You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"help": "Number of Oblivious Decision Tree Layers in the Dense Architecture"
57
+
},
58
+
)
59
+
num_trees: int=field(
60
+
default=2048,
61
+
metadata={"help": "Number of Oblivious Decision Trees in each layer"},
62
+
)
63
+
additional_tree_output_dim: int=field(
64
+
default=3,
65
+
metadata={
66
+
"help": "The additional output dimensions which is only used to pass through different layers of the architectures. Only the first output_dim outputs will be used for prediction"
67
+
},
68
+
)
69
+
depth: int=field(
70
+
default=6,
71
+
metadata={"help": "The depth of the individual Oblivious Decision Trees"},
72
+
)
73
+
choice_function: str=field(
74
+
default="entmax15",
75
+
metadata={
76
+
"help": "Generates a sparse probability distribution to be used as feature weights(aka, soft feature selection)",
77
+
"choices": ["entmax15", "sparsemax"],
78
+
},
79
+
)
80
+
bin_function: str=field(
81
+
default="entmoid15",
82
+
metadata={
83
+
"help": "Generates a sparse probability distribution to be used as tree leaf weights",
84
+
"choices": ["entmoid15", "sparsemoid"],
85
+
},
86
+
)
87
+
max_features: Optional[int] =field(
88
+
default=None,
89
+
metadata={
90
+
"help": "If not None, sets a max limit on the number of features to be carried forward from layer to layer in the Dense Architecture"
91
+
},
92
+
)
93
+
input_dropout: float=field(
94
+
default=0.0,
95
+
metadata={
96
+
"help": "Dropout to be applied to the inputs between layers of the Dense Architecture"
97
+
},
98
+
)
99
+
initialize_response: str=field(
100
+
default="normal",
101
+
metadata={
102
+
"help": "Initializing the response variable in the Oblivious Decision Trees. By default, it is a standard normal distribution",
103
+
"choices": ["normal", "uniform"],
104
+
},
105
+
)
106
+
initialize_selection_logits: str=field(
107
+
default="uniform",
108
+
metadata={
109
+
"help": "Initializing the feature selector. By default is a uniform distribution across the features",
110
+
"choices": ["uniform", "normal"],
111
+
},
112
+
)
113
+
threshold_init_beta: float=field(
114
+
default=1.0,
115
+
metadata={
116
+
"help": """
117
+
Used in the Data-aware initialization of thresholds where the threshold is initialized randomly
118
+
(with a beta distribution) to feature values in the first batch.
119
+
It initializes threshold to a q-th quantile of data points.
120
+
where q ~ Beta(:threshold_init_beta:, :threshold_init_beta:)
121
+
If this param is set to 1, initial thresholds will have the same distribution as data points
122
+
If greater than 1 (e.g. 10), thresholds will be closer to median data value
123
+
If less than 1 (e.g. 0.1), thresholds will approach min/max data values.
124
+
"""
125
+
},
126
+
)
127
+
threshold_init_cutoff: float=field(
128
+
default=1.0,
129
+
metadata={
130
+
"help": """
131
+
Used in the Data-aware initialization of scales(used in the scaling ODTs).
132
+
It is initialized in such a way that all the samples in the first batch belong to the linear
133
+
region of the entmoid/sparsemoid(bin-selectors) and thereby have non-zero gradients
134
+
Threshold log-temperatures initializer, in (0, inf)
135
+
By default(1.0), log-temperatures are initialized in such a way that all bin selectors
136
+
end up in the linear region of sparse-sigmoid. The temperatures are then scaled by this parameter.
137
+
Setting this value > 1.0 will result in some margin between data points and sparse-sigmoid cutoff value
138
+
Setting this value < 1.0 will cause (1 - value) part of data points to end up in flat sparse-sigmoid region
139
+
For instance, threshold_init_cutoff = 0.9 will set 10% points equal to 0.0 or 1.0
140
+
Setting this value > 1.0 will result in a margin between data points and sparse-sigmoid cutoff value
141
+
All points will be between (0.5 - 0.5 / threshold_init_cutoff) and (0.5 + 0.5 / threshold_init_cutoff)
142
+
"""
143
+
},
144
+
)
145
+
embed_categorical: bool=field(
146
+
default=False,
147
+
metadata={
148
+
"help": "Flag to embed categorical columns using an Embedding Layer. If turned off, the categorical columns are encoded using LeaveOneOutEncoder"
149
+
},
150
+
)
151
+
embedding_dims: Optional[List[int]] =field(
152
+
default=None,
153
+
metadata={
154
+
"help": "The dimensions of the embedding for each categorical column as a list of tuples (cardinality, embedding_dim). If left empty, will infer using the cardinality of the categorical column using the rule min(50, (x + 1) // 2)"
155
+
},
156
+
)
157
+
embedding_dropout: float=field(
158
+
default=0.0,
159
+
metadata={"help": "probability of an embedding element to be zeroed."},
0 commit comments