Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion corrai/sensitivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,6 @@ def get_sample_aggregated_time_series(
prefix: str = "aggregated",
) -> pd.DataFrame:
return self.sampler.sample.get_aggregated_time_series(
self.results,
indicator,
method,
agg_method_kwarg,
Expand Down
18 changes: 11 additions & 7 deletions corrai/surrogate.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,20 +420,24 @@ def simulate(
is missing when required.
"""

param_df = pd.Series(property_dict)
if simulation_options is not None:
param_df = pd.concat([param_df, pd.Series(simulation_options)])
param_df = param_df.to_frame().T
param_df = pd.DataFrame(property_dict, index=[0])
if simulation_options:
sim_series = pd.Series(simulation_options)
if not sim_series.empty:
param_df = pd.concat([param_df, sim_series], axis=0)

missing = set(param_df.columns) - set(self.scikit_model.feature_names_in_)
if missing:
raise ValueError(f"Unknown features: {missing}")

if isinstance(self.scikit_model, MultiModelSO):
return self.scikit_model.predict(param_df)
return pd.Series(
self.scikit_model.predict(param_df).squeeze(),
index=[self.scikit_model.target_name_],
)
elif self.target_name is not None:
return pd.DataFrame(
data=self.scikit_model.predict(param_df), columns=[self.target_name]
return pd.Series(
self.scikit_model.predict(param_df)[0], index=[self.target_name]
)
else:
raise ValueError(
Expand Down
6 changes: 3 additions & 3 deletions tests/test_surrogate.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,14 @@ def test_scikit_wrapper(self):

in_df = {"x_1": 2.0, "x_2": 4.0}

ref_df = pd.DataFrame({"y": 28.0}, index=[0])
ref_serie = pd.Series({"y": 28.0})

mumoso = MultiModelSO()
mumoso.fit(ds[["x_1", "x_2"]], ds["y"])
stat_mod = StaticScikitModel(mumoso)
pd.testing.assert_frame_equal(stat_mod.simulate(in_df), ref_df)
pd.testing.assert_series_equal(stat_mod.simulate(in_df), ref_serie)

line_reg = LinearRegression()
line_reg.fit(ds[["x_1", "x_2"]], ds["y"])
scikit_mod = StaticScikitModel(line_reg, target_name="y")
pd.testing.assert_frame_equal(scikit_mod.simulate(in_df), ref_df)
pd.testing.assert_series_equal(scikit_mod.simulate(in_df), ref_serie)