@@ -123,6 +123,22 @@ def scatter_matrix(
123123
124124 >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
125125 >>> pd.plotting.scatter_matrix(df, alpha=0.2)
126+ array([[<AxesSubplot:xlabel='A', ylabel='A'>,
127+ <AxesSubplot:xlabel='B', ylabel='A'>,
128+ <AxesSubplot:xlabel='C', ylabel='A'>,
129+ <AxesSubplot:xlabel='D', ylabel='A'>],
130+ [<AxesSubplot:xlabel='A', ylabel='B'>,
131+ <AxesSubplot:xlabel='B', ylabel='B'>,
132+ <AxesSubplot:xlabel='C', ylabel='B'>,
133+ <AxesSubplot:xlabel='D', ylabel='B'>],
134+ [<AxesSubplot:xlabel='A', ylabel='C'>,
135+ <AxesSubplot:xlabel='B', ylabel='C'>,
136+ <AxesSubplot:xlabel='C', ylabel='C'>,
137+ <AxesSubplot:xlabel='D', ylabel='C'>],
138+ [<AxesSubplot:xlabel='A', ylabel='D'>,
139+ <AxesSubplot:xlabel='B', ylabel='D'>,
140+ <AxesSubplot:xlabel='C', ylabel='D'>,
141+ <AxesSubplot:xlabel='D', ylabel='D'>]], dtype=object)
126142 """
127143 plot_backend = _get_plot_backend ("matplotlib" )
128144 return plot_backend .scatter_matrix (
@@ -208,6 +224,7 @@ def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds):
208224 ... }
209225 ... )
210226 >>> pd.plotting.radviz(df, 'Category')
227+ <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
211228 """
212229 plot_backend = _get_plot_backend ("matplotlib" )
213230 return plot_backend .radviz (
@@ -266,6 +283,7 @@ def andrews_curves(
266283 ... 'pandas/master/pandas/tests/io/data/csv/iris.csv'
267284 ... )
268285 >>> pd.plotting.andrews_curves(df, 'Name')
286+ <AxesSubplot:title={'center':'width'}>
269287 """
270288 plot_backend = _get_plot_backend ("matplotlib" )
271289 return plot_backend .andrews_curves (
@@ -325,6 +343,7 @@ def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds):
325343
326344 >>> s = pd.Series(np.random.uniform(size=100))
327345 >>> pd.plotting.bootstrap_plot(s)
346+ <Figure size 640x480 with 6 Axes>
328347 """
329348 plot_backend = _get_plot_backend ("matplotlib" )
330349 return plot_backend .bootstrap_plot (
@@ -392,6 +411,7 @@ def parallel_coordinates(
392411 >>> pd.plotting.parallel_coordinates(
393412 ... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
394413 ... )
414+ <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
395415 """
396416 plot_backend = _get_plot_backend ("matplotlib" )
397417 return plot_backend .parallel_coordinates (
@@ -440,13 +460,15 @@ def lag_plot(series, lag=1, ax=None, **kwds):
440460 >>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
441461 >>> s = pd.Series(x)
442462 >>> s.plot()
463+ <AxesSubplot:xlabel='Midrange'>
443464
444465 A lag plot with ``lag=1`` returns
445466
446467 .. plot::
447468 :context: close-figs
448469
449470 >>> pd.plotting.lag_plot(s, lag=1)
471+ <AxesSubplot:xlabel='y(t)', ylabel='y(t + 1)'>
450472 """
451473 plot_backend = _get_plot_backend ("matplotlib" )
452474 return plot_backend .lag_plot (series = series , lag = lag , ax = ax , ** kwds )
@@ -480,6 +502,7 @@ def autocorrelation_plot(series, ax=None, **kwargs):
480502 >>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
481503 >>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
482504 >>> pd.plotting.autocorrelation_plot(s)
505+ <AxesSubplot:title={'center':'width'}, xlabel='Lag', ylabel='Autocorrelation'>
483506 """
484507 plot_backend = _get_plot_backend ("matplotlib" )
485508 return plot_backend .autocorrelation_plot (series = series , ax = ax , ** kwargs )
0 commit comments