|
| 1 | +library(testthat) |
| 2 | +library(parsnip) |
| 3 | +library(rlang) |
| 4 | +library(tibble) |
| 5 | +library(mgcv) |
| 6 | + |
| 7 | +data(two_class_dat, package = "modeldata") |
| 8 | + |
| 9 | +# ------------------------------------------------------------------------------ |
| 10 | + |
| 11 | +context("generalized additive models") |
| 12 | + |
| 13 | +# ------------------------------------------------------------------------------ |
| 14 | + |
| 15 | +reg_mod <- gen_additive_mod(select_features = TRUE) %>% set_engine("mgcv") %>% set_mode("regression") |
| 16 | + |
| 17 | +test_that('regression', { |
| 18 | + skip_if_not_installed("mgcv") |
| 19 | + |
| 20 | + expect_error( |
| 21 | + f_res <- fit( |
| 22 | + reg_mod, |
| 23 | + mpg ~ s(disp) + wt + gear, |
| 24 | + data = mtcars |
| 25 | + ), |
| 26 | + regexp = NA |
| 27 | + ) |
| 28 | + expect_error( |
| 29 | + xy_res <- fit_xy( |
| 30 | + reg_mod, |
| 31 | + x = mtcars[, 1:5], |
| 32 | + y = mtcars$mpg, |
| 33 | + control = ctrl |
| 34 | + ), |
| 35 | + regexp = "must be used with GAM models" |
| 36 | + ) |
| 37 | + mgcv_mod <- mgcv::gam(mpg ~ s(disp) + wt + gear, data = mtcars, select = TRUE) |
| 38 | + expect_equal(coef(mgcv_mod), coef(f_res$fit)) |
| 39 | + |
| 40 | + f_pred <- predict(f_res, head(mtcars)) |
| 41 | + mgcv_pred <- predict(mgcv_mod, head(mtcars), type = "response") |
| 42 | + expect_equal(names(f_pred), ".pred") |
| 43 | + expect_equivalent(f_pred[[".pred"]], unname(mgcv_pred)) |
| 44 | + |
| 45 | + f_ci <- predict(f_res, head(mtcars), type = "conf_int", std_error = TRUE) |
| 46 | + mgcv_ci <- predict(mgcv_mod, head(mtcars), type = "link", se.fit = TRUE) |
| 47 | + expect_equivalent(f_ci[[".std_error"]], unname(mgcv_ci$se.fit)) |
| 48 | + lower <- |
| 49 | + mgcv_ci$fit - qt(0.025, df = mgcv_mod$df.residual, lower.tail = FALSE) * mgcv_ci$se.fit |
| 50 | + expect_equivalent(f_ci[[".pred_lower"]], unname(lower)) |
| 51 | + |
| 52 | +}) |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | +# ------------------------------------------------------------------------------ |
| 57 | + |
| 58 | +cls_mod <- gen_additive_mod(adjust_deg_free = 1.5) %>% set_engine("mgcv") %>% set_mode("classification") |
| 59 | + |
| 60 | +test_that('classification', { |
| 61 | + skip_if_not_installed("mgcv") |
| 62 | + expect_error( |
| 63 | + f_res <- fit( |
| 64 | + cls_mod, |
| 65 | + Class ~ s(A, k = 10) + B, |
| 66 | + data = two_class_dat |
| 67 | + ), |
| 68 | + regexp = NA |
| 69 | + ) |
| 70 | + expect_error( |
| 71 | + xy_res <- fit_xy( |
| 72 | + cls_mod, |
| 73 | + x = two_class_dat[, 2:3], |
| 74 | + y = two_class_dat$Class, |
| 75 | + control = ctrl |
| 76 | + ), |
| 77 | + regexp = "must be used with GAM models" |
| 78 | + ) |
| 79 | + mgcv_mod <- |
| 80 | + mgcv::gam(Class ~ s(A, k = 10) + B, |
| 81 | + data = two_class_dat, |
| 82 | + gamma = 1.5, |
| 83 | + family = binomial) |
| 84 | + expect_equal(coef(mgcv_mod), coef(f_res$fit)) |
| 85 | + |
| 86 | + f_pred <- predict(f_res, head(two_class_dat), type = "prob") |
| 87 | + mgcv_pred <- predict(mgcv_mod, head(two_class_dat), type = "response") |
| 88 | + expect_equal(names(f_pred), c(".pred_Class1", ".pred_Class2")) |
| 89 | + expect_equivalent(f_pred[[".pred_Class2"]], unname(mgcv_pred)) |
| 90 | + |
| 91 | + f_ci <- predict(f_res, head(two_class_dat), type = "conf_int", std_error = TRUE) |
| 92 | + mgcv_ci <- predict(mgcv_mod, head(two_class_dat), type = "link", se.fit = TRUE) |
| 93 | + expect_equivalent(f_ci[[".std_error"]], unname(mgcv_ci$se.fit)) |
| 94 | + lower <- |
| 95 | + mgcv_ci$fit - qt(0.025, df = mgcv_mod$df.residual, lower.tail = FALSE) * mgcv_ci$se.fit |
| 96 | + lower <- binomial()$linkinv(lower) |
| 97 | + expect_equivalent(f_ci[[".pred_lower_Class2"]], unname(lower)) |
| 98 | + |
| 99 | +}) |
0 commit comments