1919from numpy .testing import assert_array_equal
2020from sklearn import datasets
2121
22- from onedal .neighbors import KNeighborsClassifier
22+ from sklearnex .neighbors import KNeighborsClassifier
2323from onedal .tests .utils ._device_selection import get_queues
2424
2525
2626@pytest .mark .parametrize ("queue" , get_queues ())
2727def test_iris (queue ):
2828 iris = datasets .load_iris ()
29- clf = KNeighborsClassifier (2 ).fit (iris .data , iris .target , queue = queue )
30- assert clf .score (iris .data , iris .target , queue = queue ) > 0.9
29+ clf = KNeighborsClassifier (2 ).fit (iris .data , iris .target )
30+ assert clf .score (iris .data , iris .target ) > 0.9
3131 assert_array_equal (clf .classes_ , np .sort (clf .classes_ ))
3232
3333
@@ -36,14 +36,14 @@ def test_pickle(queue):
3636 if queue and queue .sycl_device .is_gpu :
3737 pytest .skip ("KNN classifier pickling for the GPU sycl_queue is buggy." )
3838 iris = datasets .load_iris ()
39- clf = KNeighborsClassifier (2 ).fit (iris .data , iris .target , queue = queue )
40- expected = clf .predict (iris .data , queue = queue )
39+ clf = KNeighborsClassifier (2 ).fit (iris .data , iris .target )
40+ expected = clf .predict (iris .data )
4141
4242 import pickle
4343
4444 dump = pickle .dumps (clf )
4545 clf2 = pickle .loads (dump )
4646
4747 assert type (clf2 ) == clf .__class__
48- result = clf2 .predict (iris .data , queue = queue )
48+ result = clf2 .predict (iris .data )
4949 assert_array_equal (expected , result )
0 commit comments