mlflow_client.set_model_version_tag.call_count == 3
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_uri", value="models:/model_name/1"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_type", value="model_type"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="validation_status", value="validation_status"
)
mlflow.set_tag.has_calls(
[
call("training.output.package", "file.zip"),
call("training.output.model_uri", artifact_uri),
call("training.output.model_type", "model_type"),
],
any_order=False,
)
Comment on lines 183 to 190
Copy link

Copilot AI Dec 5, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Incorrect assertion method. Should be assert_has_calls instead of has_calls. The current code will not actually perform the assertion, allowing the test to pass even if the calls were not made.

Copilot uses AI. Check for mistakes.
Expand All @@ -184,14 +199,21 @@ def test_save_model_local(mlflow_fixture):
model_manager.save_model.assert_called_once_with("local_dir", "filepath")


def test_save_pretrained_model(mlflow_fixture):
@patch("app.management.tracker_client.MlflowClient")
def test_save_pretrained_model(mock_mlflow_client_class, mlflow_fixture):
tracker_client = TrackerClient("")
model_manager = Mock()
mlflow_client = Mock()
version = Mock()
version.version = "1"
mlflow_client.search_model_versions.return_value = [version]
mock_mlflow_client_class.return_value = mlflow_client

tracker_client.save_pretrained_model(
"model_name",
"model_path",
model_manager,
"model_type",
"training_type",
"run_name",
{"param": "value"},
Expand All @@ -212,6 +234,17 @@ def test_save_pretrained_model(mlflow_fixture):
assert len(mlflow.set_tags.call_args.args[0]["mlflow.source.name"]) > 0
assert mlflow.set_tags.call_args.args[0]["tag_name"] == "tag_value"

mlflow_client.search_model_versions.assert_called_once_with(
"name='model_name'", order_by=["version_number DESC"]
)
assert mlflow_client.set_model_version_tag.call_count == 2
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_uri", value="models:/model_name/1"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_type", value="model_type"
)


def test_log_single_exception(mlflow_fixture):
tracker_client = TrackerClient("")
Expand Down