@@ -131,21 +131,23 @@ test_that('updating', {
131131 expr1_exp <- mlp(mode = " regression" , hidden_units = 2 ) %> %
132132 set_engine(" nnet" , Hess = FALSE , abstol = varying())
133133
134- expr2 <- mlp(mode = " regression" , hidden_units = 7 ) %> % set_engine(" nnet" )
135- expr2_exp <- mlp(mode = " regression" , hidden_units = 7 ) %> % set_engine(" nnet" , Hess = FALSE )
134+ expr2 <- mlp(mode = " regression" ) %> % set_engine(" nnet" , Hess = varying() )
135+ expr2_exp <- mlp(mode = " regression" ) %> % set_engine(" nnet" , Hess = FALSE )
136136
137137 expr3 <- mlp(mode = " regression" , hidden_units = 7 , epochs = varying()) %> % set_engine(" keras" )
138138
139139 expr3_exp <- mlp(mode = " regression" , hidden_units = 2 ) %> % set_engine(" keras" )
140140
141141 expr4 <- mlp(mode = " classification" , hidden_units = 2 ) %> % set_engine(" nnet" , Hess = FALSE , abstol = varying())
142- expr4_exp <- mlp(mode = " classification" , hidden_units = 2 ) %> % set_engine(" nnet" , Hess = FALSE , abstol = varying() )
142+ expr4_exp <- mlp(mode = " classification" , hidden_units = 2 ) %> % set_engine(" nnet" , Hess = FALSE , abstol = 1e-3 )
143143
144144 expr5 <- mlp(mode = " classification" , hidden_units = 2 ) %> % set_engine(" nnet" , Hess = FALSE )
145145 expr5_exp <- mlp(mode = " classification" , hidden_units = 2 ) %> % set_engine(" nnet" , Hess = FALSE , abstol = varying())
146146
147147 expect_equal(update(expr1 , hidden_units = 2 ), expr1_exp )
148+ expect_equal(update(expr2 , Hess = FALSE ), expr2_exp )
148149 expect_equal(update(expr3 , hidden_units = 2 , fresh = TRUE ), expr3_exp )
150+ expect_equal(update(expr4 , abstol = 1e-3 ), expr4_exp )
149151
150152 param_tibb <- tibble :: tibble(hidden_units = 3 , dropout = .1 )
151153 param_list <- as.list(param_tibb )
0 commit comments