Skip to content

Inconsistent from_logits parameter across loss functions #1263

@AndrewFalkowski

Description

@AndrewFalkowski

DiceLoss has a from_logits parameter to handle both logits and probabilities, but FocalLoss does not. This creates an inconsistency when using models with softmax activation and requires awkward workarounds.

model = smp.create_model(..., activation='softmax')
outputs = model(x)  # Probabilities [0, 1]

# This works
dice_loss = smp.losses.DiceLoss(mode='multiclass', from_logits=False)

# This fails - FocalLoss applies softmax to output probabilities resulting in incorrect loss calc
focal_loss = smp.losses.FocalLoss(mode='multiclass')

Currently need to either:

  1. Remove model activation and use logits everywhere
  2. Manually wrap FocalLoss to convert probabilities back to logits

FocalLoss should have a from_logits parameter like DiceLoss for consistent API.

Environment

  • segmentation-models-pytorch version: 0.5.0
  • PyTorch version: 2.7.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions