|
12 | 12 | from typing import Type, cast |
13 | 13 |
|
14 | 14 | from optimagic.optimization.algorithm import Algorithm |
15 | | -from optimagic.optimizers.bayesian_optimizer import BayesOpt |
16 | 15 | from optimagic.optimizers.bhhh import BHHH |
17 | 16 | from optimagic.optimizers.fides import Fides |
18 | 17 | from optimagic.optimizers.iminuit_migrad import IminuitMigrad |
@@ -367,7 +366,6 @@ def Scalar(self) -> BoundedGlobalGradientFreeNonlinearConstrainedScalarAlgorithm |
367 | 366 |
|
368 | 367 | @dataclass(frozen=True) |
369 | 368 | class BoundedGlobalGradientFreeScalarAlgorithms(AlgoSelection): |
370 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
371 | 369 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
372 | 370 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
373 | 371 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -1034,7 +1032,6 @@ def Local(self) -> GradientBasedLocalNonlinearConstrainedScalarAlgorithms: |
1034 | 1032 |
|
1035 | 1033 | @dataclass(frozen=True) |
1036 | 1034 | class BoundedGlobalGradientFreeAlgorithms(AlgoSelection): |
1037 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
1038 | 1035 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
1039 | 1036 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
1040 | 1037 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -1099,7 +1096,6 @@ def Scalar(self) -> GlobalGradientFreeNonlinearConstrainedScalarAlgorithms: |
1099 | 1096 |
|
1100 | 1097 | @dataclass(frozen=True) |
1101 | 1098 | class GlobalGradientFreeScalarAlgorithms(AlgoSelection): |
1102 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
1103 | 1099 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
1104 | 1100 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
1105 | 1101 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -1309,7 +1305,6 @@ def Scalar(self) -> BoundedGradientFreeNonlinearConstrainedScalarAlgorithms: |
1309 | 1305 |
|
1310 | 1306 | @dataclass(frozen=True) |
1311 | 1307 | class BoundedGradientFreeScalarAlgorithms(AlgoSelection): |
1312 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
1313 | 1308 | nag_pybobyqa: Type[NagPyBOBYQA] = NagPyBOBYQA |
1314 | 1309 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
1315 | 1310 | nlopt_bobyqa: Type[NloptBOBYQA] = NloptBOBYQA |
@@ -1534,7 +1529,6 @@ def Scalar(self) -> BoundedGlobalNonlinearConstrainedScalarAlgorithms: |
1534 | 1529 |
|
1535 | 1530 | @dataclass(frozen=True) |
1536 | 1531 | class BoundedGlobalScalarAlgorithms(AlgoSelection): |
1537 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
1538 | 1532 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
1539 | 1533 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
1540 | 1534 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -2147,7 +2141,6 @@ def Local(self) -> GradientBasedLikelihoodLocalAlgorithms: |
2147 | 2141 |
|
2148 | 2142 | @dataclass(frozen=True) |
2149 | 2143 | class GlobalGradientFreeAlgorithms(AlgoSelection): |
2150 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2151 | 2144 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
2152 | 2145 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
2153 | 2146 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -2234,7 +2227,6 @@ def Scalar(self) -> GradientFreeLocalScalarAlgorithms: |
2234 | 2227 |
|
2235 | 2228 | @dataclass(frozen=True) |
2236 | 2229 | class BoundedGradientFreeAlgorithms(AlgoSelection): |
2237 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2238 | 2230 | nag_dfols: Type[NagDFOLS] = NagDFOLS |
2239 | 2231 | nag_pybobyqa: Type[NagPyBOBYQA] = NagPyBOBYQA |
2240 | 2232 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
@@ -2332,7 +2324,6 @@ def Scalar(self) -> GradientFreeNonlinearConstrainedScalarAlgorithms: |
2332 | 2324 |
|
2333 | 2325 | @dataclass(frozen=True) |
2334 | 2326 | class GradientFreeScalarAlgorithms(AlgoSelection): |
2335 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2336 | 2327 | nag_pybobyqa: Type[NagPyBOBYQA] = NagPyBOBYQA |
2337 | 2328 | neldermead_parallel: Type[NelderMeadParallel] = NelderMeadParallel |
2338 | 2329 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
@@ -2456,7 +2447,6 @@ def Scalar(self) -> GradientFreeParallelScalarAlgorithms: |
2456 | 2447 |
|
2457 | 2448 | @dataclass(frozen=True) |
2458 | 2449 | class BoundedGlobalAlgorithms(AlgoSelection): |
2459 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2460 | 2450 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
2461 | 2451 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
2462 | 2452 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -2539,7 +2529,6 @@ def Scalar(self) -> GlobalNonlinearConstrainedScalarAlgorithms: |
2539 | 2529 |
|
2540 | 2530 | @dataclass(frozen=True) |
2541 | 2531 | class GlobalScalarAlgorithms(AlgoSelection): |
2542 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2543 | 2532 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
2544 | 2533 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
2545 | 2534 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -2854,7 +2843,6 @@ def Scalar(self) -> BoundedNonlinearConstrainedScalarAlgorithms: |
2854 | 2843 |
|
2855 | 2844 | @dataclass(frozen=True) |
2856 | 2845 | class BoundedScalarAlgorithms(AlgoSelection): |
2857 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
2858 | 2846 | fides: Type[Fides] = Fides |
2859 | 2847 | iminuit_migrad: Type[IminuitMigrad] = IminuitMigrad |
2860 | 2848 | ipopt: Type[Ipopt] = Ipopt |
@@ -3167,7 +3155,6 @@ def Scalar(self) -> GradientBasedScalarAlgorithms: |
3167 | 3155 |
|
3168 | 3156 | @dataclass(frozen=True) |
3169 | 3157 | class GradientFreeAlgorithms(AlgoSelection): |
3170 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
3171 | 3158 | nag_dfols: Type[NagDFOLS] = NagDFOLS |
3172 | 3159 | nag_pybobyqa: Type[NagPyBOBYQA] = NagPyBOBYQA |
3173 | 3160 | neldermead_parallel: Type[NelderMeadParallel] = NelderMeadParallel |
@@ -3242,7 +3229,6 @@ def Scalar(self) -> GradientFreeScalarAlgorithms: |
3242 | 3229 |
|
3243 | 3230 | @dataclass(frozen=True) |
3244 | 3231 | class GlobalAlgorithms(AlgoSelection): |
3245 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
3246 | 3232 | nevergrad_pso: Type[NevergradPSO] = NevergradPSO |
3247 | 3233 | nlopt_crs2_lm: Type[NloptCRS2LM] = NloptCRS2LM |
3248 | 3234 | nlopt_direct: Type[NloptDirect] = NloptDirect |
@@ -3372,7 +3358,6 @@ def Scalar(self) -> LocalScalarAlgorithms: |
3372 | 3358 |
|
3373 | 3359 | @dataclass(frozen=True) |
3374 | 3360 | class BoundedAlgorithms(AlgoSelection): |
3375 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
3376 | 3361 | fides: Type[Fides] = Fides |
3377 | 3362 | iminuit_migrad: Type[IminuitMigrad] = IminuitMigrad |
3378 | 3363 | ipopt: Type[Ipopt] = Ipopt |
@@ -3510,7 +3495,6 @@ def Scalar(self) -> NonlinearConstrainedScalarAlgorithms: |
3510 | 3495 |
|
3511 | 3496 | @dataclass(frozen=True) |
3512 | 3497 | class ScalarAlgorithms(AlgoSelection): |
3513 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
3514 | 3498 | fides: Type[Fides] = Fides |
3515 | 3499 | iminuit_migrad: Type[IminuitMigrad] = IminuitMigrad |
3516 | 3500 | ipopt: Type[Ipopt] = Ipopt |
@@ -3687,7 +3671,6 @@ def Scalar(self) -> ParallelScalarAlgorithms: |
3687 | 3671 |
|
3688 | 3672 | @dataclass(frozen=True) |
3689 | 3673 | class Algorithms(AlgoSelection): |
3690 | | - bayes_opt: Type[BayesOpt] = BayesOpt |
3691 | 3674 | bhhh: Type[BHHH] = BHHH |
3692 | 3675 | fides: Type[Fides] = Fides |
3693 | 3676 | iminuit_migrad: Type[IminuitMigrad] = IminuitMigrad |
|
0 commit comments