@@ -27,3 +27,100 @@ This integration testing effort focuses on verifying interactions between multip
27271 . ** validate_fillna_kwargs with clean_fill_method** : Tests delegation from validator to missing data module for method normalization
28282 . ** Series.fillna/ffill operations** : Tests complete pipeline from user API through validation to missing data handling
2929
30+ ### Test 3: Dtype Backend-Libs Integration (Mallikarjuna)
31+ ** Modules Integrated:**
32+ - ` pandas.util._validators ` (validation functions)
33+ - ` pandas._libs.lib ` (C extension library with sentinel values)
34+ - ` numpy ` (array handling and validation)
35+
36+ ** Interactions Tested:**
37+ 1 . ** check_dtype_backend with lib.no_default** : Tests validator interaction with C library sentinel values
38+ 2 . ** validate_percentile with numpy arrays** : Tests pandas validation with numpy array conversion and bounds checking
39+
40+ ## Test Data Preparation
41+
42+ ### Input Data Generation
43+
44+ ** Test 1 - Series/DataFrame Integration:**
45+ - ** Input** : Created Series with explicit dtype (` int32 ` ) and sample data ` [1, 2, 3] `
46+ - ** Input** : Created multiple Series with different dtypes: int64, float32, object
47+ - ** Rationale** : Different dtypes exercise type preservation logic across module boundaries
48+
49+ ** Test 2 - Validation/Missing Data:**
50+ - ** Input** : Series with ` np.nan ` values: ` [1.0, np.nan, 3.0, np.nan, 5.0] `
51+ - ** Input** : Method names ` "pad" ` , ` "ffill" ` and ` None ` values
52+ - ** Rationale** : Missing values and various method names test validation and fill method delegation
53+
54+ ** Test 3 - Backend/Libs Validation:**
55+ - ** Input** : ` lib.no_default ` sentinel, valid backends (` "numpy_nullable" ` , ` "pyarrow" ` ), invalid backend string
56+ - ** Input** : Valid percentiles (` 0.5 ` , ` [0.25, 0.5, 0.75] ` ) and invalid (` 1.5 ` , ` [0.25, 1.5, 0.75] ` )
57+ - ** Rationale** : Mix of valid/invalid inputs tests error handling across module boundaries
58+
59+ ### Expected Output Data
60+
61+ All tests include explicit expected outputs:
62+ - Series/DataFrame tests verify dtype preservation and data integrity
63+ - Validation tests verify normalized method names and appropriate ValueError exceptions
64+ - Backend tests verify acceptance of valid values and rejection with specific error messages
65+
66+ ## Execution and Results
67+
68+ ** Test File** : ` pandas/tests/util/test_integration.py `
69+
70+ ** Execution Command:**
71+ ``` bash
72+ python -m pytest pandas/tests/util/test_integration.py -v
73+ ```
74+
75+ ** Test Results:**
76+ ```
77+ collected 6 items
78+
79+ test_series_to_dataframe_dtype_preservation PASSED
80+ test_dataframe_from_dict_mixed_series_dtypes PASSED
81+ test_validate_fillna_with_clean_method PASSED
82+ test_series_fillna_integration PASSED
83+ test_check_dtype_backend_with_lib_sentinel PASSED
84+ test_percentile_validation_with_numpy_arrays PASSED
85+
86+ =================================== 6 passed in 0.94s
87+ ```
88+
89+ ** Summary:**
90+ - ** Total Tests** : 6 integration tests
91+ - ** Passed** : 6 (100%)
92+ - ** Failed** : 0
93+ - ** Execution Time** : 0.94 seconds
94+
95+ ### Defects Discovered
96+
97+ ** No defects were discovered during integration testing.** All module interactions functioned as expected:
98+
99+ - Series-to-DataFrame conversion preserves dtypes correctly
100+ - DataFrame construction handles mixed-dtype Series properly
101+ - Validation module correctly delegates to missing data module
102+ - Series fillna operations integrate validation and missing data modules
103+ - Backend validation properly handles C library sentinel values
104+ - Percentile validation correctly integrates with NumPy array handling
105+
106+ All error cases (ValueError for invalid inputs) behaved as designed, raising appropriate exceptions with descriptive messages.
107+
108+ ## Bug Reports
109+
110+ ** No bugs identified.** All integration points between modules are functioning correctly. The following expected behaviors were verified:
111+
112+ 1 . ** Type preservation across module boundaries** : Dtypes maintained through Series→DataFrame→Internals conversions
113+ 2 . ** Validation delegation** : Validators correctly call specialized modules (e.g., ` clean_fill_method ` )
114+ 3 . ** Error propagation** : Invalid inputs raise appropriate exceptions with clear messages
115+ 4 . ** Sentinel value handling** : C library sentinels (` lib.no_default ` ) recognized by validators
116+
117+ ## Group Contributions
118+
119+ | Student | Test Cases | Modules Integrated | Coverage |
120+ | ---------| ------------| -------------------| ----------|
121+ | ** Sandeep Ramavath** | 2 tests | Series, DataFrame, Internals, Dtypes | Series-DataFrame conversion and construction |
122+ | ** Nithikesh Bobbili** | 2 tests | Validators, Missing Data, Series, Internals | Fillna validation and operation pipeline |
123+ | ** Mallikarjuna** | 2 tests | Validators, C Libs, NumPy | Backend validation and percentile checking |
124+
125+ ** Total** : 6 integration tests covering 8+ distinct pandas modules with both normal and edge case scenarios.
126+
0 commit comments