-
Notifications
You must be signed in to change notification settings - Fork 356
Open
Labels
questionFurther information is requestedFurther information is requested
Description
Required prerequisites
- I have read the documentation https://tilelang.com.
- I have searched the Issue Tracker that this hasn't already been reported. (comment there if it has.)
Questions
running code with:
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse
import itertools
def get_configs():
iter_params = dict(block_M=[64, 128], block_N=[64, 128], num_stages=[2, 3, 4], threads=[128, 256, 512])
return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]
@autotune(configs=get_configs(), warmup=10, rep=10)
@tilelang.jit(
out_idx=[3, 4],
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
},
)
def flashattn_fwd(batch, heads, seq_len, dim, is_causal, block_M, block_N, num_stages=2, threads=128):
scale = (1.0 / dim) ** 0.5 * 1.44269504 # log2(e)
shape = [batch, seq_len, heads, dim]
dtype = T.float16
accum_dtype = T.float32
@T.prim_func
def flash_fwd(
Q: T.Tensor(shape, dtype), # type: ignore
K: T.Tensor(shape, dtype), # type: ignore
V: T.Tensor(shape, dtype), # type: ignore
Output: T.Tensor(shape, dtype), # type: ignore
lse: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
):
with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([block_M, dim], dtype)
# Q_local = T.alloc_fragment([block_M, dim], dtype)
K_shared = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_N, dim], dtype)
acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
scores_max = T.alloc_fragment([block_M], accum_dtype)
scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
scores_scale = T.alloc_fragment([block_M], accum_dtype)
scores_sum = T.alloc_fragment([block_M], accum_dtype)
logsum = T.alloc_fragment([block_M], accum_dtype)
T.copy(Q[bz, bx * block_M : (bx + 1) * block_M, by, :], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv((bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N)
for k in T.Pipelined(loop_range, num_stages=num_stages):
T.copy(K[bz, k * block_N : (k + 1) * block_N, by, :], K_shared)
if is_causal:
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0, -T.infinity(acc_s.dtype))
else:
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len, -T.infinity(acc_s.dtype), 0)
T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
T.copy(V[bz, k * block_N : (k + 1) * block_N, by, :], V_shared)
T.copy(scores_max, scores_max_prev)
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_M):
scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
for i in T.Parallel(block_M):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_M, dim):
acc_o[i, j] *= scores_scale[i]
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.copy(acc_s, acc_s_cast)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(block_M):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_M, dim):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, Output[bz, bx * block_M : (bx + 1) * block_M, by, :])
for i in T.Parallel(block_M):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
T.copy(logsum, lse[bz, by, bx * block_M : (bx + 1) * block_M])
return flash_fwd
@tilelang.jit(
out_idx=[2],
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
},
)
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
dtype = T.float16
accum_dtype = T.float32
shape = [batch, seq_len, heads, dim]
blk = 32
@T.prim_func
def flash_bwd_prep(
O: T.Tensor(shape, dtype), # type: ignore
dO: T.Tensor(shape, dtype), # type: ignore
Delta: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
):
with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
o = T.alloc_fragment([blk, blk], dtype)
do = T.alloc_fragment([blk, blk], dtype)
acc = T.alloc_fragment([blk, blk], accum_dtype)
delta = T.alloc_fragment([blk], accum_dtype)
T.clear(acc)
for k in range(T.ceildiv(dim, blk)):
T.copy(O[bz, by * blk : (by + 1) * blk, bx, k * blk : (k + 1) * blk], o)
T.copy(dO[bz, by * blk : (by + 1) * blk, bx, k * blk : (k + 1) * blk], do)
for i, j in T.Parallel(blk, blk):
acc[i, j] += o[i, j] * do[i, j]
T.reduce_sum(acc, delta, 1)
T.copy(delta, Delta[bz, bx, by * blk : (by + 1) * blk])
return flash_bwd_prep
def make_dq_layout(dQ):
# atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
return T.Layout(dQ.shape, lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])
@tilelang.jit(
out_idx=[1],
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
},
)
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
dtype = T.float16
accum_dtype = T.float32
shape = [batch, seq_len, heads, dim]
blk = 64
@T.prim_func
def flash_bwd_post(
dQ: T.Tensor(shape, accum_dtype), # type: ignore
dQ_out: T.Tensor(shape, dtype), # type: ignore
):
with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
T.annotate_layout({dQ: make_dq_layout(dQ)})
T.copy(
dQ[bz, bx * blk : (bx + 1) * blk, by, :],
dQ_out[bz, bx * blk : (bx + 1) * blk, by, :],
)
return flash_bwd_post
@tilelang.jit(
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
}
)
def flashattn_bwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
sm_scale = (1.0 / dim) ** 0.5
scale = (1.0 / dim) ** 0.5 * 1.44269504 # log2(e)
shape = [batch, seq_len, heads, dim]
dtype = T.float16
accum_dtype = T.float32
@T.prim_func
def flash_bwd(
Q: T.Tensor(shape, dtype), # type: ignore
K: T.Tensor(shape, dtype), # type: ignore
V: T.Tensor(shape, dtype), # type: ignore
dO: T.Tensor(shape, dtype), # type: ignore
lse: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
Delta: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
dQ: T.Tensor(shape, accum_dtype), # type: ignore
dK: T.Tensor(shape, dtype), # type: ignore
dV: T.Tensor(shape, dtype), # type: ignore
):
with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=128) as (bx, by, bz):
K_shared = T.alloc_shared([block_M, dim], dtype)
dsT_shared = T.alloc_shared([block_M, block_N], dtype)
# should not store K to local if dim is large
# K_local = T.alloc_fragment([block_M, dim], dtype)
# K_local_T = T.alloc_fragment([block_M, dim], dtype)
# V_local = T.alloc_fragment([block_M, dim], dtype)
q = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_M, dim], dtype)
qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
lse_shared = T.alloc_shared([block_N], accum_dtype)
delta = T.alloc_shared([block_N], accum_dtype)
do = T.alloc_shared([block_N, dim], dtype)
dv = T.alloc_fragment([block_M, dim], accum_dtype)
dk = T.alloc_fragment([block_M, dim], accum_dtype)
dq = T.alloc_fragment([block_N, dim], accum_dtype)
dv_shared = T.alloc_shared([block_M, dim], dtype)
dk_shared = T.alloc_shared([block_M, dim], dtype)
T.annotate_layout(
{
dQ: make_dq_layout(dQ),
}
)
T.copy(K[bz, by * block_M : (by + 1) * block_M, bx, :], K_shared)
T.copy(V[bz, by * block_M : (by + 1) * block_M, bx, :], V_shared)
T.clear(dv)
T.clear(dk)
loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
loop_ed = T.ceildiv(seq_len, block_N)
for k in T.Pipelined(loop_st, loop_ed, num_stages=2):
T.copy(Q[bz, k * block_N : (k + 1) * block_N, bx, :], q)
T.clear(qkT)
T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
T.copy(lse[bz, bx, k * block_N : (k + 1) * block_N], lse_shared)
for i, j in T.Parallel(block_M, block_N):
qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
if is_causal:
for i, j in T.Parallel(block_M, block_N):
qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j], 0)
# We don't need to handle OOB positions for non-causal cases,
# since OOB values won't affect other positions here.
T.copy(dO[bz, k * block_N : (k + 1) * block_N, bx, :], do)
T.clear(dsT)
T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
T.copy(qkT, qkT_cast)
T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)
T.copy(Delta[bz, bx, k * block_N : (k + 1) * block_N], delta)
for i, j in T.Parallel(block_M, block_N):
dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)
T.copy(dsT_cast, dsT_shared)
T.clear(dq)
T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
for i, j in T.Parallel(block_N, dim):
T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
T.copy(dv, dv_shared)
T.copy(dk, dk_shared)
T.copy(dv_shared, dV[bz, by * block_M : (by + 1) * block_M, bx, :])
T.copy(dk_shared, dK[bz, by * block_M : (by + 1) * block_M, bx, :])
return flash_bwd
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal):
BATCH, N_CTX, H, D_HEAD = q.shape
block_M = 64
block_N = 64 if D_HEAD <= 128 else 32
o, lse = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, causal)(q, k, v)
ctx.save_for_backward(q, k, v, o, lse)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
q, k, v, o, lse = ctx.saved_tensors
BATCH, N_CTX, H, D_HEAD = q.shape
def maybe_contiguous(x):
if x.stride(-1) != 1:
return x.contiguous()
return x
do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
block_M = 64
block_N = 64 if D_HEAD <= 64 else 32
kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD)
kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD)
delta = kernel_prep(o, do)
kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N)
shape = [BATCH, N_CTX, H, D_HEAD]
dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
dk = torch.empty(shape, dtype=torch.float16, device=q.device)
dv = torch.empty(shape, dtype=torch.float16, device=q.device)
kernel(q, k, v, do, lse, delta, dq, dk, dv)
dq = kernel_post(dq)
return dq, dk, dv, None
attention = _attention.apply
def ref_program(Q, K, V, is_causal):
Q = Q.transpose(1, 2)
K = K.transpose(1, 2)
V = V.transpose(1, 2)
output = torch.nn.functional.scaled_dot_product_attention(Q, K, V, is_causal=is_causal)
output = output.transpose(1, 2)
return output
def main(
BATCH: int = 8,
H: int = 32,
N_CTX: int = 1024,
D_HEAD: int = 64,
causal: bool = False,
):
flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
total_flops = 5 * flops_per_matmul
if causal:
total_flops *= 0.5
Q = torch.empty(BATCH, N_CTX, H, D_HEAD, dtype=torch.half, device="cuda").normal_().requires_grad_()
K = torch.empty_like(Q).normal_().requires_grad_()
V = torch.empty_like(Q).normal_().requires_grad_()
dO = torch.randn_like(Q)
O = attention(Q, K, V, causal)
O.backward(dO, retain_graph=True)
dQ, Q.grad = Q.grad.clone(), None
dK, K.grad = K.grad.clone(), None
dV, V.grad = V.grad.clone(), None
O_ref = ref_program(Q, K, V, causal)
O_ref.backward(dO, retain_graph=True)
dQ_ref, Q.grad = Q.grad.clone(), None
dK_ref, K.grad = K.grad.clone(), None
dV_ref, V.grad = V.grad.clone(), None
assert torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2)
assert torch.allclose(dV, dV_ref, rtol=1e-2, atol=1e-2)
assert torch.allclose(dK, dK_ref, rtol=1e-2, atol=1e-2)
assert torch.allclose(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
def run():
O_ref.backward(dO, retain_graph=True)
def run1():
O.backward(dO, retain_graph=True)
from tilelang.profiler import do_bench
latency = do_bench(run, warmup=500)
print("torch: {:.2f} ms".format(latency))
print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
latency = do_bench(run1, warmup=500)
print("tilelang: {:.2f} ms".format(latency))
print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch", type=int, default=8, help="Batch size")
parser.add_argument("--h", type=int, default=32, help="Number of heads")
parser.add_argument("--n_ctx", type=int, default=10240, help="Context size")
parser.add_argument("--d_head", type=int, default=64, help="Head dimension")
parser.add_argument("--causal", type=bool, default=False, help="Causal flag")
args = parser.parse_args()
main(args.batch, args.h, args.n_ctx, args.d_head, args.causal)
the running output is tested on A100-SXM4-80GB :
torch: 104.00 ms
torch: 165.19 TFlops
tilelang: 189.27 ms
tilelang: 90.77 TFlops
This may be because some hyperparameter settings issue? the baseline is sdpa.
coderabbitai and LeiWang1999
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested