|
5 | 5 | # (UPL) 1.0 (LICENSE-UPL or https://oss.oracle.com/licenses/upl), at your option. |
6 | 6 |
|
7 | 7 |
|
| 8 | +import inspect |
8 | 9 | import uuid |
9 | 10 | from typing import ( |
10 | 11 | Any, |
11 | 12 | Callable, |
12 | 13 | Dict, |
13 | 14 | List, |
14 | 15 | Optional, |
| 16 | + Tuple, |
15 | 17 | Type, |
16 | 18 | Union, |
17 | 19 | cast, |
|
25 | 27 | from pyagentspec.adapters.crewai._types import ( |
26 | 28 | CrewAIAgent, |
27 | 29 | CrewAIBaseTool, |
| 30 | + CrewAIFlow, |
28 | 31 | CrewAILlm, |
29 | 32 | CrewAIStructuredTool, |
30 | 33 | CrewAITool, |
| 34 | + FlowState, |
31 | 35 | ) |
32 | 36 | from pyagentspec.agent import Agent as AgentSpecAgent |
33 | 37 | from pyagentspec.component import Component as AgentSpecComponent |
| 38 | +from pyagentspec.flows.edges import ControlFlowEdge, DataFlowEdge |
| 39 | +from pyagentspec.flows.flow import Flow as AgentSpecFlow |
| 40 | +from pyagentspec.flows.node import Node as AgentSpecNode |
| 41 | +from pyagentspec.flows.nodes import EndNode as AgentSpecEndNode |
| 42 | +from pyagentspec.flows.nodes import StartNode as AgentSpecStartNode |
| 43 | +from pyagentspec.flows.nodes import ToolNode as AgentSpecToolNode |
34 | 44 | from pyagentspec.llms import LlmConfig as AgentSpecLlmConfig |
35 | 45 | from pyagentspec.llms import LlmGenerationConfig as AgentSpecLlmGenerationConfig |
36 | 46 | from pyagentspec.llms.ollamaconfig import OllamaConfig as AgentSpecOllamaModel |
@@ -123,6 +133,10 @@ def convert( |
123 | 133 | agentspec_component = self._tool_convert_to_agentspec( |
124 | 134 | crewai_component, referenced_objects |
125 | 135 | ) |
| 136 | + elif isinstance(crewai_component, CrewAIFlow): |
| 137 | + agentspec_component = self._flow_convert_to_agentspec( |
| 138 | + crewai_component, referenced_objects |
| 139 | + ) |
126 | 140 | else: |
127 | 141 | raise NotImplementedError( |
128 | 142 | f"The crewai type '{crewai_component.__class__.__name__}' is not yet supported " |
@@ -217,3 +231,268 @@ def _agent_convert_to_agentspec( |
217 | 231 | for tool in (crewai_agent.tools or []) |
218 | 232 | ], |
219 | 233 | ) |
| 234 | + |
| 235 | + def _flow_convert_to_agentspec( |
| 236 | + self, crewai_flow: CrewAIFlow[FlowState], referenced_objects: Dict[str, Any] |
| 237 | + ) -> AgentSpecFlow: |
| 238 | + |
| 239 | + nodes: Dict[str, AgentSpecNode] = {} |
| 240 | + |
| 241 | + # Create a ToolNode for each method (i.e. node) in the flow |
| 242 | + methods_by_name = getattr(crewai_flow, "_methods", {}) |
| 243 | + start_method_names = set(getattr(crewai_flow, "_start_methods", [])) |
| 244 | + for method_name in methods_by_name.keys(): |
| 245 | + method_callable = methods_by_name[method_name] |
| 246 | + |
| 247 | + # Get method signature to infer properties since they're not explicitly defined |
| 248 | + signature = inspect.signature(method_callable) |
| 249 | + |
| 250 | + # Create input properties for nodes: |
| 251 | + # - for start nodes we use their input parameters |
| 252 | + # - for other nodes we either leave it empty or have a single "object" property |
| 253 | + parameters = [p for p in signature.parameters.values() if p.name != "self"] |
| 254 | + node_inputs = [ |
| 255 | + AgentSpecProperty(title=p.name, json_schema={"type": "object"}) |
| 256 | + for p in parameters[: (len(parameters) if method_name in start_method_names else 1)] |
| 257 | + ] |
| 258 | + |
| 259 | + # Create output properties for nodes: |
| 260 | + # - if there is a return value annotation, add a single "object" property |
| 261 | + return_annotation = signature.return_annotation |
| 262 | + has_output = not ( |
| 263 | + return_annotation is inspect.Signature.empty or return_annotation is None |
| 264 | + ) |
| 265 | + node_outputs = ( |
| 266 | + [AgentSpecProperty(title=f"{method_name}_output", json_schema={"type": "object"})] |
| 267 | + if has_output |
| 268 | + else [] |
| 269 | + ) |
| 270 | + |
| 271 | + tool = AgentSpecServerTool( |
| 272 | + name=method_name, |
| 273 | + description=f"Converted CrewAI flow method '{method_name}'", |
| 274 | + inputs=node_inputs, |
| 275 | + outputs=node_outputs, |
| 276 | + ) |
| 277 | + node = AgentSpecToolNode( |
| 278 | + name=str(method_name), |
| 279 | + tool=tool, |
| 280 | + inputs=node_inputs, |
| 281 | + outputs=node_outputs, |
| 282 | + ) |
| 283 | + nodes[str(method_name)] = node |
| 284 | + referenced_objects[str(method_name)] = node |
| 285 | + |
| 286 | + # Start node with inferred properties |
| 287 | + start_node_properties = [ |
| 288 | + property |
| 289 | + for start_method in getattr(crewai_flow, "_start_methods", []) |
| 290 | + for property in (nodes[start_method].inputs or []) |
| 291 | + ] |
| 292 | + start_node = AgentSpecStartNode( |
| 293 | + name="START", inputs=start_node_properties, outputs=start_node_properties |
| 294 | + ) |
| 295 | + nodes[start_node.name] = start_node |
| 296 | + referenced_objects[start_node.name] = start_node |
| 297 | + |
| 298 | + control_flow_edges: list[ControlFlowEdge] = [] |
| 299 | + data_flow_edges: list[DataFlowEdge] = [] |
| 300 | + |
| 301 | + # Connect START to all start methods |
| 302 | + for start_method in getattr(crewai_flow, "_start_methods", []): |
| 303 | + control_flow_edges, data_flow_edges = self._add_start_edges( |
| 304 | + start_node, |
| 305 | + nodes[start_method], |
| 306 | + control_flow_edges, |
| 307 | + data_flow_edges, |
| 308 | + ) |
| 309 | + |
| 310 | + # Build edges based on listeners |
| 311 | + listeners = getattr(crewai_flow, "_listeners", {}) |
| 312 | + |
| 313 | + for listener_name, condition in listeners.items(): |
| 314 | + triggers, has_branching = self._extract_triggers_from_condition(condition) |
| 315 | + if has_branching: |
| 316 | + raise ValueError( |
| 317 | + "Branching is not currently supported (AND, OR operators). " |
| 318 | + f"Got node {listener_name} with triggers {', '.join(triggers)}" |
| 319 | + ) |
| 320 | + for trigger in triggers: |
| 321 | + if trigger in getattr(crewai_flow, "_methods", {}): |
| 322 | + control_flow_edges, data_flow_edges = self._add_listener_edges( |
| 323 | + nodes[trigger], |
| 324 | + nodes[listener_name], |
| 325 | + control_flow_edges, |
| 326 | + data_flow_edges, |
| 327 | + ) |
| 328 | + |
| 329 | + # End node with inferred properties |
| 330 | + has_outgoing_edges: set[str] = set( |
| 331 | + edge.from_node.name for edge in control_flow_edges if edge.from_node.name != "END" |
| 332 | + ) |
| 333 | + end_methods = [ |
| 334 | + method_name |
| 335 | + for method_name in nodes |
| 336 | + if method_name not in ("START", "END") and method_name not in has_outgoing_edges |
| 337 | + ] |
| 338 | + end_node_properties = [ |
| 339 | + property for end_method in end_methods for property in (nodes[end_method].outputs or []) |
| 340 | + ] |
| 341 | + end_node = AgentSpecEndNode( |
| 342 | + name="END", inputs=end_node_properties, outputs=end_node_properties |
| 343 | + ) |
| 344 | + nodes[end_node.name] = end_node |
| 345 | + referenced_objects[end_node.name] = end_node |
| 346 | + |
| 347 | + # Connect END to all end methods |
| 348 | + for end_method in end_methods: |
| 349 | + control_flow_edges, data_flow_edges = self._add_end_edges( |
| 350 | + nodes[end_method], |
| 351 | + end_node, |
| 352 | + control_flow_edges, |
| 353 | + data_flow_edges, |
| 354 | + ) |
| 355 | + |
| 356 | + flow_name = getattr(crewai_flow, "name", None) or crewai_flow.__class__.__name__ |
| 357 | + return AgentSpecFlow( |
| 358 | + name=flow_name, |
| 359 | + start_node=start_node, |
| 360 | + nodes=list(nodes.values()), |
| 361 | + control_flow_connections=control_flow_edges, |
| 362 | + data_flow_connections=data_flow_edges, |
| 363 | + ) |
| 364 | + |
| 365 | + def _add_start_edges( |
| 366 | + self, |
| 367 | + start_node: AgentSpecNode, |
| 368 | + destination_node: AgentSpecNode, |
| 369 | + control_flow_edges: List[ControlFlowEdge], |
| 370 | + data_flow_edges: List[DataFlowEdge], |
| 371 | + ) -> Tuple[List[ControlFlowEdge], List[DataFlowEdge]]: |
| 372 | + control_flow_edges.append( |
| 373 | + ControlFlowEdge( |
| 374 | + name=f"START_to_{destination_node.name}_control_edge", |
| 375 | + from_node=start_node, |
| 376 | + to_node=destination_node, |
| 377 | + ) |
| 378 | + ) |
| 379 | + start_node_outputs = start_node.outputs or [] |
| 380 | + start_node_output_property_names = [property.title for property in start_node_outputs] |
| 381 | + destination_node_inputs = destination_node.inputs or [] |
| 382 | + for property in destination_node_inputs: |
| 383 | + if property.title in start_node_output_property_names: |
| 384 | + data_flow_edges.append( |
| 385 | + DataFlowEdge( |
| 386 | + name=f"START_to_{destination_node.name}_data_edge", |
| 387 | + source_node=start_node, |
| 388 | + destination_node=destination_node, |
| 389 | + source_output=property.title, |
| 390 | + destination_input=property.title, |
| 391 | + ) |
| 392 | + ) |
| 393 | + return control_flow_edges, data_flow_edges |
| 394 | + |
| 395 | + def _add_listener_edges( |
| 396 | + self, |
| 397 | + trigger_node: AgentSpecNode, |
| 398 | + listener_node: AgentSpecNode, |
| 399 | + control_flow_edges: List[ControlFlowEdge], |
| 400 | + data_flow_edges: List[DataFlowEdge], |
| 401 | + ) -> Tuple[List[ControlFlowEdge], List[DataFlowEdge]]: |
| 402 | + control_flow_edges.append( |
| 403 | + ControlFlowEdge( |
| 404 | + name=f"{trigger_node.name}_to_{listener_node.name}_control_edge", |
| 405 | + from_node=trigger_node, |
| 406 | + to_node=listener_node, |
| 407 | + ) |
| 408 | + ) |
| 409 | + trigger_node_outputs = trigger_node.outputs or [] |
| 410 | + listener_node_inputs = listener_node.inputs or [] |
| 411 | + if len(trigger_node_outputs) == 1 and len(listener_node_inputs) == 1: |
| 412 | + data_flow_edges.append( |
| 413 | + DataFlowEdge( |
| 414 | + name=f"{trigger_node.name}_to_{listener_node.name}_data_edge", |
| 415 | + source_node=trigger_node, |
| 416 | + destination_node=listener_node, |
| 417 | + source_output=trigger_node_outputs[0].title, |
| 418 | + destination_input=listener_node_inputs[0].title, |
| 419 | + ) |
| 420 | + ) |
| 421 | + return control_flow_edges, data_flow_edges |
| 422 | + |
| 423 | + def _add_end_edges( |
| 424 | + self, |
| 425 | + source_node: AgentSpecNode, |
| 426 | + end_node: AgentSpecNode, |
| 427 | + control_flow_edges: List[ControlFlowEdge], |
| 428 | + data_flow_edges: List[DataFlowEdge], |
| 429 | + ) -> Tuple[List[ControlFlowEdge], List[DataFlowEdge]]: |
| 430 | + control_flow_edges.append( |
| 431 | + ControlFlowEdge( |
| 432 | + name=f"{source_node.name}_to_END_control_edge", |
| 433 | + from_node=source_node, |
| 434 | + to_node=end_node, |
| 435 | + ) |
| 436 | + ) |
| 437 | + source_node_outputs = source_node.outputs or [] |
| 438 | + end_node_inputs = end_node.inputs or [] |
| 439 | + end_node_input_property_names = [property.title for property in end_node_inputs] |
| 440 | + for property in source_node_outputs: |
| 441 | + if property.title in end_node_input_property_names: |
| 442 | + data_flow_edges.append( |
| 443 | + DataFlowEdge( |
| 444 | + name=f"{source_node.name}_to_END_data_edge", |
| 445 | + source_node=source_node, |
| 446 | + destination_node=end_node, |
| 447 | + source_output=property.title, |
| 448 | + destination_input=property.title, |
| 449 | + ) |
| 450 | + ) |
| 451 | + return control_flow_edges, data_flow_edges |
| 452 | + |
| 453 | + def _extract_triggers_from_condition(self, condition: Any) -> Tuple[set[str], bool]: |
| 454 | + """ |
| 455 | + Extract flat trigger names from CrewAI listener condition. |
| 456 | + Returns (triggers, has_branching) where has_branching indicates unsupported branching usage. |
| 457 | + """ |
| 458 | + has_branching = False |
| 459 | + triggers: set[str] = set() |
| 460 | + |
| 461 | + def _is_branching_condition(condition_type: Any, methods: Any) -> bool: |
| 462 | + return (str(condition_type).upper() in ("AND", "OR")) and len(methods) > 1 |
| 463 | + |
| 464 | + # Simple tuple form: (condition_type, methods) |
| 465 | + if isinstance(condition, tuple) and len(condition) == 2: |
| 466 | + condition_type, methods = condition |
| 467 | + for method in methods or []: |
| 468 | + triggers.add(str(method)) |
| 469 | + return triggers, _is_branching_condition(condition_type, methods) |
| 470 | + |
| 471 | + # Dict form: {"type": "OR"/"AND", "methods": [...] } or {"type": ..., "conditions": [...]} |
| 472 | + if isinstance(condition, dict): |
| 473 | + condition_type = str(condition.get("type", "OR")).upper() |
| 474 | + if "methods" in condition: |
| 475 | + methods = condition.get("methods", []) |
| 476 | + for method in methods: |
| 477 | + triggers.add(str(method)) |
| 478 | + return triggers, _is_branching_condition(condition_type, methods) |
| 479 | + if "conditions" in condition: |
| 480 | + subconditions = condition.get("conditions", []) |
| 481 | + has_branching = _is_branching_condition(condition_type, subconditions) |
| 482 | + for subcondition in subconditions: |
| 483 | + if isinstance(subcondition, dict): |
| 484 | + subtriggers, sub_has_branching = self._extract_triggers_from_condition( |
| 485 | + subcondition |
| 486 | + ) |
| 487 | + triggers |= subtriggers |
| 488 | + has_branching = has_branching or sub_has_branching |
| 489 | + else: |
| 490 | + triggers.add(str(subcondition)) |
| 491 | + return triggers, has_branching |
| 492 | + |
| 493 | + # Direct string method/label |
| 494 | + if isinstance(condition, str): |
| 495 | + triggers.add(condition) |
| 496 | + return triggers, has_branching |
| 497 | + |
| 498 | + return triggers, has_branching |
0 commit comments