diff --git a/results/spatial_simulators/data/dataset_info.json b/results/spatial_simulators/data/dataset_info.json new file mode 100644 index 00000000..16f34ef6 --- /dev/null +++ b/results/spatial_simulators/data/dataset_info.json @@ -0,0 +1,102 @@ +[ + { + "dataset_id": "hindlimbmuscle", + "dataset_name": "Hindlimbmuscle", + "dataset_summary": "Spatial RNA sequencing of regenerating mouse hindlimb muscle", + "dataset_description": "The spatial transcriptomics datasets regenerates mouse muscle tissue generated with the 10x Genomics Visium platform.", + "data_reference": "10.1101/2020.12.01.407460", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161318", + "date_created": "14-03-2025", + "file_size": 20088216 + }, + { + "dataset_id": "brain", + "dataset_name": "Brain", + "dataset_summary": "10X Visium spatial RNA-seq from adult mouse brain sections paired to single-nucleus RNA-seq", + "dataset_description": "This datasets were generated matched single nucleus (sn, this submission) and Visium spatial RNA-seq (10X Genomics) profiles of adjacent mouse brain sections that contain multiple regions from the telencephalon and diencephalon.", + "data_reference": "10.1038/s41587-021-01139-4", + "data_url": "https://github.com/BayraktarLab/cell2location", + "date_created": "14-03-2025", + "file_size": 44683309 + }, + { + "dataset_id": "cortex", + "dataset_name": "Cortex", + "dataset_summary": "Scripts and source data for image processing, barcode calling, and cell type annotations in a seqFISH+ experiment.", + "dataset_description": "The dataset includes processed image data, cell type annotations with Louvain clusters, gene IDs for transcript locations, and mRNA point locations, with additional data available on Zenodo.", + "data_reference": "10.1038/s41586-019-1049-y", + "data_url": "https://zenodo.org/records/2669683", + "date_created": "14-03-2025", + "file_size": 20271969 + }, + { + "dataset_id": "prostate", + "dataset_name": "Prostate", + "dataset_summary": "Spatially resolved gene expression of human protate tissue slices treated with steroid hormones for 8 hours", + "dataset_description": "Spatially resolved gene expression was prepard by dissociated hman prostate tissue to single cells, and collected & prepped for RNA-seq using the Visium Spatial Gene Expression kit.", + "data_reference": "10.1016/j.isci.2021.102640", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159697", + "date_created": "14-03-2025", + "file_size": 20645737 + }, + { + "dataset_id": "breast", + "dataset_name": "Breast", + "dataset_summary": "A spatially resolved atlas of human breast cancers", + "dataset_description": "This study presents a spatially resolved transcriptomics analysis of human breast cancers.", + "data_reference": "10.1038/s41588-021-00911-1", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078", + "date_created": "14-03-2025", + "file_size": 23748327 + }, + { + "dataset_id": "pdac", + "dataset_name": "pancreatic ductal adenocarcinomas", + "dataset_summary": "Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas", + "dataset_description": "We developed a multimodal intersection analysis method combining scRNA-seq with spatial transcriptomics to map and characterize the spatial organization and interactions of distinct cell subpopulations in complex tissues, such as primary pancreatic tumors..", + "data_reference": "10.1101/2020.12.01.407460", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672", + "date_created": "14-03-2025", + "file_size": 18406025 + }, + { + "dataset_id": "olfactorybulb", + "dataset_name": "Olfactorybulb", + "dataset_summary": "Single-cell and spatial transcriptomic of mouse olfactory bulb", + "dataset_description": "Single-cell and spatial transcriptomic of mouse olfactory bulb", + "data_reference": "10.1126/science.aaf2403", + "data_url": "http://ww1.spatialtranscriptomicsresearch.org/?usid=24&utid=8672855942", + "date_created": "14-03-2025", + "file_size": 2341323 + }, + { + "dataset_id": "fibrosarcoma", + "dataset_name": "Fibrosarcoma", + "dataset_summary": "Multi-resolution deconvolution of spatial transcriptomics data reveals continuous patterns of Tumor A1 of Tissue 1", + "dataset_description": "Spatial transcriptomics of Tumor A1 of Tissue 1.", + "data_reference": "10.1038/s41587-022-01272-8", + "data_url": "https://github.com/romain-lopez/DestVI-reproducibility", + "date_created": "14-03-2025", + "file_size": 28476822 + }, + { + "dataset_id": "gastrulation", + "dataset_name": "Gastrulation", + "dataset_summary": "single-cell and spatial transcriptomic molecular map of mouse gastrulation", + "dataset_description": "Single-Cell omics Data across Mouse Gastrulation and Highly multiplexed spatially resolved gene expression profiling of Early Organogenesis.", + "data_reference": "10.1038/s41587-021-01006-2", + "data_url": "https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/", + "date_created": "14-03-2025", + "file_size": 15690550 + }, + { + "dataset_id": "osteosarcoma", + "dataset_name": "Osteosarcoma", + "dataset_summary": "Spatial profiling of human osteosarcoma cells.", + "dataset_description": "Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.", + "data_reference": "10.1073/pnas.1912459116", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078", + "date_created": "14-03-2025", + "file_size": 21082263 + } +] diff --git a/results/spatial_simulators/data/method_info.json b/results/spatial_simulators/data/method_info.json new file mode 100644 index 00000000..3843350d --- /dev/null +++ b/results/spatial_simulators/data/method_info.json @@ -0,0 +1,178 @@ +[ + { + "task_id": "methods", + "method_id": "scdesign2", + "method_name": "scDesign2", + "method_summary": "A transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured", + "method_description": "scDesign2 is a transparent simulator that achieves all three goals (preserving genes, capturing gene correlations, and generating any \nnumber of cells with varying sequencing depths) and generates high-fidelity synthetic data for multiple single-cell gene expression \ncount-based technologies.\n", + "is_baseline": false, + "references_doi": "10.1186/s13059-021-02367-2", + "references_bibtex": null, + "code_url": "https://github.com/JSB-UCLA/scDesign2", + "documentation_url": "https://htmlpreview.github.io/?https://github.com/JSB-UCLA/scDesign2/blob/master/vignettes/scDesign2.html", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/scdesign2:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/scdesign2", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "scdesign3_nb", + "method_name": "scDesign3 (NB)", + "method_summary": "A probabilistic model that unifies the generation and inference for single-cell and spatial omics data", + "method_description": "scDesign3 offers a probabilistic model that unifies the generation and inference\nfor single-cell and spatial omics data. The model's interpretable parameters and\nlikelihood enable scDesign3 to generate customized in silico data and unsupervisedly\nassess the goodness-of-fit of inferred cell latent structures (for example, clusters,\ntrajectories and spatial locations).\n", + "is_baseline": false, + "references_doi": "10.1038/s41587-023-01772-1", + "references_bibtex": null, + "code_url": "https://github.com/SONGDONGYUAN1994/scDesign3", + "documentation_url": "https://www.bioconductor.org/packages/release/bioc/html/scDesign3.html", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/scdesign3_nb:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/scdesign3_nb", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "scdesign3_poisson", + "method_name": "scDesign3 (Poisson)", + "method_summary": "A probabilistic model that unifies the generation and inference for single-cell and spatial omics data", + "method_description": "scDesign3 offers a probabilistic model that unifies the generation and inference\nfor single-cell and spatial omics data. The model's interpretable parameters and\nlikelihood enable scDesign3 to generate customized in silico data and unsupervisedly\nassess the goodness-of-fit of inferred cell latent structures (for example, clusters,\ntrajectories and spatial locations).\n", + "is_baseline": false, + "references_doi": "10.1038/s41587-023-01772-1", + "references_bibtex": null, + "code_url": "https://github.com/SONGDONGYUAN1994/scDesign3", + "documentation_url": "https://www.bioconductor.org/packages/release/bioc/html/scDesign3.html", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/scdesign3_poisson:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/scdesign3_poisson", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "sparsim", + "method_name": "SPARsim", + "method_summary": "SPARSim single cell is a count data simulator for scRNA-seq data.", + "method_description": "SPARSim is a scRNA-seq count data simulator based on a Gamma-Multivariate Hypergeometric model. \nIt allows to generate count data that resembles real data in terms of count intensity, variability and sparsity.\n", + "is_baseline": false, + "references_doi": "10.1093/bioinformatics/btz752", + "references_bibtex": null, + "code_url": "https://gitlab.com/sysbiobig/sparsim", + "documentation_url": "https://gitlab.com/sysbiobig/sparsim/-/blob/master/vignettes/sparsim.Rmd", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/sparsim:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/sparsim", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "splatter", + "method_name": "Splatter", + "method_summary": "A single cell RNA-seq data simulator based on a gamma-Poisson distribution.", + "method_description": "The Splat model is a gamma-Poisson distribution used to generate a gene by cell matrix of counts. Mean expression levels for each gene are simulated from a gamma distribution and the Biological Coefficient of Variation is used to enforce a mean-variance trend before counts are simulated from a Poisson distribution.\n", + "is_baseline": false, + "references_doi": "10.1186/s13059-017-1305-0", + "references_bibtex": null, + "code_url": "https://github.com/Oshlack/splatter", + "documentation_url": "https://bioconductor.org/packages/devel/bioc/vignettes/splatter/inst/doc/splatter.html", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/splatter:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/splatter", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "srtsim", + "method_name": "SRTsim", + "method_summary": "An SRT-specific simulator for scalable, reproducible, and realistic SRT simulations.", + "method_description": "A key benefit of srtsim is its ability to maintain location-wise and gene-wise SRT count properties and \npreserve spatial expression patterns, enabling evaluation of SRT method performance using synthetic data. \n", + "is_baseline": false, + "references_doi": "10.1186/s13059-023-02879-z", + "references_bibtex": null, + "code_url": "https://github.com/xzhoulab/srtsim", + "documentation_url": "https://xzhoulab.github.io/SRTsim", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/srtsim:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/srtsim", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "symsim", + "method_name": "symsim", + "method_summary": "Simulating multiple faceted variability in single cell RNA sequencing", + "method_description": "SymSim is a simulator for modeling single-cell RNA-Seq data, accounting for three primary sources of variation: intrinsic transcription noise, extrinsic variation from different cell states, \nand technical variation from measurement noise and bias.\n", + "is_baseline": false, + "references_doi": "10.1038/s41467-019-10500-w", + "references_bibtex": null, + "code_url": "https://github.com/YosefLab/SymSim", + "documentation_url": "https://github.com/YosefLab/SymSim/blob/master/vignettes/SymSimTutorial.Rmd", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/symsim:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/symsim", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "methods", + "method_id": "zinbwave", + "method_name": "zinbwave", + "method_summary": "A general and flexible method for signal extraction from single-cell RNA-seq data", + "method_description": "ZINB-WaVE is a general and flexible zero-inflated negative binomial model, which leads to low-dimensional representations \nof the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data.\n", + "is_baseline": false, + "references_doi": "10.1038/s41467-017-02554-5", + "references_bibtex": null, + "code_url": "https://github.com/drisso/zinbwave", + "documentation_url": "https://bioconductor.org/packages/release/bioc/html/zinbwave.html", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/methods/zinbwave:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/methods/zinbwave", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "control_methods", + "method_id": "positive", + "method_name": "positive", + "method_summary": "A positive control method.", + "method_description": "A positive control method. \n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_spatial_simulators", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/control_methods/positive:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/control_methods/positive", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "control_methods", + "method_id": "negative_shuffle", + "method_name": "negative_shuffle", + "method_summary": "A negative control method which shuffles the input data.", + "method_description": "This control method shuffles the input data as a negative control.\n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_spatial_simulators", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/control_methods/negative_shuffle:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/control_methods/negative_shuffle", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + }, + { + "task_id": "control_methods", + "method_id": "negative_normal", + "method_name": "negative_normal", + "method_summary": "A negative control which generates normal distributed data.", + "method_description": "This control method generates normal distributed data as a negative control.\nThe mean and the sd are defined by the mean and sd of the input data.\n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_spatial_simulators", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/control_methods/negative_normal:build_main", + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/control_methods/negative_normal", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab" + } +] diff --git a/results/spatial_simulators/data/metric_execution_info.json b/results/spatial_simulators/data/metric_execution_info.json new file mode 100644 index 00000000..c4a034e2 --- /dev/null +++ b/results/spatial_simulators/data/metric_execution_info.json @@ -0,0 +1,5994 @@ +[ + { + "dataset_id": "brain", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:23", + "exit_code": 0, + "duration_sec": 5440, + "cpu_pct": 100.7, + "peak_memory_mb": 6554, + "disk_read_mb": 1560, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 3388, + "cpu_pct": 108.2, + "peak_memory_mb": 5428, + "disk_read_mb": 3976, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 5952, + "cpu_pct": 100.5, + "peak_memory_mb": 25396, + "disk_read_mb": 1104, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 156.6, + "cpu_pct": 116.7, + "peak_memory_mb": 5120, + "disk_read_mb": 1038, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": "NA", + "duration_sec": 161.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 2100, + "cpu_pct": 109.1, + "peak_memory_mb": 5428, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 7288, + "cpu_pct": 100.7, + "peak_memory_mb": 27034, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 154.8, + "cpu_pct": 126.5, + "peak_memory_mb": 6452, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 4448, + "cpu_pct": 101.4, + "peak_memory_mb": 6452, + "disk_read_mb": 1576, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:33", + "exit_code": 0, + "duration_sec": 2268, + "cpu_pct": 110.5, + "peak_memory_mb": 6759, + "disk_read_mb": 4004, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 6792, + "cpu_pct": 100.4, + "peak_memory_mb": 22631, + "disk_read_mb": 1112, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 192, + "cpu_pct": 111.9, + "peak_memory_mb": 3789, + "disk_read_mb": 1044, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:41:43", + "exit_code": "NA", + "duration_sec": 1200, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:41:43", + "exit_code": 0, + "duration_sec": 3612, + "cpu_pct": 110.6, + "peak_memory_mb": 6759, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:41:43", + "exit_code": "NA", + "duration_sec": 600, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:41:43", + "exit_code": 0, + "duration_sec": 223.2, + "cpu_pct": 115.3, + "peak_memory_mb": 6452, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 17:35:44", + "exit_code": 0, + "duration_sec": 4352, + "cpu_pct": 100.8, + "peak_memory_mb": 6656, + "disk_read_mb": 1432, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 17:35:43", + "exit_code": 0, + "duration_sec": 3948, + "cpu_pct": 106.2, + "peak_memory_mb": 4096, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 17:35:44", + "exit_code": 0, + "duration_sec": 6612, + "cpu_pct": 100.5, + "peak_memory_mb": 26010, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 17:35:44", + "exit_code": 0, + "duration_sec": 187.2, + "cpu_pct": 114.7, + "peak_memory_mb": 3789, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 4280, + "cpu_pct": 101.5, + "peak_memory_mb": 6554, + "disk_read_mb": 1424, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": "NA", + "duration_sec": 3360, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 7080, + "cpu_pct": 100.6, + "peak_memory_mb": 27648, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 155.4, + "cpu_pct": 117.3, + "peak_memory_mb": 5120, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 4472, + "cpu_pct": 102.4, + "peak_memory_mb": 7885, + "disk_read_mb": 1432, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 2212, + "cpu_pct": 117.8, + "peak_memory_mb": 6656, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": "NA", + "duration_sec": 360, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 159, + "cpu_pct": 116.4, + "peak_memory_mb": 5120, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 7176, + "cpu_pct": 100.4, + "peak_memory_mb": 3892, + "disk_read_mb": 1432, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 2240, + "cpu_pct": 104.6, + "peak_memory_mb": 2663, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:53", + "exit_code": 0, + "duration_sec": 6788, + "cpu_pct": 100.4, + "peak_memory_mb": 26624, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 151.2, + "cpu_pct": 117.4, + "peak_memory_mb": 5120, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:46:53", + "exit_code": "NA", + "duration_sec": 640, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:46:53", + "exit_code": "NA", + "duration_sec": 2240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:46:53", + "exit_code": 0, + "duration_sec": 6808, + "cpu_pct": 100.6, + "peak_memory_mb": 27034, + "disk_read_mb": 1040, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:46:53", + "exit_code": 0, + "duration_sec": 157.8, + "cpu_pct": 116.9, + "peak_memory_mb": 5120, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "brain", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:03", + "exit_code": 0, + "duration_sec": 4408, + "cpu_pct": 101.5, + "peak_memory_mb": 6452, + "disk_read_mb": 1432, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "brain", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 2212, + "cpu_pct": 116, + "peak_memory_mb": 6656, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:03", + "exit_code": 0, + "duration_sec": 6476, + "cpu_pct": 100.6, + "peak_memory_mb": 28672, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "brain", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:03", + "exit_code": 0, + "duration_sec": 154.2, + "cpu_pct": 128.2, + "peak_memory_mb": 6452, + "disk_read_mb": 936, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 1368, + "cpu_pct": 105.7, + "peak_memory_mb": 9114, + "disk_read_mb": 1360, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 7588, + "cpu_pct": 105.6, + "peak_memory_mb": 7578, + "disk_read_mb": 3248, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 9668, + "cpu_pct": 100.4, + "peak_memory_mb": 22324, + "disk_read_mb": 1004, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 147.6, + "cpu_pct": 123.9, + "peak_memory_mb": 6349, + "disk_read_mb": 894, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 1368, + "cpu_pct": 104.9, + "peak_memory_mb": 7680, + "disk_read_mb": 1104, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 4424, + "cpu_pct": 102.9, + "peak_memory_mb": 3482, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:53", + "exit_code": 0, + "duration_sec": 10280, + "cpu_pct": 100.3, + "peak_memory_mb": 25293, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:53", + "exit_code": 0, + "duration_sec": 163.2, + "cpu_pct": 115.9, + "peak_memory_mb": 6349, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 1448, + "cpu_pct": 102.9, + "peak_memory_mb": 7783, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 4844, + "cpu_pct": 102.7, + "peak_memory_mb": 3584, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 10176, + "cpu_pct": 100.3, + "peak_memory_mb": 24474, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 150, + "cpu_pct": 124.4, + "peak_memory_mb": 6349, + "disk_read_mb": 792, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:44:44", + "exit_code": 0, + "duration_sec": 2448, + "cpu_pct": 102.2, + "peak_memory_mb": 9012, + "disk_read_mb": 1104, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:44:43", + "exit_code": "NA", + "duration_sec": 3052, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:44:43", + "exit_code": 0, + "duration_sec": 19836, + "cpu_pct": 100.2, + "peak_memory_mb": 25908, + "disk_read_mb": 876, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:44:43", + "exit_code": 0, + "duration_sec": 177.6, + "cpu_pct": 131.8, + "peak_memory_mb": 6349, + "disk_read_mb": 702, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 16:34:53", + "exit_code": 0, + "duration_sec": 1440, + "cpu_pct": 104.6, + "peak_memory_mb": 7680, + "disk_read_mb": 1096, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 16:34:53", + "exit_code": 0, + "duration_sec": 3024, + "cpu_pct": 110.8, + "peak_memory_mb": 6349, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 16:34:53", + "exit_code": 0, + "duration_sec": 19688, + "cpu_pct": 100.2, + "peak_memory_mb": 24986, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 16:34:53", + "exit_code": 0, + "duration_sec": 170.4, + "cpu_pct": 115.8, + "peak_memory_mb": 3584, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 1656, + "cpu_pct": 104.9, + "peak_memory_mb": 9012, + "disk_read_mb": 1096, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:54", + "exit_code": 0, + "duration_sec": 2940, + "cpu_pct": 110.7, + "peak_memory_mb": 7476, + "disk_read_mb": 2324, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 10652, + "cpu_pct": 100.4, + "peak_memory_mb": 31437, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 143.4, + "cpu_pct": 119.6, + "peak_memory_mb": 9216, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 1400, + "cpu_pct": 105.9, + "peak_memory_mb": 9012, + "disk_read_mb": 1104, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 2996, + "cpu_pct": 111.9, + "peak_memory_mb": 7476, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 10212, + "cpu_pct": 100.4, + "peak_memory_mb": 23143, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 162.6, + "cpu_pct": 113.9, + "peak_memory_mb": 6349, + "disk_read_mb": 702, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 1440, + "cpu_pct": 103.4, + "peak_memory_mb": 7680, + "disk_read_mb": 1096, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 4872, + "cpu_pct": 107.9, + "peak_memory_mb": 7476, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": "NA", + "duration_sec": 15528, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "breast", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 224.4, + "cpu_pct": 82.3, + "peak_memory_mb": 5018, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 1424, + "cpu_pct": 105, + "peak_memory_mb": 7680, + "disk_read_mb": 1104, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 3024, + "cpu_pct": 111.6, + "peak_memory_mb": 7476, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 10780, + "cpu_pct": 100.4, + "peak_memory_mb": 28877, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 149.4, + "cpu_pct": 124.7, + "peak_memory_mb": 6349, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "breast", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:33", + "exit_code": 0, + "duration_sec": 1400, + "cpu_pct": 105.7, + "peak_memory_mb": 9012, + "disk_read_mb": 1096, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:33", + "exit_code": 0, + "duration_sec": 3108, + "cpu_pct": 110.6, + "peak_memory_mb": 7373, + "disk_read_mb": 2352, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "breast", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:33", + "exit_code": 0, + "duration_sec": 10236, + "cpu_pct": 100.4, + "peak_memory_mb": 25498, + "disk_read_mb": 872, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "breast", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:33", + "exit_code": 0, + "duration_sec": 147, + "cpu_pct": 114.9, + "peak_memory_mb": 5018, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 672, + "cpu_pct": 109.1, + "peak_memory_mb": 19968, + "disk_read_mb": 4064, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 1612.8, + "cpu_pct": 119.6, + "peak_memory_mb": 7578, + "disk_read_mb": 12712, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 480, + "cpu_pct": 106.3, + "peak_memory_mb": 18944, + "disk_read_mb": 2352, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 194.4, + "cpu_pct": 78.6, + "peak_memory_mb": 5018, + "disk_read_mb": 702, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 632, + "cpu_pct": 110, + "peak_memory_mb": 18637, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 1587.6, + "cpu_pct": 112.8, + "peak_memory_mb": 6247, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 516, + "cpu_pct": 106.4, + "peak_memory_mb": 17818, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 171, + "cpu_pct": 84.9, + "peak_memory_mb": 5018, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:33", + "exit_code": 0, + "duration_sec": 664, + "cpu_pct": 111.3, + "peak_memory_mb": 18637, + "disk_read_mb": 4128, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:33", + "exit_code": 0, + "duration_sec": 1598.8, + "cpu_pct": 117.2, + "peak_memory_mb": 6247, + "disk_read_mb": 12936, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:33", + "exit_code": 0, + "duration_sec": 508, + "cpu_pct": 105.5, + "peak_memory_mb": 17716, + "disk_read_mb": 2384, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 129.6, + "cpu_pct": 122.9, + "peak_memory_mb": 6349, + "disk_read_mb": 750, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1032, + "cpu_pct": 107.9, + "peak_memory_mb": 19968, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1565.2, + "cpu_pct": 121.9, + "peak_memory_mb": 6247, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 532, + "cpu_pct": 107, + "peak_memory_mb": 17716, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 123.6, + "cpu_pct": 116.3, + "peak_memory_mb": 5018, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": "NA", + "duration_sec": 87.2, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": 0, + "duration_sec": 2688, + "cpu_pct": 117.5, + "peak_memory_mb": 7578, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": "NA", + "duration_sec": 161.2, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": 0, + "duration_sec": 154.8, + "cpu_pct": 118, + "peak_memory_mb": 6349, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:47:14", + "exit_code": 0, + "duration_sec": 712, + "cpu_pct": 107.3, + "peak_memory_mb": 19968, + "disk_read_mb": 4040, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": "NA", + "duration_sec": 865.2, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": "NA", + "duration_sec": 26404, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:47:13", + "exit_code": 0, + "duration_sec": 175.2, + "cpu_pct": 98, + "peak_memory_mb": 6349, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 680, + "cpu_pct": 112.5, + "peak_memory_mb": 19968, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 1708, + "cpu_pct": 115.3, + "peak_memory_mb": 7578, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 536, + "cpu_pct": 106.6, + "peak_memory_mb": 19047, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 196.2, + "cpu_pct": 81, + "peak_memory_mb": 5018, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 640, + "cpu_pct": 113.9, + "peak_memory_mb": 19968, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 1764, + "cpu_pct": 113.1, + "peak_memory_mb": 7578, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 524, + "cpu_pct": 105.7, + "peak_memory_mb": 17613, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 114.6, + "cpu_pct": 127, + "peak_memory_mb": 6349, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 648, + "cpu_pct": 109.5, + "peak_memory_mb": 19968, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 2604, + "cpu_pct": 109.4, + "peak_memory_mb": 4916, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 520, + "cpu_pct": 106.6, + "peak_memory_mb": 19456, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 118.2, + "cpu_pct": 128.3, + "peak_memory_mb": 4916, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 648, + "cpu_pct": 110.8, + "peak_memory_mb": 18637, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 1584.8, + "cpu_pct": 124.4, + "peak_memory_mb": 7578, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 548, + "cpu_pct": 105.1, + "peak_memory_mb": 17716, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 112.8, + "cpu_pct": 141.9, + "peak_memory_mb": 6349, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "cortex", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 696, + "cpu_pct": 105.2, + "peak_memory_mb": 18637, + "disk_read_mb": 4032, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "cortex", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 1548.4, + "cpu_pct": 114.6, + "peak_memory_mb": 6247, + "disk_read_mb": 12628, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "cortex", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 556, + "cpu_pct": 103.2, + "peak_memory_mb": 17716, + "disk_read_mb": 2340, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "cortex", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 170.4, + "cpu_pct": 82.6, + "peak_memory_mb": 5018, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 712, + "cpu_pct": 105.5, + "peak_memory_mb": 8397, + "disk_read_mb": 1328, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 2996, + "cpu_pct": 105.7, + "peak_memory_mb": 5223, + "disk_read_mb": 3164, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 2864, + "cpu_pct": 102, + "peak_memory_mb": 22836, + "disk_read_mb": 988, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 140.4, + "cpu_pct": 126.2, + "peak_memory_mb": 11572, + "disk_read_mb": 804, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 696, + "cpu_pct": 114.4, + "peak_memory_mb": 9728, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 2268, + "cpu_pct": 111.1, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 3020, + "cpu_pct": 100.3, + "peak_memory_mb": 23757, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:43", + "exit_code": 0, + "duration_sec": 141, + "cpu_pct": 125.3, + "peak_memory_mb": 11572, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 760, + "cpu_pct": 106.7, + "peak_memory_mb": 8397, + "disk_read_mb": 1384, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 3612, + "cpu_pct": 107.2, + "peak_memory_mb": 3892, + "disk_read_mb": 3332, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 3100, + "cpu_pct": 101.3, + "peak_memory_mb": 25908, + "disk_read_mb": 1016, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 129.6, + "cpu_pct": 134.6, + "peak_memory_mb": 6349, + "disk_read_mb": 846, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 776, + "cpu_pct": 107, + "peak_memory_mb": 9728, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 2296, + "cpu_pct": 116.9, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 3300, + "cpu_pct": 101.3, + "peak_memory_mb": 27546, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 130.8, + "cpu_pct": 119.8, + "peak_memory_mb": 5018, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:32:53", + "exit_code": 0, + "duration_sec": 752, + "cpu_pct": 105.8, + "peak_memory_mb": 8397, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:32:53", + "exit_code": 0, + "duration_sec": 2268, + "cpu_pct": 112, + "peak_memory_mb": 5223, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:32:53", + "exit_code": 0, + "duration_sec": 3164, + "cpu_pct": 101.1, + "peak_memory_mb": 23348, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:32:53", + "exit_code": 0, + "duration_sec": 130.2, + "cpu_pct": 122.5, + "peak_memory_mb": 5018, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 15:43:14", + "exit_code": 0, + "duration_sec": 744, + "cpu_pct": 110.1, + "peak_memory_mb": 8397, + "disk_read_mb": 1232, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 15:44:53", + "exit_code": 1, + "duration_sec": 2240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 15:43:13", + "exit_code": 0, + "duration_sec": 3708, + "cpu_pct": 100.3, + "peak_memory_mb": 31744, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 15:43:13", + "exit_code": 0, + "duration_sec": 132, + "cpu_pct": 118, + "peak_memory_mb": 5018, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 752, + "cpu_pct": 108, + "peak_memory_mb": 8397, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 2296, + "cpu_pct": 113.2, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": "NA", + "duration_sec": 5520, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:44", + "exit_code": 0, + "duration_sec": 143.4, + "cpu_pct": 117.6, + "peak_memory_mb": 3584, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 688, + "cpu_pct": 111.3, + "peak_memory_mb": 8397, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 2212, + "cpu_pct": 116.8, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 3244, + "cpu_pct": 101.6, + "peak_memory_mb": 24679, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 126, + "cpu_pct": 102.1, + "peak_memory_mb": 2356, + "disk_read_mb": 720, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 752, + "cpu_pct": 113.9, + "peak_memory_mb": 9728, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 2268, + "cpu_pct": 117.2, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 3188, + "cpu_pct": 101.4, + "peak_memory_mb": 24986, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 132, + "cpu_pct": 118.2, + "peak_memory_mb": 5018, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:45:24", + "exit_code": 0, + "duration_sec": 1104, + "cpu_pct": 102.8, + "peak_memory_mb": 5632, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:45:24", + "exit_code": 0, + "duration_sec": 4060, + "cpu_pct": 108.2, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:45:24", + "exit_code": 0, + "duration_sec": 3500, + "cpu_pct": 101.7, + "peak_memory_mb": 30311, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:45:24", + "exit_code": 0, + "duration_sec": 136.8, + "cpu_pct": 134.2, + "peak_memory_mb": 6349, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1248, + "cpu_pct": 106.6, + "peak_memory_mb": 9728, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 2352, + "cpu_pct": 115, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 3192, + "cpu_pct": 101.3, + "peak_memory_mb": 25805, + "disk_read_mb": 936, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 132.6, + "cpu_pct": 123.8, + "peak_memory_mb": 5018, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 6072, + "cpu_pct": 101.4, + "peak_memory_mb": 9524, + "disk_read_mb": 1328, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 5768, + "cpu_pct": 104.6, + "peak_memory_mb": 6861, + "disk_read_mb": 3136, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:03", + "exit_code": 0, + "duration_sec": 17756, + "cpu_pct": 100.2, + "peak_memory_mb": 27239, + "disk_read_mb": 984, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:30:43", + "exit_code": 1, + "duration_sec": 179.4, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 5192, + "cpu_pct": 102.1, + "peak_memory_mb": 9524, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 3444, + "cpu_pct": 106.9, + "peak_memory_mb": 6656, + "disk_read_mb": 2744, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 19500, + "cpu_pct": 100.2, + "peak_memory_mb": 29287, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:38:23", + "exit_code": 1, + "duration_sec": 239.4, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 5872, + "cpu_pct": 101.8, + "peak_memory_mb": 9626, + "disk_read_mb": 1280, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 3472, + "cpu_pct": 111.9, + "peak_memory_mb": 7988, + "disk_read_mb": 2968, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:27:54", + "exit_code": 0, + "duration_sec": 18188, + "cpu_pct": 100.2, + "peak_memory_mb": 32359, + "disk_read_mb": 960, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:30:23", + "exit_code": 1, + "duration_sec": 186, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:03", + "exit_code": 0, + "duration_sec": 5792, + "cpu_pct": 100.4, + "peak_memory_mb": 5530, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 3444, + "cpu_pct": 107.1, + "peak_memory_mb": 8090, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 20572, + "cpu_pct": 100.2, + "peak_memory_mb": 33588, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:39:34", + "exit_code": 1, + "duration_sec": 175.8, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:12:43", + "exit_code": 0, + "duration_sec": 5664, + "cpu_pct": 101.1, + "peak_memory_mb": 8397, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:12:43", + "exit_code": 0, + "duration_sec": 3500, + "cpu_pct": 107.5, + "peak_memory_mb": 6861, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:12:43", + "exit_code": 0, + "duration_sec": 19664, + "cpu_pct": 100.2, + "peak_memory_mb": 32052, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:13:23", + "exit_code": 1, + "duration_sec": 120.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:16:43", + "exit_code": 0, + "duration_sec": 5776, + "cpu_pct": 101.2, + "peak_memory_mb": 8090, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:16:43", + "exit_code": 0, + "duration_sec": 3696, + "cpu_pct": 105, + "peak_memory_mb": 6554, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:16:43", + "exit_code": 0, + "duration_sec": 19812, + "cpu_pct": 100.2, + "peak_memory_mb": 32154, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:18:03", + "exit_code": 1, + "duration_sec": 120.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:38:43", + "exit_code": 0, + "duration_sec": 5960, + "cpu_pct": 101.2, + "peak_memory_mb": 8090, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:38:43", + "exit_code": 0, + "duration_sec": 3388, + "cpu_pct": 111.3, + "peak_memory_mb": 7988, + "disk_read_mb": 2744, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:38:43", + "exit_code": 0, + "duration_sec": 24428, + "cpu_pct": 100.2, + "peak_memory_mb": 36864, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:46:53", + "exit_code": 1, + "duration_sec": 182.4, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 5016, + "cpu_pct": 102.4, + "peak_memory_mb": 9728, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 3360, + "cpu_pct": 108.8, + "peak_memory_mb": 6656, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 20056, + "cpu_pct": 100.2, + "peak_memory_mb": 34612, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:35:53", + "exit_code": 1, + "duration_sec": 175.8, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 5792, + "cpu_pct": 101.2, + "peak_memory_mb": 8192, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 3528, + "cpu_pct": 107.3, + "peak_memory_mb": 6656, + "disk_read_mb": 2744, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 18764, + "cpu_pct": 100.2, + "peak_memory_mb": 29184, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:33:33", + "exit_code": 1, + "duration_sec": 177, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 8024, + "cpu_pct": 101.3, + "peak_memory_mb": 9524, + "disk_read_mb": 1216, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 3500, + "cpu_pct": 109.6, + "peak_memory_mb": 7988, + "disk_read_mb": 2744, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:23", + "exit_code": 0, + "duration_sec": 23320, + "cpu_pct": 100.2, + "peak_memory_mb": 41268, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:42:53", + "exit_code": 1, + "duration_sec": 180.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "gastrulation", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 5792, + "cpu_pct": 101.8, + "peak_memory_mb": 9728, + "disk_read_mb": 1224, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 3500, + "cpu_pct": 112.1, + "peak_memory_mb": 7885, + "disk_read_mb": 2772, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 39312, + "cpu_pct": 100.1, + "peak_memory_mb": 30823, + "disk_read_mb": 932, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:40:03", + "exit_code": 1, + "duration_sec": 176.4, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 592, + "cpu_pct": 110.8, + "peak_memory_mb": 7885, + "disk_read_mb": 1160, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1542.8, + "cpu_pct": 119.6, + "peak_memory_mb": 4916, + "disk_read_mb": 2576, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 988, + "cpu_pct": 103.4, + "peak_memory_mb": 9012, + "disk_read_mb": 904, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 126, + "cpu_pct": 118.6, + "peak_memory_mb": 5018, + "disk_read_mb": 714, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 608, + "cpu_pct": 108.3, + "peak_memory_mb": 6452, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 1316, + "cpu_pct": 134.5, + "peak_memory_mb": 6247, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 640, + "cpu_pct": 107.2, + "peak_memory_mb": 12493, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 117.6, + "cpu_pct": 125, + "peak_memory_mb": 4916, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 640, + "cpu_pct": 112.9, + "peak_memory_mb": 7783, + "disk_read_mb": 1208, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1414, + "cpu_pct": 125.2, + "peak_memory_mb": 6247, + "disk_read_mb": 2716, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 608, + "cpu_pct": 105.7, + "peak_memory_mb": 10445, + "disk_read_mb": 928, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 121.2, + "cpu_pct": 123.6, + "peak_memory_mb": 6247, + "disk_read_mb": 750, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:39:34", + "exit_code": 0, + "duration_sec": 952, + "cpu_pct": 115, + "peak_memory_mb": 7783, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:39:34", + "exit_code": 0, + "duration_sec": 1360.8, + "cpu_pct": 132.7, + "peak_memory_mb": 6247, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:39:34", + "exit_code": "NA", + "duration_sec": 560, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:39:34", + "exit_code": 0, + "duration_sec": 165, + "cpu_pct": 118.3, + "peak_memory_mb": 6349, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:25:33", + "exit_code": 0, + "duration_sec": 624, + "cpu_pct": 109.3, + "peak_memory_mb": 6452, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:25:33", + "exit_code": 0, + "duration_sec": 1425.2, + "cpu_pct": 120.3, + "peak_memory_mb": 4916, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:25:33", + "exit_code": 0, + "duration_sec": 656, + "cpu_pct": 104.9, + "peak_memory_mb": 11469, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:25:33", + "exit_code": 0, + "duration_sec": 118.2, + "cpu_pct": 128.3, + "peak_memory_mb": 4916, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 656, + "cpu_pct": 111.4, + "peak_memory_mb": 6452, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1430.8, + "cpu_pct": 120.7, + "peak_memory_mb": 6247, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 704, + "cpu_pct": 105.3, + "peak_memory_mb": 13415, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 117, + "cpu_pct": 124.8, + "peak_memory_mb": 4916, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 560, + "cpu_pct": 117.1, + "peak_memory_mb": 7885, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 1414, + "cpu_pct": 130, + "peak_memory_mb": 6247, + "disk_read_mb": 2380, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 632, + "cpu_pct": 109, + "peak_memory_mb": 12391, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 131.5, + "peak_memory_mb": 6349, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 608, + "cpu_pct": 108.6, + "peak_memory_mb": 6452, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 1372, + "cpu_pct": 125.9, + "peak_memory_mb": 6247, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 640, + "cpu_pct": 107.6, + "peak_memory_mb": 12391, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 106.7, + "peak_memory_mb": 2253, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 536, + "cpu_pct": 120, + "peak_memory_mb": 7885, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1411.2, + "cpu_pct": 128.6, + "peak_memory_mb": 6247, + "disk_read_mb": 2408, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 708, + "cpu_pct": 103.7, + "peak_memory_mb": 13005, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 117, + "cpu_pct": 124.8, + "peak_memory_mb": 4916, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 624, + "cpu_pct": 109.8, + "peak_memory_mb": 6452, + "disk_read_mb": 1112, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 1380.4, + "cpu_pct": 122, + "peak_memory_mb": 6247, + "disk_read_mb": 2380, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:04", + "exit_code": 0, + "duration_sec": 648, + "cpu_pct": 105.5, + "peak_memory_mb": 12084, + "disk_read_mb": 880, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:03", + "exit_code": 0, + "duration_sec": 118.2, + "cpu_pct": 127.8, + "peak_memory_mb": 4916, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:53", + "exit_code": 0, + "duration_sec": 161.6, + "cpu_pct": 159, + "peak_memory_mb": 6656, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:54", + "exit_code": 0, + "duration_sec": 1579.2, + "cpu_pct": 123.9, + "peak_memory_mb": 6042, + "disk_read_mb": 1260, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:54", + "exit_code": 0, + "duration_sec": 316, + "cpu_pct": 108.8, + "peak_memory_mb": 5428, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:54", + "exit_code": 0, + "duration_sec": 102, + "cpu_pct": 134.9, + "peak_memory_mb": 4916, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 157.6, + "cpu_pct": 146.9, + "peak_memory_mb": 5325, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1321.6, + "cpu_pct": 119.3, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 192.8, + "cpu_pct": 119, + "peak_memory_mb": 6759, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 107.4, + "cpu_pct": 138.8, + "peak_memory_mb": 6247, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 158.4, + "cpu_pct": 163.6, + "peak_memory_mb": 6656, + "disk_read_mb": 792, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1310.4, + "cpu_pct": 126, + "peak_memory_mb": 6042, + "disk_read_mb": 1260, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 223.6, + "cpu_pct": 118.6, + "peak_memory_mb": 6759, + "disk_read_mb": 720, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 103.8, + "cpu_pct": 139.2, + "peak_memory_mb": 6247, + "disk_read_mb": 534, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 232, + "cpu_pct": 126, + "peak_memory_mb": 4301, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:13", + "exit_code": 0, + "duration_sec": 1346.8, + "cpu_pct": 121.8, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 244, + "cpu_pct": 114.5, + "peak_memory_mb": 8295, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 118.8, + "cpu_pct": 119.5, + "peak_memory_mb": 4916, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:38:23", + "exit_code": 0, + "duration_sec": 159.2, + "cpu_pct": 159.9, + "peak_memory_mb": 6656, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:38:24", + "exit_code": 0, + "duration_sec": 1321.6, + "cpu_pct": 122.2, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:38:23", + "exit_code": 0, + "duration_sec": 364, + "cpu_pct": 109.4, + "peak_memory_mb": 5632, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:38:23", + "exit_code": 0, + "duration_sec": 106.2, + "cpu_pct": 107.1, + "peak_memory_mb": 2253, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:31:13", + "exit_code": 0, + "duration_sec": 220.8, + "cpu_pct": 113.5, + "peak_memory_mb": 2970, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:31:13", + "exit_code": 0, + "duration_sec": 2212, + "cpu_pct": 105.7, + "peak_memory_mb": 1946, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:31:13", + "exit_code": 0, + "duration_sec": 348, + "cpu_pct": 103.9, + "peak_memory_mb": 4199, + "disk_read_mb": 712, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:31:13", + "exit_code": 0, + "duration_sec": 100.8, + "cpu_pct": 112, + "peak_memory_mb": 4199, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 155.2, + "cpu_pct": 141.8, + "peak_memory_mb": 5325, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1352.4, + "cpu_pct": 123, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 252, + "cpu_pct": 111.6, + "peak_memory_mb": 6861, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 109.8, + "cpu_pct": 125.7, + "peak_memory_mb": 4916, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 156, + "cpu_pct": 142.5, + "peak_memory_mb": 5325, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 1612.8, + "cpu_pct": 121.2, + "peak_memory_mb": 6042, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": "NA", + "duration_sec": 41.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 99, + "cpu_pct": 134.1, + "peak_memory_mb": 6247, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 152.8, + "cpu_pct": 167.1, + "peak_memory_mb": 6656, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 1587.6, + "cpu_pct": 120.2, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 224, + "cpu_pct": 113.5, + "peak_memory_mb": 6759, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 104.4, + "cpu_pct": 135.7, + "peak_memory_mb": 6247, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:34:04", + "exit_code": 0, + "duration_sec": 237.6, + "cpu_pct": 164.6, + "peak_memory_mb": 6964, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:34:03", + "exit_code": 0, + "duration_sec": 1596, + "cpu_pct": 118.1, + "peak_memory_mb": 4711, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:34:03", + "exit_code": 0, + "duration_sec": 244, + "cpu_pct": 119.8, + "peak_memory_mb": 8295, + "disk_read_mb": 716, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:34:03", + "exit_code": 0, + "duration_sec": 105.6, + "cpu_pct": 137.5, + "peak_memory_mb": 6247, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 154.4, + "cpu_pct": 146.7, + "peak_memory_mb": 5325, + "disk_read_mb": 784, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 1570.8, + "cpu_pct": 106.7, + "peak_memory_mb": 1946, + "disk_read_mb": 1232, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": "NA", + "duration_sec": 160, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 109.2, + "cpu_pct": 125.7, + "peak_memory_mb": 4916, + "disk_read_mb": 528, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 512, + "cpu_pct": 105, + "peak_memory_mb": 8807, + "disk_read_mb": 1432, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 1590.4, + "cpu_pct": 112.2, + "peak_memory_mb": 5018, + "disk_read_mb": 3500, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 516, + "cpu_pct": 105.5, + "peak_memory_mb": 9933, + "disk_read_mb": 1036, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:04", + "exit_code": 0, + "duration_sec": 188.4, + "cpu_pct": 90.9, + "peak_memory_mb": 6349, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 451.2, + "cpu_pct": 121.5, + "peak_memory_mb": 10240, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 1360.8, + "cpu_pct": 122.3, + "peak_memory_mb": 6349, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 580, + "cpu_pct": 107.2, + "peak_memory_mb": 12084, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:14", + "exit_code": 0, + "duration_sec": 119.4, + "cpu_pct": 107.4, + "peak_memory_mb": 4916, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 488, + "cpu_pct": 109.7, + "peak_memory_mb": 8909, + "disk_read_mb": 1512, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1433.6, + "cpu_pct": 123.3, + "peak_memory_mb": 6452, + "disk_read_mb": 3780, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 560, + "cpu_pct": 105.5, + "peak_memory_mb": 9933, + "disk_read_mb": 1076, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 117.7, + "peak_memory_mb": 3584, + "disk_read_mb": 756, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 664, + "cpu_pct": 111.4, + "peak_memory_mb": 7578, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1383.2, + "cpu_pct": 117.1, + "peak_memory_mb": 5018, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 960, + "cpu_pct": 106.3, + "peak_memory_mb": 11264, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 191.4, + "cpu_pct": 102, + "peak_memory_mb": 6247, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:48:33", + "exit_code": 0, + "duration_sec": 456, + "cpu_pct": 114.8, + "peak_memory_mb": 8909, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:48:33", + "exit_code": 0, + "duration_sec": 1461.6, + "cpu_pct": 118.5, + "peak_memory_mb": 5018, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:48:33", + "exit_code": 0, + "duration_sec": 908, + "cpu_pct": 101.6, + "peak_memory_mb": 7271, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:48:33", + "exit_code": 0, + "duration_sec": 117.6, + "cpu_pct": 133.5, + "peak_memory_mb": 6247, + "disk_read_mb": 678, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 656, + "cpu_pct": 104.6, + "peak_memory_mb": 6144, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 1484, + "cpu_pct": 115.4, + "peak_memory_mb": 5018, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 972, + "cpu_pct": 103.2, + "peak_memory_mb": 8500, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 143.4, + "peak_memory_mb": 6247, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 454.4, + "cpu_pct": 119.2, + "peak_memory_mb": 8909, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 1380.4, + "cpu_pct": 118.4, + "peak_memory_mb": 5018, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 592, + "cpu_pct": 106.2, + "peak_memory_mb": 10957, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 123.6, + "cpu_pct": 128.1, + "peak_memory_mb": 6349, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 453.6, + "cpu_pct": 114, + "peak_memory_mb": 10138, + "disk_read_mb": 1392, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 1478.4, + "cpu_pct": 119.4, + "peak_memory_mb": 5018, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 540, + "cpu_pct": 108.7, + "peak_memory_mb": 11264, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 118.2, + "cpu_pct": 129, + "peak_memory_mb": 6247, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 452.8, + "cpu_pct": 118.2, + "peak_memory_mb": 8909, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 1400, + "cpu_pct": 123.2, + "peak_memory_mb": 6349, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 584, + "cpu_pct": 107.7, + "peak_memory_mb": 12084, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 129.6, + "cpu_pct": 111.9, + "peak_memory_mb": 5018, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:43:14", + "exit_code": 0, + "duration_sec": 444.8, + "cpu_pct": 117.9, + "peak_memory_mb": 10138, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:43:13", + "exit_code": 0, + "duration_sec": 2436, + "cpu_pct": 115.3, + "peak_memory_mb": 6349, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:43:13", + "exit_code": 0, + "duration_sec": 632, + "cpu_pct": 106.2, + "peak_memory_mb": 12493, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:43:14", + "exit_code": 0, + "duration_sec": 125.4, + "cpu_pct": 120.9, + "peak_memory_mb": 3584, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 452, + "cpu_pct": 118.8, + "peak_memory_mb": 10240, + "disk_read_mb": 1400, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1456, + "cpu_pct": 121.7, + "peak_memory_mb": 6349, + "disk_read_mb": 3388, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 612, + "cpu_pct": 109.7, + "peak_memory_mb": 12084, + "disk_read_mb": 1020, + "disk_write_mb": 4 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 117.6, + "cpu_pct": 126.2, + "peak_memory_mb": 6247, + "disk_read_mb": 672, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:23", + "exit_code": 0, + "duration_sec": 544, + "cpu_pct": 110.9, + "peak_memory_mb": 4711, + "disk_read_mb": 1024, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 1478.4, + "cpu_pct": 107, + "peak_memory_mb": 2048, + "disk_read_mb": 2072, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:33:33", + "exit_code": 1, + "duration_sec": 560, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 117, + "cpu_pct": 114.8, + "peak_memory_mb": 4916, + "disk_read_mb": 684, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 536, + "cpu_pct": 117.1, + "peak_memory_mb": 7373, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:27:34", + "exit_code": 0, + "duration_sec": 1498, + "cpu_pct": 111.4, + "peak_memory_mb": 4813, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:30:43", + "exit_code": 1, + "duration_sec": 400, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:53", + "exit_code": 1, + "duration_sec": 120.6, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 357.6, + "cpu_pct": 128.8, + "peak_memory_mb": 7271, + "disk_read_mb": 1080, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 1352.4, + "cpu_pct": 123.1, + "peak_memory_mb": 4813, + "disk_read_mb": 2268, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:34:23", + "exit_code": 1, + "duration_sec": 560, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 127.2, + "cpu_pct": 131.5, + "peak_memory_mb": 6349, + "disk_read_mb": 726, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:30:24", + "exit_code": 0, + "duration_sec": 352, + "cpu_pct": 127.4, + "peak_memory_mb": 7271, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:30:24", + "exit_code": 0, + "duration_sec": 1366.4, + "cpu_pct": 126.2, + "peak_memory_mb": 6144, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:45:24", + "exit_code": 1, + "duration_sec": 560, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:30:23", + "exit_code": 0, + "duration_sec": 130.2, + "cpu_pct": 118.5, + "peak_memory_mb": 11572, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 396.8, + "cpu_pct": 119.2, + "peak_memory_mb": 7168, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 2268, + "cpu_pct": 105.4, + "peak_memory_mb": 2048, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:49:53", + "exit_code": 1, + "duration_sec": 600, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:47:34", + "exit_code": 0, + "duration_sec": 121.8, + "cpu_pct": 108.1, + "peak_memory_mb": 2253, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:17:23", + "exit_code": 0, + "duration_sec": 352.8, + "cpu_pct": 114.3, + "peak_memory_mb": 5837, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:17:23", + "exit_code": 0, + "duration_sec": 1447.6, + "cpu_pct": 121.7, + "peak_memory_mb": 6144, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:19:03", + "exit_code": 1, + "duration_sec": 320, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:17:23", + "exit_code": 0, + "duration_sec": 114, + "cpu_pct": 135.4, + "peak_memory_mb": 6349, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 355.2, + "cpu_pct": 127.1, + "peak_memory_mb": 7168, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1408.4, + "cpu_pct": 120.3, + "peak_memory_mb": 6144, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:39:53", + "exit_code": 1, + "duration_sec": 476, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 117.6, + "cpu_pct": 144.1, + "peak_memory_mb": 6247, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 353.6, + "cpu_pct": 118.5, + "peak_memory_mb": 5837, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:23", + "exit_code": 0, + "duration_sec": 1470, + "cpu_pct": 118.4, + "peak_memory_mb": 4813, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:36:13", + "exit_code": 1, + "duration_sec": 396, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:24", + "exit_code": 0, + "duration_sec": 126.6, + "cpu_pct": 119.2, + "peak_memory_mb": 3584, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 340.8, + "cpu_pct": 118, + "peak_memory_mb": 6042, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 1316, + "cpu_pct": 119.8, + "peak_memory_mb": 4813, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:34:13", + "exit_code": 1, + "duration_sec": 640, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:13", + "exit_code": 0, + "duration_sec": 115.2, + "cpu_pct": 144.9, + "peak_memory_mb": 6247, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 349.6, + "cpu_pct": 121.3, + "peak_memory_mb": 6042, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:13", + "exit_code": 0, + "duration_sec": 1414, + "cpu_pct": 120.8, + "peak_memory_mb": 4813, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:41:53", + "exit_code": 1, + "duration_sec": 440, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:14", + "exit_code": 0, + "duration_sec": 114.6, + "cpu_pct": 132, + "peak_memory_mb": 6247, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "pdac", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 348, + "cpu_pct": 122.9, + "peak_memory_mb": 6042, + "disk_read_mb": 1000, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 1355.2, + "cpu_pct": 127.5, + "peak_memory_mb": 6144, + "disk_read_mb": 1988, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "pdac", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:39:33", + "exit_code": 1, + "duration_sec": 676, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "pdac", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:43", + "exit_code": 0, + "duration_sec": 115.2, + "cpu_pct": 129.1, + "peak_memory_mb": 6247, + "disk_read_mb": 666, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_normal", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 380, + "cpu_pct": 117.4, + "peak_memory_mb": 7168, + "disk_read_mb": 1072, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1358, + "cpu_pct": 107.7, + "peak_memory_mb": 2151, + "disk_read_mb": 2240, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:35:53", + "exit_code": 1, + "duration_sec": 436, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_normal", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 117, + "cpu_pct": 129.2, + "peak_memory_mb": 6247, + "disk_read_mb": 702, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_shuffle", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 367.2, + "cpu_pct": 121.3, + "peak_memory_mb": 8500, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 1335.6, + "cpu_pct": 123.8, + "peak_memory_mb": 4813, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:39:33", + "exit_code": 1, + "duration_sec": 476, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_shuffle", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 119.4, + "cpu_pct": 121.8, + "peak_memory_mb": 4916, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "positive", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 367.2, + "cpu_pct": 124.1, + "peak_memory_mb": 8500, + "disk_read_mb": 1136, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "positive", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1551.2, + "cpu_pct": 121.7, + "peak_memory_mb": 6144, + "disk_read_mb": 2492, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "positive", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:38:03", + "exit_code": 1, + "duration_sec": 440, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "positive", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 118.2, + "cpu_pct": 103.3, + "peak_memory_mb": 2253, + "disk_read_mb": 756, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign2", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:43:53", + "exit_code": 0, + "duration_sec": 360, + "cpu_pct": 124.6, + "peak_memory_mb": 8602, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:43:53", + "exit_code": 0, + "duration_sec": 1419.6, + "cpu_pct": 125.6, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:48:43", + "exit_code": "NA", + "duration_sec": 160, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign2", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:43:53", + "exit_code": 0, + "duration_sec": 134.4, + "cpu_pct": 143.4, + "peak_memory_mb": 6349, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_nb", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:13:33", + "exit_code": 0, + "duration_sec": 415.2, + "cpu_pct": 111, + "peak_memory_mb": 7271, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:13:33", + "exit_code": 0, + "duration_sec": 1506.4, + "cpu_pct": 118.4, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:14:53", + "exit_code": 1, + "duration_sec": 280, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_nb", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:13:33", + "exit_code": 0, + "duration_sec": 115.8, + "cpu_pct": 130.3, + "peak_memory_mb": 4916, + "disk_read_mb": 690, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_poisson", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 14:06:43", + "exit_code": 0, + "duration_sec": 367.2, + "cpu_pct": 123.2, + "peak_memory_mb": 7168, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 14:06:43", + "exit_code": 0, + "duration_sec": 1498, + "cpu_pct": 126.3, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 14:08:33", + "exit_code": 1, + "duration_sec": 240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_poisson", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 14:06:43", + "exit_code": 0, + "duration_sec": 121.8, + "cpu_pct": 122.4, + "peak_memory_mb": 4916, + "disk_read_mb": 690, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "sparsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 369.6, + "cpu_pct": 126.2, + "peak_memory_mb": 8500, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 1447.6, + "cpu_pct": 107.2, + "peak_memory_mb": 2151, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:37:03", + "exit_code": 1, + "duration_sec": 312, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "sparsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 119.4, + "cpu_pct": 120.2, + "peak_memory_mb": 4916, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "splatter", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 372.8, + "cpu_pct": 119, + "peak_memory_mb": 7168, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "splatter", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:34", + "exit_code": 0, + "duration_sec": 1517.6, + "cpu_pct": 127.4, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "splatter", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:36:33", + "exit_code": 1, + "duration_sec": 480, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "splatter", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:35", + "exit_code": 0, + "duration_sec": 121.2, + "cpu_pct": 127.5, + "peak_memory_mb": 4916, + "disk_read_mb": 690, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "srtsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 356.8, + "cpu_pct": 127.7, + "peak_memory_mb": 8602, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 1394.4, + "cpu_pct": 121.5, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:38:13", + "exit_code": 1, + "duration_sec": 440, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "srtsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 116.4, + "cpu_pct": 117.2, + "peak_memory_mb": 4916, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "symsim", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 406.4, + "cpu_pct": 119, + "peak_memory_mb": 8500, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "symsim", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 1439.2, + "cpu_pct": 123.6, + "peak_memory_mb": 4813, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "symsim", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:43:33", + "exit_code": 1, + "duration_sec": 316, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "symsim", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:29:24", + "exit_code": 0, + "duration_sec": 132.6, + "cpu_pct": 121, + "peak_memory_mb": 6349, + "disk_read_mb": 696, + "disk_write_mb": 6 + } + }, + { + "dataset_id": "prostate", + "method_id": "zinbwave", + "metric_component_name": "downstream", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 374.4, + "cpu_pct": 120.4, + "peak_memory_mb": 8602, + "disk_read_mb": 1056, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_gene_cell", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 1503.6, + "cpu_pct": 122.6, + "peak_memory_mb": 6144, + "disk_read_mb": 2184, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "prostate", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_sc_features", + "resources": { + "submit": "2025-03-14 13:38:43", + "exit_code": 1, + "duration_sec": 280, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "prostate", + "method_id": "zinbwave", + "metric_component_name": "ks_statistic_spatial", + "resources": { + "submit": "2025-03-14 13:28:36", + "exit_code": 0, + "duration_sec": 117, + "cpu_pct": 102.6, + "peak_memory_mb": 2253, + "disk_read_mb": 690, + "disk_write_mb": 6 + } + } +] diff --git a/results/spatial_simulators/data/metric_info.json b/results/spatial_simulators/data/metric_info.json new file mode 100644 index 00000000..0931b3f3 --- /dev/null +++ b/results/spatial_simulators/data/metric_info.json @@ -0,0 +1,692 @@ +[ + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "clustering_ari", + "metric_name": "clustering_ari", + "metric_summary": "Adjusted rand index (ARI) measures the similarity between two clusters in real and simulated datasets.", + "metric_description": "Adjusted Rand Index used in spatial clustering to measure the similarity between two data clusterings, adjusted for chance.\n", + "references_doi": "10.1145/1553374.1553511", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "clustering_nmi", + "metric_name": "clustering_nmi", + "metric_summary": "Normalized mutual information (NMI) measures of the mutual dependence between the real and simulated spatial clusters.", + "metric_description": "Normalized Mutual Information used in spatial clustering to measure the agreement between two different clusterings, scaled to [0, 1].\n", + "references_doi": "10.1145/1553374.1553511", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "svg_recall", + "metric_name": "svg_recall", + "metric_summary": "Recall measures the proportion of real SVG correctly identified in the simulated dataset.", + "metric_description": "Recall used in identifying spatial variable genes, measuring the true positive rate.\n", + "references_doi": "10.9735/2229-3981", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "svg_precision", + "metric_name": "svg_precision", + "metric_summary": "Precision measures the proportion of correctly identified items in simulated datasets.", + "metric_description": "Precision used in identifying spatial variable genes, measuring the accuracy of positive predictions.\n", + "references_doi": "10.9735/2229-3981", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "ctdeconvolute_rmse", + "metric_name": "ctdeconvolute_rmse", + "metric_summary": "Root Mean Square deviation is calculated between the true and predicted proportion of per cell type.", + "metric_description": "Root Mean Squared Error used in cell type deconvolution to measure the difference between observed and predicted values.\n", + "references_doi": "10.5194/gmd-15-5481-2022", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "ctdeconcolute_jsd", + "metric_name": "ctdeconcolute_jsd", + "metric_summary": "Jensen-Shannon divergence (JSD) is calculated between the true and predicted proportion per cell type in all spots.", + "metric_description": "Jensen-Shannon Divergence used in cell type deconvolution to measure the similarity between two probability distributions.\n", + "references_doi": "10.21105/joss.00765", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "crosscor_mantel", + "metric_name": "crosscor_mantel", + "metric_summary": "Mantel statistic is the test statistic for the Mantel test, which is a correlation coefficient calculated between bivariate Moran’s I of real dataset and that of in simulation dataset.", + "metric_description": "Mantel statistic used in spatial cross-correlation to test the correlation between two distance matrices.\n", + "references_doi": "10.1111/2041-210X.12425", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "downstream", + "metric_id": "crosscor_cosine", + "metric_name": "crosscor_cosine", + "metric_summary": "Cosine similarity measures similarity between bivariate Moran’s I of real dataset and that of in simulation dataset.", + "metric_description": "Cosine similarity used in spatial cross-correlation to measure the cosine of the angle between two non-zero vectors.\n", + "references_doi": "10.1002/asi.20130", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/downstream", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/downstream:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_frac_zero_genes_zstat", + "metric_name": "Fraction of zeros per gene", + "metric_summary": "KS statistic of the fraction of zeros per gene.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the fraction of zeros per gene in the real datasets versus the fraction of zeros per gene in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_frac_zero_cells_zstat", + "metric_name": "Fraction of zeros per cell", + "metric_summary": "KS statistic of the fraction of zeros per spot (cell).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the fraction of zeros per spot (cell) in the real datasets versus the fraction of zeros per spot (cell) in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_lib_size_cells_zstat", + "metric_name": "Library size", + "metric_summary": "KS statistic of the library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the total sum of UMI counts across all genes in the real datasets versus the total sum of UMI counts across all genes in the simmulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_efflib_size_cells_zstat", + "metric_name": "Effective library size", + "metric_summary": "KS statistic of the effective library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the effective library size of the real datasets versus the effective library size of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_tmm_cells_zstat", + "metric_name": "TMM", + "metric_summary": "KS statistic of the weight trimmed mean of M-values normalization factor (TMM).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the weight trimmed mean of M-values normalization factor for the real datasets versus the weight trimmed mean of M-values normalization factor for the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_var_cells_zstat", + "metric_name": "Scaled variance cell", + "metric_summary": "KS statistic of the spot- (or cell-) level scaled variance of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the spot-level z-score standardization of the variance of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_mean_cells_zstat", + "metric_name": "Scaled mean cells", + "metric_summary": "KS statistic of the spot- (or cell-) level scaled mean of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the z-score standardization of the mean of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_lib_fraczero_cells_zstat", + "metric_name": "Library size vs fraction zero", + "metric_summary": "KS statistic of the relationship between library size and the proportion of zeros per spot (cell).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between library size and the proportion of zeros per spot (cell) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_pearson_cells_zstat", + "metric_name": "Sample Pearson correlation", + "metric_summary": "KS statistic of the sample Pearson correlation.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the sample Pearson correlation of the real datasets versus the sample Pearson correlation of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_var_genes_zstat", + "metric_name": "Scaled variance genes", + "metric_summary": "KS statistic of the gene-level scaled variance of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene-level z-score standardization of the variance of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_mean_genes_zstat", + "metric_name": "Scaled mean genes", + "metric_summary": "KS statistic of the gene-level scaled mean of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene-level z-score standardization of the mean of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_pearson_genes_zstat", + "metric_name": "Gene Pearson correlation", + "metric_summary": "KS statistic of the gene Pearson correlation.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene Pearson correlation of the real datasets versus the gene Pearson correlation of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_mean_var_genes_zstat", + "metric_name": "Mean vs variance", + "metric_summary": "KS statistic of the relationship between mean expression and variance expression.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between mean expression and variance expression in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_mean_fraczero_genes_zstat", + "metric_name": "Mean vs fraction zero", + "metric_summary": "KS statistic of the relationship between mean expression and the proportion of zero per gene.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between mean expression and the proportion of zero per gene in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_frac_zero_genes_tstat", + "metric_name": "Fraction of zeros per gene", + "metric_summary": "KS statistic of the fraction of zeros per gene.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the fraction of zeros per gene in the real datasets versus the fraction of zeros per gene in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_frac_zero_cells_tstat", + "metric_name": "Fraction of zeros per cell", + "metric_summary": "KS statistic of the fraction of zeros per spot (cell).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the fraction of zeros per spot (cell) in the real datasets versus the fraction of zeros per spot (cell) in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_lib_size_cells_tstat", + "metric_name": "Library size", + "metric_summary": "KS statistic of the library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the total sum of UMI counts across all genes in the real datasets versus the total sum of UMI counts across all genes in the simmulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_efflib_size_cells_tstat", + "metric_name": "Effective library size", + "metric_summary": "KS statistic of the effective library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the effective library size of the real datasets versus the effective library size of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_tmm_cells_tstat", + "metric_name": "TMM", + "metric_summary": "KS statistic of the weight trimmed mean of M-values normalization factor (TMM).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the weight trimmed mean of M-values normalization factor for the real datasets versus the weight trimmed mean of M-values normalization factor for the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_var_cells_tstat", + "metric_name": "Scaled variance cell", + "metric_summary": "KS statistic of the spot- (or cell-) level scaled variance of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the spot-level z-score standardization of the variance of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_mean_cells_tstat", + "metric_name": "Scaled mean cells", + "metric_summary": "KS statistic of the spot- (or cell-) level scaled mean of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the z-score standardization of the mean of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_lib_fraczero_cells_tstat", + "metric_name": "Library size vs fraction zero", + "metric_summary": "KS statistic of the relationship between library size and the proportion of zeros per spot (cell).", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between library size and the proportion of zeros per spot (cell) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_pearson_cells_tstat", + "metric_name": "Sample Pearson correlation", + "metric_summary": "KS statistic of the sample Pearson correlation.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the sample Pearson correlation of the real datasets versus the sample Pearson correlation of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_var_genes_tstat", + "metric_name": "Scaled variance genes", + "metric_summary": "KS statistic of the gene-level scaled variance of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene-level z-score standardization of the variance of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_scaled_mean_genes_tstat", + "metric_name": "Scaled mean genes", + "metric_summary": "KS statistic of the gene-level scaled mean of the expression matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene-level z-score standardization of the mean of expression matrix in terms of log2(CPM) in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_pearson_genes_tstat", + "metric_name": "Gene Pearson correlation", + "metric_summary": "KS statistic of the gene Pearson correlation.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the gene Pearson correlation of the real datasets versus the gene Pearson correlation of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_mean_var_genes_tstat", + "metric_name": "Mean vs variance", + "metric_summary": "KS statistic of the relationship between mean expression and variance expression.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between mean expression and variance expression in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_gene_cell", + "metric_id": "ks_statistic_mean_fraczero_genes_tstat", + "metric_name": "Mean vs fraction zero", + "metric_summary": "KS statistic of the relationship between mean expression and the proportion of zero per gene.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the relationship between mean expression and the proportion of zero per gene in the real datasets versus the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_gene_cell", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_gene_cell:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_sc_features", + "metric_id": "ks_statistic_L_stats", + "metric_name": "L statistics", + "metric_summary": "KS statistic of the L statistics", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the L statistics in the real datasets versus the L statistics in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_sc_features", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_sc_features:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_sc_features", + "metric_id": "ks_statistic_celltype_interaction", + "metric_name": "Celltype interaction", + "metric_summary": "KS statistic of the celltype interaction", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the Celltype interaction in the real datasets versus the Celltype interaction in the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_sc_features", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_sc_features:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_sc_features", + "metric_id": "ks_statistic_nn_correlation", + "metric_name": "Library size", + "metric_summary": "KS statistic of the library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the nn correlation in the real datasets versus the nn correlation in the simmulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_sc_features", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_sc_features:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_sc_features", + "metric_id": "ks_statistic_morans_I", + "metric_name": "Effective library size", + "metric_summary": "KS statistic of the effective library size.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the morans I of the real datasets versus the morans I of the simulated datasets.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_sc_features", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_sc_features:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_transition_matrix", + "metric_name": "Transition matrix", + "metric_summary": "KS Statistic of the transition matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the transition matrix of the real dataset versus the simulated dataset. The transition matrix elucidates the interrelationships among spatial clusters in each space. Each element in the matrix signifies the transition probability from one spatial cluster to another, thereby mapping the dynamic interplay of spatial clusters.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_central_score", + "metric_name": "Centralized score", + "metric_summary": "Ks Statistic of the centralized score matrix.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the centralized score matrix of the real dataset versus the simulated dataset. The centralized score matrix is a vector of the group degree centrality (inter-cluster connectivity), average clustering coefficient (propensity for a spot within a spatial cluster to be connected to spots in another cluster), and the group closeness centrality (relative proximity or accessibility of one cluster to all spots in another). \n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_enrichment", + "metric_name": "Neighborhood enrichment", + "metric_summary": "Ks Statistic of the neighborhood enrichment.", + "metric_description": "The Kolmogorov-Smirnov statistic comparing the neighborhood enrichment matrices of the real dataset versus the simulated dataset. The neighborhood enrichment matrix quantifies the enrichment observed between each pair of spatial clusters. It serves to systematically assess the interaction between different clusters within a spatial context, providing insights into the relative connectivity between various spatial clusters.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_transition_scalef", + "metric_name": "Frobenius norm of transition matrix", + "metric_summary": "Frobenius norm of the transition matrix.", + "metric_description": "The Frobenius norm of the difference between two matrices is calculated to assess the closeness of the spatial pattern of cell types between the simulated and real data.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_central_score_scalef", + "metric_name": "Frobenius norm of centralized score", + "metric_summary": "Frobenius norm of the centralized score matrix.", + "metric_description": "The Frobenius norm of the difference between two matrices is calculated to assess the closeness of the spatial pattern of cell types between the simulated and real data.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + }, + { + "task_id": "metrics", + "component_name": "ks_statistic_spatial", + "metric_id": "ks_statistic_enrichment_scalef", + "metric_name": "Frobenius norm of neighborhood enrichment", + "metric_summary": "Frobenius norm of the neighborhood enrichment.", + "metric_description": "The Frobenius norm of the difference between two matrices is calculated to assess the closeness of the spatial pattern of cell types between the simulated and real data.\n", + "references_doi": "10.1201/9780429485572", + "references_bibtex": null, + "implementation_url": "https://github.com/openproblems-bio/task_spatial_simulators/blob/0ac6b16e5e1ca015caff41382afd57f8292192ab/src/metrics/ks_statistic_spatial", + "image": "https://ghcr.io/openproblems-bio/task_spatial_simulators/metrics/ks_statistic_spatial:build_main", + "code_version": "build_main", + "commit_sha": "0ac6b16e5e1ca015caff41382afd57f8292192ab", + "maximize": false + } +] diff --git a/results/spatial_simulators/data/quality_control.json b/results/spatial_simulators/data/quality_control.json new file mode 100644 index 00000000..fb659f4a --- /dev/null +++ b/results/spatial_simulators/data/quality_control.json @@ -0,0 +1,4882 @@ +[ + { + "task_id": "task_spatial_simulators", + "category": "Task info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_id' should be defined\n Task id: task_spatial_simulators\n Field: task_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Task info", + "name": "Pct 'task_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_name' should be defined\n Task id: task_spatial_simulators\n Field: task_name\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Task info", + "name": "Pct 'task_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_summary' should be defined\n Task id: task_spatial_simulators\n Field: task_summary\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Task info", + "name": "Pct 'task_description' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_description' should be defined\n Task id: task_spatial_simulators\n Field: task_description\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'task_id' should be defined\n Task id: task_spatial_simulators\n Field: task_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'commit_sha' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'commit_sha' should be defined\n Task id: task_spatial_simulators\n Field: commit_sha\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'method_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_id' should be defined\n Task id: task_spatial_simulators\n Field: method_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'method_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_name' should be defined\n Task id: task_spatial_simulators\n Field: method_name\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'method_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_summary' should be defined\n Task id: task_spatial_simulators\n Field: method_summary\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'paper_reference' missing", + "value": 0.7272727272727273, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'paper_reference' should be defined\n Task id: task_spatial_simulators\n Field: paper_reference\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Method info", + "name": "Pct 'is_baseline' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'is_baseline' should be defined\n Task id: task_spatial_simulators\n Field: is_baseline\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'task_id' should be defined\n Task id: task_spatial_simulators\n Field: task_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'commit_sha' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'commit_sha' should be defined\n Task id: task_spatial_simulators\n Field: commit_sha\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'metric_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_id' should be defined\n Task id: task_spatial_simulators\n Field: metric_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'metric_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_name' should be defined\n Task id: task_spatial_simulators\n Field: metric_name\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'metric_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_summary' should be defined\n Task id: task_spatial_simulators\n Field: metric_summary\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'paper_reference' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'paper_reference' should be defined\n Task id: task_spatial_simulators\n Field: paper_reference\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Metric info", + "name": "Pct 'maximize' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'maximize' should be defined\n Task id: task_spatial_simulators\n Field: maximize\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'task_id' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'task_id' should be defined\n Task id: task_spatial_simulators\n Field: task_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'dataset_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_id' should be defined\n Task id: task_spatial_simulators\n Field: dataset_id\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'dataset_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_name' should be defined\n Task id: task_spatial_simulators\n Field: dataset_name\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'dataset_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_summary' should be defined\n Task id: task_spatial_simulators\n Field: dataset_summary\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'data_reference' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'data_reference' should be defined\n Task id: task_spatial_simulators\n Field: data_reference\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Dataset info", + "name": "Pct 'data_url' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'data_url' should be defined\n Task id: task_spatial_simulators\n Field: data_url\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw data", + "name": "Number of results", + "value": 110, + "severity": 0, + "severity_value": 0.0, + "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_spatial_simulators\n Number of results: 110\n Number of methods: 11\n Number of metrics: 46\n Number of datasets: 10\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'clustering_ari' %missing", + "value": 0.0636363636363636, + "severity": 0, + "severity_value": 0.636363636363636, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: clustering_ari\n Percentage missing: 6%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'clustering_nmi' %missing", + "value": 0.0636363636363636, + "severity": 0, + "severity_value": 0.636363636363636, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: clustering_nmi\n Percentage missing: 6%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'svg_recall' %missing", + "value": 0.21818181818181825, + "severity": 2, + "severity_value": 2.1818181818181825, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: svg_recall\n Percentage missing: 22%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'svg_precision' %missing", + "value": 0.38181818181818183, + "severity": 3, + "severity_value": 3.8181818181818183, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: svg_precision\n Percentage missing: 38%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ctdeconvolute_rmse' %missing", + "value": 0.0636363636363636, + "severity": 0, + "severity_value": 0.636363636363636, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ctdeconvolute_rmse\n Percentage missing: 6%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ctdeconcolute_jsd' %missing", + "value": 0.0636363636363636, + "severity": 0, + "severity_value": 0.636363636363636, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ctdeconcolute_jsd\n Percentage missing: 6%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'crosscor_mantel' %missing", + "value": 0.0636363636363636, + "severity": 0, + "severity_value": 0.636363636363636, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: crosscor_mantel\n Percentage missing: 6%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'crosscor_cosine' %missing", + "value": 0.4, + "severity": 3, + "severity_value": 4.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: crosscor_cosine\n Percentage missing: 40%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_frac_zero_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_frac_zero_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_frac_zero_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_frac_zero_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_lib_size_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_lib_size_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_efflib_size_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_efflib_size_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_tmm_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_tmm_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_var_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_var_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_mean_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_mean_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_lib_fraczero_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_lib_fraczero_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_pearson_cells_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_pearson_cells_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_var_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_var_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_mean_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_mean_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_pearson_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_pearson_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_mean_var_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_mean_var_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_mean_fraczero_genes_zstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_mean_fraczero_genes_zstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_frac_zero_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_frac_zero_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_frac_zero_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_frac_zero_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_lib_size_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_lib_size_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_efflib_size_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_efflib_size_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_tmm_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_tmm_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_var_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_var_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_mean_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_mean_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_lib_fraczero_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_lib_fraczero_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_pearson_cells_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_pearson_cells_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_var_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_var_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_scaled_mean_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_scaled_mean_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_pearson_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_pearson_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_mean_var_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_mean_var_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_mean_fraczero_genes_tstat' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_mean_fraczero_genes_tstat\n Percentage missing: 100%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_L_stats' %missing", + "value": 0.3090909090909091, + "severity": 3, + "severity_value": 3.090909090909091, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_L_stats\n Percentage missing: 31%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_celltype_interaction' %missing", + "value": 0.3090909090909091, + "severity": 3, + "severity_value": 3.090909090909091, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_celltype_interaction\n Percentage missing: 31%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_nn_correlation' %missing", + "value": 0.3090909090909091, + "severity": 3, + "severity_value": 3.090909090909091, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_nn_correlation\n Percentage missing: 31%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_morans_I' %missing", + "value": 0.3090909090909091, + "severity": 3, + "severity_value": 3.090909090909091, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_morans_I\n Percentage missing: 31%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_transition_matrix' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_transition_matrix\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_central_score' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_central_score\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_enrichment' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_enrichment\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_transition_scalef' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_transition_scalef\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_central_score_scalef' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_central_score_scalef\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Metric 'ks_statistic_enrichment_scalef' %missing", + "value": 0.13636363636363635, + "severity": 1, + "severity_value": 1.3636363636363635, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n Metric id: ks_statistic_enrichment_scalef\n Percentage missing: 14%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'scdesign2' %missing", + "value": 0.691304347826087, + "severity": 3, + "severity_value": 6.913043478260869, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: scdesign2\n Percentage missing: 69%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'scdesign3_nb' %missing", + "value": 0.7521739130434782, + "severity": 3, + "severity_value": 7.521739130434782, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: scdesign3_nb\n Percentage missing: 75%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'scdesign3_poisson' %missing", + "value": 0.6978260869565217, + "severity": 3, + "severity_value": 6.978260869565217, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: scdesign3_poisson\n Percentage missing: 70%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'sparsim' %missing", + "value": 0.6717391304347826, + "severity": 3, + "severity_value": 6.717391304347826, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: sparsim\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'splatter' %missing", + "value": 0.6739130434782609, + "severity": 3, + "severity_value": 6.739130434782608, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: splatter\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'srtsim' %missing", + "value": 0.6695652173913044, + "severity": 3, + "severity_value": 6.695652173913043, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: srtsim\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'symsim' %missing", + "value": 0.6739130434782609, + "severity": 3, + "severity_value": 6.739130434782608, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: symsim\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'zinbwave' %missing", + "value": 0.6695652173913044, + "severity": 3, + "severity_value": 6.695652173913043, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: zinbwave\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'positive' %missing", + "value": 0.6478260869565218, + "severity": 3, + "severity_value": 6.478260869565218, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: positive\n Percentage missing: 65%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'negative_shuffle' %missing", + "value": 0.6891304347826086, + "severity": 3, + "severity_value": 6.891304347826086, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: negative_shuffle\n Percentage missing: 69%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Method 'negative_normal' %missing", + "value": 0.6652173913043478, + "severity": 3, + "severity_value": 6.652173913043478, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n method id: negative_normal\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'hindlimbmuscle' %missing", + "value": 0.7015810276679841, + "severity": 3, + "severity_value": 7.015810276679841, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: hindlimbmuscle\n Percentage missing: 70%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'brain' %missing", + "value": 0.7371541501976284, + "severity": 3, + "severity_value": 7.371541501976284, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: brain\n Percentage missing: 74%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'cortex' %missing", + "value": 0.6462450592885376, + "severity": 3, + "severity_value": 6.462450592885376, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: cortex\n Percentage missing: 65%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'prostate' %missing", + "value": 0.7173913043478262, + "severity": 3, + "severity_value": 7.173913043478262, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: prostate\n Percentage missing: 72%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'breast' %missing", + "value": 0.6699604743083003, + "severity": 3, + "severity_value": 6.699604743083003, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: breast\n Percentage missing: 67%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'pdac' %missing", + "value": 0.7233201581027668, + "severity": 3, + "severity_value": 7.233201581027668, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: pdac\n Percentage missing: 72%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'olfactorybulb' %missing", + "value": 0.6284584980237153, + "severity": 3, + "severity_value": 6.284584980237153, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: olfactorybulb\n Percentage missing: 63%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'fibrosarcoma' %missing", + "value": 0.6343873517786562, + "severity": 3, + "severity_value": 6.343873517786562, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: fibrosarcoma\n Percentage missing: 63%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'gastrulation' %missing", + "value": 0.7430830039525691, + "severity": 3, + "severity_value": 7.4308300395256905, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: gastrulation\n Percentage missing: 74%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Raw results", + "name": "Dataset 'osteosarcoma' %missing", + "value": 0.6185770750988142, + "severity": 3, + "severity_value": 6.185770750988142, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_spatial_simulators\n dataset id: osteosarcoma\n Percentage missing: 62%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 clustering_ari", + "value": -0.0002, + "severity": 0, + "severity_value": 0.0002, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: clustering_ari\n Worst score: -0.0002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 clustering_ari", + "value": 0.3978, + "severity": 0, + "severity_value": 0.1989, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: clustering_ari\n Best score: 0.3978%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb clustering_ari", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: clustering_ari\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb clustering_ari", + "value": 1.5784, + "severity": 0, + "severity_value": 0.7892, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: clustering_ari\n Best score: 1.5784%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson clustering_ari", + "value": -0.0013, + "severity": 0, + "severity_value": 0.0013, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: clustering_ari\n Worst score: -0.0013%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson clustering_ari", + "value": 1.0629, + "severity": 0, + "severity_value": 0.53145, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: clustering_ari\n Best score: 1.0629%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim clustering_ari", + "value": -0.008, + "severity": 0, + "severity_value": 0.008, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: clustering_ari\n Worst score: -0.008%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim clustering_ari", + "value": 0.6929, + "severity": 0, + "severity_value": 0.34645, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: clustering_ari\n Best score: 0.6929%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter clustering_ari", + "value": -0.0094, + "severity": 0, + "severity_value": 0.0094, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: clustering_ari\n Worst score: -0.0094%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter clustering_ari", + "value": 0.5294, + "severity": 0, + "severity_value": 0.2647, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: clustering_ari\n Best score: 0.5294%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim clustering_ari", + "value": 0.7385, + "severity": 0, + "severity_value": -0.7385, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: clustering_ari\n Worst score: 0.7385%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim clustering_ari", + "value": 1.9623, + "severity": 0, + "severity_value": 0.98115, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: clustering_ari\n Best score: 1.9623%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim clustering_ari", + "value": -0.0094, + "severity": 0, + "severity_value": 0.0094, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: clustering_ari\n Worst score: -0.0094%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim clustering_ari", + "value": 0.5294, + "severity": 0, + "severity_value": 0.2647, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: clustering_ari\n Best score: 0.5294%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave clustering_ari", + "value": -0.002, + "severity": 0, + "severity_value": 0.002, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: clustering_ari\n Worst score: -0.002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave clustering_ari", + "value": 0.3268, + "severity": 0, + "severity_value": 0.1634, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: clustering_ari\n Best score: 0.3268%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive clustering_ari", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: clustering_ari\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive clustering_ari", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: clustering_ari\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle clustering_ari", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: clustering_ari\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle clustering_ari", + "value": 0.0354, + "severity": 0, + "severity_value": 0.0177, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: clustering_ari\n Best score: 0.0354%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal clustering_ari", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: clustering_ari\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal clustering_ari", + "value": 0.0541, + "severity": 0, + "severity_value": 0.02705, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: clustering_ari\n Best score: 0.0541%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 clustering_nmi", + "value": -0.0062, + "severity": 0, + "severity_value": 0.0062, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: clustering_nmi\n Worst score: -0.0062%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 clustering_nmi", + "value": 0.3393, + "severity": 0, + "severity_value": 0.16965, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: clustering_nmi\n Best score: 0.3393%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb clustering_nmi", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: clustering_nmi\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb clustering_nmi", + "value": 1.3002, + "severity": 0, + "severity_value": 0.6501, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: clustering_nmi\n Best score: 1.3002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson clustering_nmi", + "value": -0.0014, + "severity": 0, + "severity_value": 0.0014, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: clustering_nmi\n Worst score: -0.0014%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson clustering_nmi", + "value": 1.0416, + "severity": 0, + "severity_value": 0.5208, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: clustering_nmi\n Best score: 1.0416%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim clustering_nmi", + "value": -0.0037, + "severity": 0, + "severity_value": 0.0037, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: clustering_nmi\n Worst score: -0.0037%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim clustering_nmi", + "value": 0.524, + "severity": 0, + "severity_value": 0.262, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: clustering_nmi\n Best score: 0.524%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter clustering_nmi", + "value": -0.0002, + "severity": 0, + "severity_value": 0.0002, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: clustering_nmi\n Worst score: -0.0002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter clustering_nmi", + "value": 0.574, + "severity": 0, + "severity_value": 0.287, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: clustering_nmi\n Best score: 0.574%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim clustering_nmi", + "value": 0.8254, + "severity": 0, + "severity_value": -0.8254, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: clustering_nmi\n Worst score: 0.8254%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim clustering_nmi", + "value": 1.5316, + "severity": 0, + "severity_value": 0.7658, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: clustering_nmi\n Best score: 1.5316%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim clustering_nmi", + "value": -0.0002, + "severity": 0, + "severity_value": 0.0002, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: clustering_nmi\n Worst score: -0.0002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim clustering_nmi", + "value": 0.574, + "severity": 0, + "severity_value": 0.287, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: clustering_nmi\n Best score: 0.574%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave clustering_nmi", + "value": -0.003, + "severity": 0, + "severity_value": 0.003, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: clustering_nmi\n Worst score: -0.003%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave clustering_nmi", + "value": 0.3497, + "severity": 0, + "severity_value": 0.17485, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: clustering_nmi\n Best score: 0.3497%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive clustering_nmi", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: clustering_nmi\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive clustering_nmi", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: clustering_nmi\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle clustering_nmi", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: clustering_nmi\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle clustering_nmi", + "value": 0.0187, + "severity": 0, + "severity_value": 0.00935, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: clustering_nmi\n Best score: 0.0187%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal clustering_nmi", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: clustering_nmi\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal clustering_nmi", + "value": 0.0294, + "severity": 0, + "severity_value": 0.0147, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: clustering_nmi\n Best score: 0.0294%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 svg_recall", + "value": 0.9241, + "severity": 0, + "severity_value": 0.46205, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: svg_recall\n Best score: 0.9241%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb svg_recall", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: svg_recall\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson svg_recall", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: svg_recall\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim svg_recall", + "value": 0.9743, + "severity": 0, + "severity_value": 0.48715, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: svg_recall\n Best score: 0.9743%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter svg_recall", + "value": 0.9942, + "severity": 0, + "severity_value": 0.4971, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: svg_recall\n Best score: 0.9942%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim svg_recall", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: svg_recall\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim svg_recall", + "value": 0.8565, + "severity": 0, + "severity_value": 0.42825, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: svg_recall\n Best score: 0.8565%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave svg_recall", + "value": 0.9755, + "severity": 0, + "severity_value": 0.48775, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: svg_recall\n Best score: 0.9755%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive svg_recall", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: svg_recall\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive svg_recall", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: svg_recall\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle svg_recall", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: svg_recall\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle svg_recall", + "value": 0.011, + "severity": 0, + "severity_value": 0.0055, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: svg_recall\n Best score: 0.011%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal svg_recall", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: svg_recall\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal svg_recall", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: svg_recall\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 svg_precision", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: svg_precision\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 svg_precision", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: svg_precision\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: svg_precision\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb svg_precision", + "value": 0.2683, + "severity": 0, + "severity_value": 0.13415, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: svg_precision\n Best score: 0.2683%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: svg_precision\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson svg_precision", + "value": 0.0921, + "severity": 0, + "severity_value": 0.04605, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: svg_precision\n Best score: 0.0921%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim svg_precision", + "value": -1.0787, + "severity": 1, + "severity_value": 1.0787, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: svg_precision\n Worst score: -1.0787%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: svg_precision\n Best score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter svg_precision", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: svg_precision\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter svg_precision", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: svg_precision\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: svg_precision\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim svg_precision", + "value": 0.4742, + "severity": 0, + "severity_value": 0.2371, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: svg_precision\n Best score: 0.4742%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim svg_precision", + "value": -1.4, + "severity": 1, + "severity_value": 1.4, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: svg_precision\n Worst score: -1.4%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: svg_precision\n Best score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave svg_precision", + "value": -0.024, + "severity": 0, + "severity_value": 0.024, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: svg_precision\n Worst score: -0.024%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave svg_precision", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: svg_precision\n Best score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive svg_precision", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: svg_precision\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive svg_precision", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: svg_precision\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle svg_precision", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: svg_precision\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle svg_precision", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: svg_precision\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal svg_precision", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: svg_precision\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal svg_precision", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: svg_precision\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ctdeconvolute_rmse", + "value": -0.2662, + "severity": 0, + "severity_value": 0.2662, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ctdeconvolute_rmse\n Worst score: -0.2662%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ctdeconvolute_rmse", + "value": 0.9002, + "severity": 0, + "severity_value": 0.4501, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ctdeconvolute_rmse\n Best score: 0.9002%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ctdeconvolute_rmse", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ctdeconvolute_rmse\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ctdeconvolute_rmse", + "value": 0.9469, + "severity": 0, + "severity_value": 0.47345, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ctdeconvolute_rmse\n Best score: 0.9469%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ctdeconvolute_rmse", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ctdeconvolute_rmse\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ctdeconvolute_rmse", + "value": 0.9667, + "severity": 0, + "severity_value": 0.48335, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ctdeconvolute_rmse\n Best score: 0.9667%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ctdeconvolute_rmse", + "value": -0.2989, + "severity": 0, + "severity_value": 0.2989, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ctdeconvolute_rmse\n Worst score: -0.2989%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ctdeconvolute_rmse", + "value": 0.9266, + "severity": 0, + "severity_value": 0.4633, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ctdeconvolute_rmse\n Best score: 0.9266%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ctdeconvolute_rmse", + "value": -0.3717, + "severity": 0, + "severity_value": 0.3717, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ctdeconvolute_rmse\n Worst score: -0.3717%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ctdeconvolute_rmse", + "value": 0.0611, + "severity": 0, + "severity_value": 0.03055, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ctdeconvolute_rmse\n Best score: 0.0611%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ctdeconvolute_rmse", + "value": 0.7236, + "severity": 0, + "severity_value": -0.7236, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ctdeconvolute_rmse\n Worst score: 0.7236%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ctdeconvolute_rmse", + "value": 0.9987, + "severity": 0, + "severity_value": 0.49935, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ctdeconvolute_rmse\n Best score: 0.9987%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ctdeconvolute_rmse", + "value": -0.9122, + "severity": 0, + "severity_value": 0.9122, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ctdeconvolute_rmse\n Worst score: -0.9122%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ctdeconvolute_rmse", + "value": 0.2123, + "severity": 0, + "severity_value": 0.10615, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ctdeconvolute_rmse\n Best score: 0.2123%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ctdeconvolute_rmse", + "value": 0.3446, + "severity": 0, + "severity_value": -0.3446, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ctdeconvolute_rmse\n Worst score: 0.3446%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ctdeconvolute_rmse", + "value": 0.9424, + "severity": 0, + "severity_value": 0.4712, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ctdeconvolute_rmse\n Best score: 0.9424%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ctdeconvolute_rmse", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ctdeconvolute_rmse\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ctdeconvolute_rmse", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ctdeconvolute_rmse\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ctdeconvolute_rmse", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ctdeconvolute_rmse\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ctdeconvolute_rmse", + "value": 0.0875, + "severity": 0, + "severity_value": 0.04375, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ctdeconvolute_rmse\n Best score: 0.0875%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ctdeconvolute_rmse", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ctdeconvolute_rmse\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ctdeconvolute_rmse", + "value": 0.3982, + "severity": 0, + "severity_value": 0.1991, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ctdeconvolute_rmse\n Best score: 0.3982%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ctdeconcolute_jsd", + "value": -0.1222, + "severity": 0, + "severity_value": 0.1222, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ctdeconcolute_jsd\n Worst score: -0.1222%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ctdeconcolute_jsd", + "value": 0.7615, + "severity": 0, + "severity_value": 0.38075, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ctdeconcolute_jsd\n Best score: 0.7615%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ctdeconcolute_jsd", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ctdeconcolute_jsd\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ctdeconcolute_jsd", + "value": 0.8311, + "severity": 0, + "severity_value": 0.41555, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ctdeconcolute_jsd\n Best score: 0.8311%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ctdeconcolute_jsd", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ctdeconcolute_jsd\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ctdeconcolute_jsd", + "value": 0.8676, + "severity": 0, + "severity_value": 0.4338, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ctdeconcolute_jsd\n Best score: 0.8676%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ctdeconcolute_jsd", + "value": -0.1926, + "severity": 0, + "severity_value": 0.1926, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ctdeconcolute_jsd\n Worst score: -0.1926%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ctdeconcolute_jsd", + "value": 0.8057, + "severity": 0, + "severity_value": 0.40285, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ctdeconcolute_jsd\n Best score: 0.8057%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ctdeconcolute_jsd", + "value": -0.3451, + "severity": 0, + "severity_value": 0.3451, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ctdeconcolute_jsd\n Worst score: -0.3451%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ctdeconcolute_jsd", + "value": 0.1076, + "severity": 0, + "severity_value": 0.0538, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ctdeconcolute_jsd\n Best score: 0.1076%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ctdeconcolute_jsd", + "value": 0.6438, + "severity": 0, + "severity_value": -0.6438, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ctdeconcolute_jsd\n Worst score: 0.6438%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ctdeconcolute_jsd", + "value": 0.9789, + "severity": 0, + "severity_value": 0.48945, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ctdeconcolute_jsd\n Best score: 0.9789%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ctdeconcolute_jsd", + "value": -0.7347, + "severity": 0, + "severity_value": 0.7347, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ctdeconcolute_jsd\n Worst score: -0.7347%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ctdeconcolute_jsd", + "value": 0.0645, + "severity": 0, + "severity_value": 0.03225, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ctdeconcolute_jsd\n Best score: 0.0645%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ctdeconcolute_jsd", + "value": 0.2091, + "severity": 0, + "severity_value": -0.2091, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ctdeconcolute_jsd\n Worst score: 0.2091%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ctdeconcolute_jsd", + "value": 0.8361, + "severity": 0, + "severity_value": 0.41805, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ctdeconcolute_jsd\n Best score: 0.8361%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ctdeconcolute_jsd", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ctdeconcolute_jsd\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ctdeconcolute_jsd", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ctdeconcolute_jsd\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ctdeconcolute_jsd", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ctdeconcolute_jsd\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ctdeconcolute_jsd", + "value": 0.1328, + "severity": 0, + "severity_value": 0.0664, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ctdeconcolute_jsd\n Best score: 0.1328%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ctdeconcolute_jsd", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ctdeconcolute_jsd\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ctdeconcolute_jsd", + "value": 0.2931, + "severity": 0, + "severity_value": 0.14655, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ctdeconcolute_jsd\n Best score: 0.2931%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 crosscor_mantel", + "value": -0.4084, + "severity": 0, + "severity_value": 0.4084, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: crosscor_mantel\n Worst score: -0.4084%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 crosscor_mantel", + "value": 0.961, + "severity": 0, + "severity_value": 0.4805, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: crosscor_mantel\n Best score: 0.961%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb crosscor_mantel", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: crosscor_mantel\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb crosscor_mantel", + "value": 0.9902, + "severity": 0, + "severity_value": 0.4951, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: crosscor_mantel\n Best score: 0.9902%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson crosscor_mantel", + "value": -0.0282, + "severity": 0, + "severity_value": 0.0282, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: crosscor_mantel\n Worst score: -0.0282%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson crosscor_mantel", + "value": 0.9778, + "severity": 0, + "severity_value": 0.4889, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: crosscor_mantel\n Best score: 0.9778%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim crosscor_mantel", + "value": 0.0013, + "severity": 0, + "severity_value": -0.0013, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: crosscor_mantel\n Worst score: 0.0013%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim crosscor_mantel", + "value": 0.8797, + "severity": 0, + "severity_value": 0.43985, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: crosscor_mantel\n Best score: 0.8797%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter crosscor_mantel", + "value": -0.0256, + "severity": 0, + "severity_value": 0.0256, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: crosscor_mantel\n Worst score: -0.0256%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter crosscor_mantel", + "value": 0.0139, + "severity": 0, + "severity_value": 0.00695, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: crosscor_mantel\n Best score: 0.0139%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim crosscor_mantel", + "value": 0.8265, + "severity": 0, + "severity_value": -0.8265, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: crosscor_mantel\n Worst score: 0.8265%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim crosscor_mantel", + "value": 0.9988, + "severity": 0, + "severity_value": 0.4994, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: crosscor_mantel\n Best score: 0.9988%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim crosscor_mantel", + "value": -0.0439, + "severity": 0, + "severity_value": 0.0439, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: crosscor_mantel\n Worst score: -0.0439%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim crosscor_mantel", + "value": 0.0075, + "severity": 0, + "severity_value": 0.00375, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: crosscor_mantel\n Best score: 0.0075%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave crosscor_mantel", + "value": -0.0007, + "severity": 0, + "severity_value": 0.0007, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: crosscor_mantel\n Worst score: -0.0007%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave crosscor_mantel", + "value": 0.7695, + "severity": 0, + "severity_value": 0.38475, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: crosscor_mantel\n Best score: 0.7695%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive crosscor_mantel", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: crosscor_mantel\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive crosscor_mantel", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: crosscor_mantel\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle crosscor_mantel", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: crosscor_mantel\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle crosscor_mantel", + "value": 0.0094, + "severity": 0, + "severity_value": 0.0047, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: crosscor_mantel\n Best score: 0.0094%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal crosscor_mantel", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: crosscor_mantel\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal crosscor_mantel", + "value": 0.0116, + "severity": 0, + "severity_value": 0.0058, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: crosscor_mantel\n Best score: 0.0116%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 crosscor_cosine", + "value": 0.8383, + "severity": 0, + "severity_value": 0.41915, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: crosscor_cosine\n Best score: 0.8383%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb crosscor_cosine", + "value": 0.9707, + "severity": 0, + "severity_value": 0.48535, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: crosscor_cosine\n Best score: 0.9707%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson crosscor_cosine", + "value": 0.9866, + "severity": 0, + "severity_value": 0.4933, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: crosscor_cosine\n Best score: 0.9866%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim crosscor_cosine", + "value": 0.8373, + "severity": 0, + "severity_value": 0.41865, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: crosscor_cosine\n Best score: 0.8373%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter crosscor_cosine", + "value": -0.0009, + "severity": 0, + "severity_value": 0.0009, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: crosscor_cosine\n Worst score: -0.0009%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter crosscor_cosine", + "value": 0.1977, + "severity": 0, + "severity_value": 0.09885, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: crosscor_cosine\n Best score: 0.1977%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim crosscor_cosine", + "value": 0.9996, + "severity": 0, + "severity_value": 0.4998, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: crosscor_cosine\n Best score: 0.9996%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim crosscor_cosine", + "value": -0.0282, + "severity": 0, + "severity_value": 0.0282, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: crosscor_cosine\n Worst score: -0.0282%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim crosscor_cosine", + "value": 0.1873, + "severity": 0, + "severity_value": 0.09365, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: crosscor_cosine\n Best score: 0.1873%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave crosscor_cosine", + "value": -0.0011, + "severity": 0, + "severity_value": 0.0011, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: crosscor_cosine\n Worst score: -0.0011%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave crosscor_cosine", + "value": 0.4548, + "severity": 0, + "severity_value": 0.2274, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: crosscor_cosine\n Best score: 0.4548%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive crosscor_cosine", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: crosscor_cosine\n Worst score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive crosscor_cosine", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: crosscor_cosine\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle crosscor_cosine", + "value": 0.0114, + "severity": 0, + "severity_value": 0.0057, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: crosscor_cosine\n Best score: 0.0114%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal crosscor_cosine", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: crosscor_cosine\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal crosscor_cosine", + "value": 0.0148, + "severity": 0, + "severity_value": 0.0074, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: crosscor_cosine\n Best score: 0.0148%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_L_stats", + "value": -0.401, + "severity": 0, + "severity_value": 0.401, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_L_stats\n Worst score: -0.401%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_L_stats", + "value": 0.5373, + "severity": 0, + "severity_value": 0.26865, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_L_stats\n Best score: 0.5373%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_L_stats", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_L_stats\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_L_stats", + "value": 0.9869, + "severity": 0, + "severity_value": 0.49345, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_L_stats\n Best score: 0.9869%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_L_stats", + "value": -0.7104, + "severity": 0, + "severity_value": 0.7104, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_L_stats\n Worst score: -0.7104%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_L_stats", + "value": 0.6059, + "severity": 0, + "severity_value": 0.30295, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_L_stats\n Best score: 0.6059%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_L_stats", + "value": -2.4098, + "severity": 2, + "severity_value": 2.4098, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_L_stats\n Worst score: -2.4098%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_L_stats", + "value": 0.6058, + "severity": 0, + "severity_value": 0.3029, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_L_stats\n Best score: 0.6058%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_L_stats", + "value": -2.4967, + "severity": 2, + "severity_value": 2.4967, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_L_stats\n Worst score: -2.4967%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_L_stats", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_L_stats\n Best score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_L_stats", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_L_stats\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_L_stats", + "value": 0.9358, + "severity": 0, + "severity_value": 0.4679, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_L_stats\n Best score: 0.9358%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_L_stats", + "value": -2.6781, + "severity": 2, + "severity_value": 2.6781, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_L_stats\n Worst score: -2.6781%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_L_stats", + "value": 0.5335, + "severity": 0, + "severity_value": 0.26675, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_L_stats\n Best score: 0.5335%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_L_stats", + "value": -2.7543, + "severity": 2, + "severity_value": 2.7543, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_L_stats\n Worst score: -2.7543%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_L_stats", + "value": 0.5618, + "severity": 0, + "severity_value": 0.2809, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_L_stats\n Best score: 0.5618%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_L_stats", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_L_stats\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_L_stats", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_L_stats\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_L_stats", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_L_stats\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_L_stats", + "value": 0.8515, + "severity": 0, + "severity_value": 0.42575, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_L_stats\n Best score: 0.8515%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_L_stats", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_L_stats\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_L_stats", + "value": 0.5126, + "severity": 0, + "severity_value": 0.2563, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_L_stats\n Best score: 0.5126%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_celltype_interaction\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_celltype_interaction", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_celltype_interaction\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_nn_correlation", + "value": 0.9645, + "severity": 0, + "severity_value": 0.48225, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9645%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_nn_correlation", + "value": 0.986, + "severity": 0, + "severity_value": 0.493, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_nn_correlation\n Best score: 0.986%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_nn_correlation", + "value": -20.3592, + "severity": 3, + "severity_value": 20.3592, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_nn_correlation\n Worst score: -20.3592%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_nn_correlation", + "value": 0.9905, + "severity": 0, + "severity_value": 0.49525, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9905%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_nn_correlation", + "value": -2.3172, + "severity": 2, + "severity_value": 2.3172, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_nn_correlation\n Worst score: -2.3172%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_nn_correlation", + "value": 0.9654, + "severity": 0, + "severity_value": 0.4827, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9654%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_nn_correlation", + "value": -0.0436, + "severity": 0, + "severity_value": 0.0436, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_nn_correlation\n Worst score: -0.0436%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_nn_correlation", + "value": 0.9577, + "severity": 0, + "severity_value": 0.47885, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9577%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_nn_correlation", + "value": 0.9981, + "severity": 0, + "severity_value": 0.49905, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9981%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_nn_correlation", + "value": -0.0869, + "severity": 0, + "severity_value": 0.0869, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_nn_correlation\n Worst score: -0.0869%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_nn_correlation", + "value": 0.8979, + "severity": 0, + "severity_value": 0.44895, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_nn_correlation\n Best score: 0.8979%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_nn_correlation", + "value": 0.9513, + "severity": 0, + "severity_value": 0.47565, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_nn_correlation\n Best score: 0.9513%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_nn_correlation", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_nn_correlation\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_nn_correlation", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_nn_correlation\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_nn_correlation", + "value": 0.6165, + "severity": 0, + "severity_value": 0.30825, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_nn_correlation\n Best score: 0.6165%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_nn_correlation", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_nn_correlation\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_nn_correlation", + "value": 0.3682, + "severity": 0, + "severity_value": 0.1841, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_nn_correlation\n Best score: 0.3682%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_morans_I", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_morans_I\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_morans_I", + "value": 0.977, + "severity": 0, + "severity_value": 0.4885, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_morans_I\n Best score: 0.977%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_morans_I", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_morans_I\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_morans_I", + "value": 0.999, + "severity": 0, + "severity_value": 0.4995, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_morans_I\n Best score: 0.999%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_morans_I", + "value": -54.694, + "severity": 3, + "severity_value": 54.694, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_morans_I\n Worst score: -54.694%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_morans_I", + "value": 0.9991, + "severity": 0, + "severity_value": 0.49955, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_morans_I\n Best score: 0.9991%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_morans_I", + "value": -3.7508, + "severity": 3, + "severity_value": 3.7508, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_morans_I\n Worst score: -3.7508%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_morans_I", + "value": 0.9857, + "severity": 0, + "severity_value": 0.49285, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_morans_I\n Best score: 0.9857%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_morans_I", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_morans_I\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_morans_I", + "value": 0.9945, + "severity": 0, + "severity_value": 0.49725, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_morans_I\n Best score: 0.9945%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_morans_I", + "value": -1.1172, + "severity": 1, + "severity_value": 1.1172, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_morans_I\n Worst score: -1.1172%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_morans_I", + "value": 0.9998, + "severity": 0, + "severity_value": 0.4999, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_morans_I\n Best score: 0.9998%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_morans_I", + "value": -1.7977, + "severity": 1, + "severity_value": 1.7977, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_morans_I\n Worst score: -1.7977%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_morans_I", + "value": 0.9376, + "severity": 0, + "severity_value": 0.4688, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_morans_I\n Best score: 0.9376%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_morans_I", + "value": -0.4483, + "severity": 0, + "severity_value": 0.4483, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_morans_I\n Worst score: -0.4483%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_morans_I", + "value": 0.9752, + "severity": 0, + "severity_value": 0.4876, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_morans_I\n Best score: 0.9752%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_morans_I", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_morans_I\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_morans_I", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_morans_I\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_morans_I", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_morans_I\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_morans_I", + "value": 0.1475, + "severity": 0, + "severity_value": 0.07375, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_morans_I\n Best score: 0.1475%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_morans_I", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_morans_I\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_morans_I", + "value": 0.3031, + "severity": 0, + "severity_value": 0.15155, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_morans_I\n Best score: 0.3031%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_transition_matrix", + "value": -1.0, + "severity": 0, + "severity_value": 1.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_transition_matrix\n Worst score: -1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_transition_matrix", + "value": 1.1429, + "severity": 0, + "severity_value": 0.57145, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_transition_matrix\n Best score: 1.1429%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_transition_matrix", + "value": 1.3333, + "severity": 0, + "severity_value": 0.66665, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_transition_matrix\n Best score: 1.3333%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_transition_matrix", + "value": 1.1429, + "severity": 0, + "severity_value": 0.57145, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_transition_matrix\n Best score: 1.1429%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_transition_matrix", + "value": -1.0, + "severity": 0, + "severity_value": 1.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_transition_matrix\n Worst score: -1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_transition_matrix", + "value": 3.3333, + "severity": 1, + "severity_value": 1.66665, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_transition_matrix\n Best score: 3.3333%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_transition_matrix", + "value": 4.0, + "severity": 1, + "severity_value": 2.0, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_transition_matrix\n Best score: 4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_transition_matrix", + "value": 1.3333, + "severity": 0, + "severity_value": 0.66665, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_transition_matrix\n Best score: 1.3333%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_transition_matrix", + "value": 4.0, + "severity": 1, + "severity_value": 2.0, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_transition_matrix\n Best score: 4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_transition_matrix", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_transition_matrix\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_transition_matrix", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_transition_matrix\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_transition_matrix", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_transition_matrix\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_transition_matrix", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_transition_matrix\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_transition_matrix", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_transition_matrix\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_transition_matrix", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_transition_matrix\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_transition_matrix", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_transition_matrix\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_transition_matrix", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_transition_matrix\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_central_score", + "value": -2.5, + "severity": 2, + "severity_value": 2.5, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_central_score\n Worst score: -2.5%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_central_score", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_central_score\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_central_score", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_central_score\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_central_score", + "value": 2.0, + "severity": 0, + "severity_value": 1.0, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_central_score\n Best score: 2.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_central_score", + "value": -1.0, + "severity": 0, + "severity_value": 1.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_central_score\n Worst score: -1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_central_score", + "value": 1.5, + "severity": 0, + "severity_value": 0.75, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_central_score\n Best score: 1.5%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_central_score", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_central_score\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_central_score", + "value": 7.0, + "severity": 3, + "severity_value": 3.5, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_central_score\n Best score: 7.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_central_score", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_central_score\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_central_score", + "value": 7.0, + "severity": 3, + "severity_value": 3.5, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_central_score\n Best score: 7.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_central_score", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_central_score\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_central_score", + "value": 2.0, + "severity": 0, + "severity_value": 1.0, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_central_score\n Best score: 2.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_central_score", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_central_score\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_central_score", + "value": 7.0, + "severity": 3, + "severity_value": 3.5, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_central_score\n Best score: 7.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_central_score", + "value": -1.0, + "severity": 0, + "severity_value": 1.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_central_score\n Worst score: -1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_central_score", + "value": 1.25, + "severity": 0, + "severity_value": 0.625, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_central_score\n Best score: 1.25%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_central_score", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_central_score\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_central_score", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_central_score\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_central_score", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_central_score\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_central_score", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_central_score\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_central_score", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_central_score\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_central_score", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_central_score\n Best score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_enrichment", + "value": -4.0, + "severity": 3, + "severity_value": 4.0, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_enrichment\n Worst score: -4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_enrichment", + "value": 2.0, + "severity": 0, + "severity_value": 1.0, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_enrichment\n Best score: 2.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_enrichment", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_enrichment\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_enrichment", + "value": -4.0, + "severity": 3, + "severity_value": 4.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_enrichment\n Worst score: -4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_enrichment", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_enrichment\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_enrichment", + "value": 4.0, + "severity": 1, + "severity_value": 2.0, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_enrichment\n Best score: 4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_enrichment", + "value": 4.0, + "severity": 1, + "severity_value": 2.0, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_enrichment\n Best score: 4.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_enrichment", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_enrichment\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_enrichment", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_enrichment\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_enrichment", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_enrichment\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_enrichment", + "value": 3.0, + "severity": 1, + "severity_value": 1.5, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_enrichment\n Best score: 3.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_enrichment", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_enrichment\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_enrichment", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_enrichment\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_enrichment", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_enrichment\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_enrichment", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_enrichment\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_enrichment", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_enrichment\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_enrichment", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_enrichment\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_transition_scalef", + "value": -12.4357, + "severity": 3, + "severity_value": 12.4357, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_transition_scalef\n Worst score: -12.4357%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_transition_scalef", + "value": 2.5279, + "severity": 1, + "severity_value": 1.26395, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_transition_scalef\n Best score: 2.5279%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_transition_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_transition_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_transition_scalef", + "value": 3.3003, + "severity": 1, + "severity_value": 1.65015, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_transition_scalef\n Best score: 3.3003%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_transition_scalef", + "value": -4.0175, + "severity": 3, + "severity_value": 4.0175, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_transition_scalef\n Worst score: -4.0175%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_transition_scalef", + "value": 2.8141, + "severity": 1, + "severity_value": 1.40705, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_transition_scalef\n Best score: 2.8141%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_transition_scalef", + "value": -3.4773, + "severity": 3, + "severity_value": 3.4773, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_transition_scalef\n Worst score: -3.4773%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_transition_scalef", + "value": 2.3964, + "severity": 1, + "severity_value": 1.1982, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_transition_scalef\n Best score: 2.3964%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_transition_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_transition_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_transition_scalef", + "value": 3.8803, + "severity": 1, + "severity_value": 1.94015, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_transition_scalef\n Best score: 3.8803%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_transition_scalef", + "value": -1.2426, + "severity": 1, + "severity_value": 1.2426, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_transition_scalef\n Worst score: -1.2426%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_transition_scalef", + "value": 2.9102, + "severity": 1, + "severity_value": 1.4551, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_transition_scalef\n Best score: 2.9102%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_transition_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_transition_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_transition_scalef", + "value": 3.8803, + "severity": 1, + "severity_value": 1.94015, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_transition_scalef\n Best score: 3.8803%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_transition_scalef", + "value": -0.7893, + "severity": 0, + "severity_value": 0.7893, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_transition_scalef\n Worst score: -0.7893%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_transition_scalef", + "value": 3.3624, + "severity": 1, + "severity_value": 1.6812, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_transition_scalef\n Best score: 3.3624%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_transition_scalef", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_transition_scalef\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_transition_scalef", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_transition_scalef\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_transition_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_transition_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_transition_scalef", + "value": 0.942, + "severity": 0, + "severity_value": 0.471, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_transition_scalef\n Best score: 0.942%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_transition_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_transition_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_transition_scalef", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_transition_scalef\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_central_score_scalef", + "value": -12.7374, + "severity": 3, + "severity_value": 12.7374, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_central_score_scalef\n Worst score: -12.7374%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_central_score_scalef", + "value": 1.2657, + "severity": 0, + "severity_value": 0.63285, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.2657%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_central_score_scalef", + "value": 1.6456, + "severity": 0, + "severity_value": 0.8228, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.6456%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_central_score_scalef", + "value": -4.4044, + "severity": 3, + "severity_value": 4.4044, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_central_score_scalef\n Worst score: -4.4044%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_central_score_scalef", + "value": 1.4039, + "severity": 0, + "severity_value": 0.70195, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.4039%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_central_score_scalef", + "value": -1.492, + "severity": 1, + "severity_value": 1.492, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_central_score_scalef\n Worst score: -1.492%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_central_score_scalef", + "value": 2.0261, + "severity": 1, + "severity_value": 1.01305, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_central_score_scalef\n Best score: 2.0261%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_central_score_scalef", + "value": 2.1239, + "severity": 1, + "severity_value": 1.06195, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_central_score_scalef\n Best score: 2.1239%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_central_score_scalef", + "value": 1.4072, + "severity": 0, + "severity_value": 0.7036, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.4072%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_central_score_scalef", + "value": 2.1239, + "severity": 1, + "severity_value": 1.06195, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_central_score_scalef\n Best score: 2.1239%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_central_score_scalef", + "value": -0.8299, + "severity": 0, + "severity_value": 0.8299, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_central_score_scalef\n Worst score: -0.8299%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_central_score_scalef", + "value": 1.3386, + "severity": 0, + "severity_value": 0.6693, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.3386%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_central_score_scalef", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_central_score_scalef", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_central_score_scalef\n Best score: 1%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_central_score_scalef", + "value": 0.4952, + "severity": 0, + "severity_value": 0.2476, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_central_score_scalef\n Best score: 0.4952%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_central_score_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_central_score_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_central_score_scalef", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_central_score_scalef\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign2 ks_statistic_enrichment_scalef", + "value": -129.8837, + "severity": 3, + "severity_value": 129.8837, + "code": "worst_score >= -1", + "message": "Method scdesign2 performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_enrichment_scalef\n Worst score: -129.8837%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign2 ks_statistic_enrichment_scalef", + "value": 2.5015, + "severity": 1, + "severity_value": 1.25075, + "code": "best_score <= 2", + "message": "Method scdesign2 performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign2\n Metric id: ks_statistic_enrichment_scalef\n Best score: 2.5015%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_nb ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scdesign3_nb performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_nb ks_statistic_enrichment_scalef", + "value": 2.8293, + "severity": 1, + "severity_value": 1.41465, + "code": "best_score <= 2", + "message": "Method scdesign3_nb performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_nb\n Metric id: ks_statistic_enrichment_scalef\n Best score: 2.8293%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score scdesign3_poisson ks_statistic_enrichment_scalef", + "value": -59.2387, + "severity": 3, + "severity_value": 59.2387, + "code": "worst_score >= -1", + "message": "Method scdesign3_poisson performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_enrichment_scalef\n Worst score: -59.2387%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score scdesign3_poisson ks_statistic_enrichment_scalef", + "value": 2.4207, + "severity": 1, + "severity_value": 1.21035, + "code": "best_score <= 2", + "message": "Method scdesign3_poisson performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: scdesign3_poisson\n Metric id: ks_statistic_enrichment_scalef\n Best score: 2.4207%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score sparsim ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method sparsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score sparsim ks_statistic_enrichment_scalef", + "value": 11.5541, + "severity": 3, + "severity_value": 5.77705, + "code": "best_score <= 2", + "message": "Method sparsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: sparsim\n Metric id: ks_statistic_enrichment_scalef\n Best score: 11.5541%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score splatter ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method splatter performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score splatter ks_statistic_enrichment_scalef", + "value": 11.4715, + "severity": 3, + "severity_value": 5.73575, + "code": "best_score <= 2", + "message": "Method splatter performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: splatter\n Metric id: ks_statistic_enrichment_scalef\n Best score: 11.4715%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score srtsim ks_statistic_enrichment_scalef", + "value": -0.0438, + "severity": 0, + "severity_value": 0.0438, + "code": "worst_score >= -1", + "message": "Method srtsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_enrichment_scalef\n Worst score: -0.0438%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score srtsim ks_statistic_enrichment_scalef", + "value": 2.4083, + "severity": 1, + "severity_value": 1.20415, + "code": "best_score <= 2", + "message": "Method srtsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: srtsim\n Metric id: ks_statistic_enrichment_scalef\n Best score: 2.4083%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score symsim ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method symsim performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score symsim ks_statistic_enrichment_scalef", + "value": 11.4882, + "severity": 3, + "severity_value": 5.7441, + "code": "best_score <= 2", + "message": "Method symsim performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: symsim\n Metric id: ks_statistic_enrichment_scalef\n Best score: 11.4882%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score zinbwave ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method zinbwave performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score zinbwave ks_statistic_enrichment_scalef", + "value": 4.8473, + "severity": 2, + "severity_value": 2.42365, + "code": "best_score <= 2", + "message": "Method zinbwave performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: zinbwave\n Metric id: ks_statistic_enrichment_scalef\n Best score: 4.8473%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score positive ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score positive ks_statistic_enrichment_scalef", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: positive\n Metric id: ks_statistic_enrichment_scalef\n Best score: 1.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_shuffle ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_shuffle performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_shuffle ks_statistic_enrichment_scalef", + "value": 0.2357, + "severity": 0, + "severity_value": 0.11785, + "code": "best_score <= 2", + "message": "Method negative_shuffle performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_shuffle\n Metric id: ks_statistic_enrichment_scalef\n Best score: 0.2357%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Worst score negative_normal ks_statistic_enrichment_scalef", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_normal performs much worse than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_enrichment_scalef\n Worst score: 0.0%\n" + }, + { + "task_id": "task_spatial_simulators", + "category": "Scaling", + "name": "Best score negative_normal ks_statistic_enrichment_scalef", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_normal performs a lot better than baselines.\n Task id: task_spatial_simulators\n Method id: negative_normal\n Metric id: ks_statistic_enrichment_scalef\n Best score: 1.0%\n" + } +] \ No newline at end of file diff --git a/results/spatial_simulators/data/results.json b/results/spatial_simulators/data/results.json new file mode 100644 index 00000000..e87f0427 --- /dev/null +++ b/results/spatial_simulators/data/results.json @@ -0,0 +1,5942 @@ +[ + { + "dataset_id": "brain", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0004, + "clustering_nmi": 0.001, + "crosscor_cosine": 0.5004, + "crosscor_mantel": 0.0002, + "ctdeconcolute_jsd": 0.0888, + "ctdeconvolute_rmse": 0.6845, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": 0.4223, + "ks_statistic_enrichment": 0.3125, + "ks_statistic_enrichment_scalef": 12.4224, + "ks_statistic_L_stats": 1.456, + "ks_statistic_morans_I": 0.1217, + "ks_statistic_nn_correlation": 0.5872, + "ks_statistic_transition_matrix": 0.5625, + "ks_statistic_transition_scalef": 0.3599, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0.0326, + "ks_statistic_nn_correlation": 0.179, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1229, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 21.3, + "cpu_pct": 137.1, + "peak_memory_mb": 6144, + "disk_read_mb": 73, + "disk_write_mb": 42 + } + }, + { + "dataset_id": "brain", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": 0.4077, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 13.4593, + "ks_statistic_L_stats": 0.2501, + "ks_statistic_morans_I": 0.1656, + "ks_statistic_nn_correlation": 0.8391, + "ks_statistic_transition_matrix": 0.5625, + "ks_statistic_transition_scalef": 0.3545, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0638, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.5968, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0313, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0384, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 21.2, + "cpu_pct": 137.3, + "peak_memory_mb": 6144, + "disk_read_mb": 73, + "disk_write_mb": 25 + } + }, + { + "dataset_id": "brain", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.7207, + "clustering_nmi": 0.7236, + "crosscor_cosine": 0.8937, + "crosscor_mantel": 0.7938, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1932, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 12.7952, + "ks_statistic_L_stats": -0.5645, + "ks_statistic_morans_I": -1.1827, + "ks_statistic_nn_correlation": -0.568, + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.1859, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.6405, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.7578, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 15.4, + "cpu_pct": 175.8, + "peak_memory_mb": 4711, + "disk_read_mb": 74, + "disk_write_mb": 43 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.75, + "ks_statistic_central_score_scalef": 1.6331, + "ks_statistic_enrichment": 0.625, + "ks_statistic_enrichment_scalef": 148.1337, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.625, + "ks_statistic_transition_scalef": 1.2688, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": -2.5, + "ks_statistic_central_score_scalef": -5.2834, + "ks_statistic_enrichment": -4, + "ks_statistic_enrichment_scalef": -129.8837, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": -0.1667, + "ks_statistic_transition_scalef": -5.2224, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 209, + "cpu_pct": 300.3, + "peak_memory_mb": 20276, + "disk_read_mb": 84, + "disk_write_mb": 34 + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": "NA", + "duration_sec": 4141, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "brain", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.0014, + "clustering_nmi": 0.0032, + "crosscor_cosine": 0.5657, + "crosscor_mantel": 0.1432, + "ctdeconcolute_jsd": 0.0587, + "ctdeconvolute_rmse": 0.2664, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.4167, + "ks_statistic_central_score_scalef": 0.7321, + "ks_statistic_enrichment": 0.625, + "ks_statistic_enrichment_scalef": 74.883, + "ks_statistic_L_stats": 0.4584, + "ks_statistic_morans_I": 73.9127, + "ks_statistic_nn_correlation": 29.4871, + "ks_statistic_transition_matrix": 0.3125, + "ks_statistic_transition_scalef": 0.7035, + "svg_precision": 0, + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0026, + "clustering_nmi": 0.003, + "crosscor_cosine": 0.1659, + "crosscor_mantel": 0.1803, + "ctdeconcolute_jsd": 0.3388, + "ctdeconvolute_rmse": 0.6108, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": -0.5, + "ks_statistic_central_score_scalef": -1.3516, + "ks_statistic_enrichment": -4, + "ks_statistic_enrichment_scalef": -59.2387, + "ks_statistic_L_stats": 0.4938, + "ks_statistic_morans_I": -54.694, + "ks_statistic_nn_correlation": -20.3592, + "ks_statistic_transition_matrix": 0.6667, + "ks_statistic_transition_scalef": -1.9741, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1368, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 14897, + "cpu_pct": 100.1, + "peak_memory_mb": 8295, + "disk_read_mb": 105, + "disk_write_mb": 25 + } + }, + { + "dataset_id": "brain", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.0002, + "clustering_nmi": 0.0009, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0012, + "ctdeconcolute_jsd": 0.0699, + "ctdeconvolute_rmse": 0.3238, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0143, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 1.4791, + "ks_statistic_L_stats": 0.2319, + "ks_statistic_morans_I": 5.2231, + "ks_statistic_nn_correlation": 4.0997, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0104, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0008, + "clustering_nmi": -0.0003, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0013, + "ctdeconcolute_jsd": 0.2134, + "ctdeconvolute_rmse": 0.5269, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.7808, + "ks_statistic_enrichment": 4, + "ks_statistic_enrichment_scalef": 11.5541, + "ks_statistic_L_stats": 0.6058, + "ks_statistic_morans_I": -3.7508, + "ks_statistic_nn_correlation": -2.3172, + "ks_statistic_transition_matrix": 1.1667, + "ks_statistic_transition_scalef": 2.0081, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.4082, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 167, + "cpu_pct": 108.7, + "peak_memory_mb": 8090, + "disk_read_mb": 103, + "disk_write_mb": 25 + } + }, + { + "dataset_id": "brain", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0001, + "clustering_nmi": 0.0009, + "crosscor_cosine": 0.5001, + "crosscor_mantel": 0.0004, + "ctdeconcolute_jsd": 0.0793, + "ctdeconvolute_rmse": 0.6579, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0143, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 1.5647, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0104, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0007, + "clustering_nmi": -0.0002, + "crosscor_cosine": -0.0009, + "crosscor_mantel": 0.0003, + "ctdeconcolute_jsd": 0.1076, + "ctdeconvolute_rmse": 0.0388, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.7808, + "ks_statistic_enrichment": 2, + "ks_statistic_enrichment_scalef": 11.4715, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.1667, + "ks_statistic_transition_scalef": 2.0081, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.3415, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 33.9, + "cpu_pct": 128.5, + "peak_memory_mb": 5428, + "disk_read_mb": 98, + "disk_write_mb": 25 + } + }, + { + "dataset_id": "brain", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.7426, + "clustering_nmi": 0.7648, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7382, + "ctdeconcolute_jsd": 0.0173, + "ctdeconvolute_rmse": 0.0431, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.2108, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 13.1303, + "ks_statistic_L_stats": -0.2366, + "ks_statistic_morans_I": -0.728, + "ks_statistic_nn_correlation": -0.3897, + "ks_statistic_transition_matrix": 0.3125, + "ks_statistic_transition_scalef": 0.2119, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 1.0304, + "clustering_nmi": 1.057, + "crosscor_cosine": 0, + "crosscor_mantel": 0.93, + "ctdeconcolute_jsd": 0.8047, + "ctdeconvolute_rmse": 0.937, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 0.9232, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.3173, + "ks_statistic_L_stats": 0.8377, + "ks_statistic_morans_I": 0.6628, + "ks_statistic_nn_correlation": 0.8733, + "ks_statistic_transition_matrix": 0.6667, + "ks_statistic_transition_scalef": 0.8505, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.6002, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 114, + "cpu_pct": 113.3, + "peak_memory_mb": 6554, + "disk_read_mb": 98, + "disk_write_mb": 25 + } + }, + { + "dataset_id": "brain", + "method_id": "symsim", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0143, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 1.5474, + "ks_statistic_L_stats": 0.3782, + "ks_statistic_morans_I": 2.5896, + "ks_statistic_nn_correlation": 0.9613, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0104, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.7808, + "ks_statistic_enrichment": 2, + "ks_statistic_enrichment_scalef": 11.4882, + "ks_statistic_L_stats": 0.5335, + "ks_statistic_morans_I": -1.7977, + "ks_statistic_nn_correlation": -0.0869, + "ks_statistic_transition_matrix": 1.1667, + "ks_statistic_transition_scalef": 2.0081, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.363, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 544, + "cpu_pct": 102.8, + "peak_memory_mb": 7271, + "disk_read_mb": 441, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "brain", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.001, + "clustering_nmi": 0.0014, + "crosscor_cosine": 0.5, + "crosscor_mantel": -0.0004, + "ctdeconcolute_jsd": 0.0499, + "ctdeconvolute_rmse": 0.2123, + "ks_statistic_celltype_interaction": -0.6335, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1343, + "ks_statistic_enrichment": 0.1875, + "ks_statistic_enrichment_scalef": 8.4333, + "ks_statistic_L_stats": 0.3209, + "ks_statistic_morans_I": 0.7701, + "ks_statistic_nn_correlation": 0.0869, + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": 0.1738, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.002, + "clustering_nmi": 0.0005, + "crosscor_cosine": -0.0011, + "crosscor_mantel": -0.0007, + "ctdeconcolute_jsd": 0.4379, + "ctdeconvolute_rmse": 0.6899, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.257, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 4.8473, + "ks_statistic_L_stats": 0.5618, + "ks_statistic_morans_I": -0.4483, + "ks_statistic_nn_correlation": 0.5346, + "ks_statistic_transition_matrix": 0.8333, + "ks_statistic_transition_scalef": 1.0693, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.4478, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 200, + "cpu_pct": 398.8, + "peak_memory_mb": 95335, + "disk_read_mb": 105, + "disk_write_mb": 26 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": 0.0003, + "clustering_nmi": 0.0006, + "crosscor_cosine": 0.5, + "crosscor_mantel": 0.0015, + "ctdeconcolute_jsd": 0.1195, + "ctdeconvolute_rmse": 0.1455, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 1.4116, + "ks_statistic_enrichment": 0.6667, + "ks_statistic_enrichment_scalef": 175.6323, + "ks_statistic_L_stats": -2.5214, + "ks_statistic_morans_I": 22.4986, + "ks_statistic_nn_correlation": 25.995, + "ks_statistic_transition_matrix": 0.6667, + "ks_statistic_transition_scalef": 0.9158, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0006, + "clustering_nmi": 0.0006, + "crosscor_cosine": 0.0023, + "crosscor_mantel": 0.0021, + "ctdeconcolute_jsd": 0.2931, + "ctdeconvolute_rmse": 0.3982, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.0032, + "ks_statistic_morans_I": 0.1542, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0475, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 11.6, + "cpu_pct": 137.5, + "peak_memory_mb": 1946, + "disk_read_mb": 52, + "disk_write_mb": 40 + } + }, + { + "dataset_id": "breast", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": -0.0001, + "clustering_nmi": 0.0003, + "crosscor_cosine": 0.4991, + "crosscor_mantel": -0.0002, + "ctdeconcolute_jsd": 0.1691, + "ctdeconvolute_rmse": 0.2418, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 1.399, + "ks_statistic_enrichment": 0.6667, + "ks_statistic_enrichment_scalef": 174.8662, + "ks_statistic_L_stats": -2.5109, + "ks_statistic_morans_I": 26.6401, + "ks_statistic_nn_correlation": 23.204, + "ks_statistic_transition_matrix": 0.6667, + "ks_statistic_transition_scalef": 0.8995, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0097, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0047, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0.1062, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0197, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0078, + "resources": { + "submit": "2025-03-14 13:21:54", + "exit_code": 0, + "duration_sec": 10.9, + "cpu_pct": 140.7, + "peak_memory_mb": 2048, + "disk_read_mb": 52, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.6788, + "clustering_nmi": 0.6038, + "crosscor_cosine": 0.9017, + "crosscor_mantel": 0.814, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.1091, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 11.8697, + "ks_statistic_L_stats": -5.8371, + "ks_statistic_morans_I": -0.2191, + "ks_statistic_nn_correlation": -0.2808, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.0866, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.8889, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 7.5, + "cpu_pct": 246.8, + "peak_memory_mb": 4608, + "disk_read_mb": 52, + "disk_write_mb": 23 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.0597, + "clustering_nmi": 0.0603, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7822, + "ctdeconcolute_jsd": 0.1036, + "ctdeconvolute_rmse": 0.1038, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.3578, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 18.9174, + "ks_statistic_L_stats": -2.4677, + "ks_statistic_morans_I": 2.3897, + "ks_statistic_nn_correlation": 0.8379, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.0845, + "svg_precision": 0.9087, + "svg_recall": 0.9241 + }, + "scaled_scores": { + "clustering_ari": 0.0882, + "clustering_nmi": 0.0995, + "crosscor_cosine": 0, + "crosscor_mantel": 0.961, + "ctdeconcolute_jsd": 0.3872, + "ctdeconvolute_rmse": 0.5708, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 0.8091, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.957, + "ks_statistic_L_stats": -0.013, + "ks_statistic_morans_I": 0.9029, + "ks_statistic_nn_correlation": 0.9574, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1.0025, + "svg_precision": 0, + "svg_recall": 0.9241 + }, + "mean_score": 0.5643, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 286, + "cpu_pct": 285.1, + "peak_memory_mb": 20173, + "disk_read_mb": 56, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.2463, + "clustering_nmi": 0.2119, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.8061, + "ctdeconcolute_jsd": 0.1037, + "ctdeconvolute_rmse": 0.1228, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.2499, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 31.5797, + "ks_statistic_L_stats": -5.0991, + "ks_statistic_morans_I": 0.0975, + "ks_statistic_nn_correlation": 0.0865, + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.1764, + "svg_precision": 0.9506, + "svg_recall": 0.9747 + }, + "scaled_scores": { + "clustering_ari": 0.363, + "clustering_nmi": 0.3506, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9902, + "ctdeconcolute_jsd": 0.3867, + "ctdeconvolute_rmse": 0.4922, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 0.8919, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 0.8796, + "ks_statistic_L_stats": 0.7781, + "ks_statistic_morans_I": 0.9882, + "ks_statistic_nn_correlation": 0.986, + "ks_statistic_transition_matrix": 0.6667, + "ks_statistic_transition_scalef": 0.8917, + "svg_precision": 0, + "svg_recall": 0.9747 + }, + "mean_score": 0.5911, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 11217, + "cpu_pct": 100.1, + "peak_memory_mb": 10752, + "disk_read_mb": 84, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 143, + "duration_sec": 28811, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "breast", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.0816, + "clustering_nmi": 0.0921, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0178, + "ctdeconcolute_jsd": 0.2016, + "ctdeconvolute_rmse": 0.3141, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.1608, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 30.5667, + "ks_statistic_L_stats": 2.8558, + "ks_statistic_morans_I": 1.2295, + "ks_statistic_nn_correlation": 0.6275, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.1157, + "svg_precision": 0.8513, + "svg_recall": 0.7848 + }, + "scaled_scores": { + "clustering_ari": 0.1203, + "clustering_nmi": 0.1522, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0222, + "ctdeconcolute_jsd": -0.1926, + "ctdeconvolute_rmse": -0.2989, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 0.9604, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 0.8858, + "ks_statistic_L_stats": -1.6134, + "ks_statistic_morans_I": 0.9461, + "ks_statistic_nn_correlation": 0.9654, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 0.9648, + "svg_precision": 0, + "svg_recall": 0.7848 + }, + "mean_score": 0.4334, + "resources": { + "submit": "2025-03-14 13:21:54", + "exit_code": 0, + "duration_sec": 202, + "cpu_pct": 102.3, + "peak_memory_mb": 4404, + "disk_read_mb": 81, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0894, + "clustering_nmi": 0.0975, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0005, + "ctdeconcolute_jsd": 0.1911, + "ctdeconvolute_rmse": 0.264, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.1843, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 23.1831, + "ks_statistic_L_stats": 2.3411, + "ks_statistic_morans_I": 25.4925, + "ks_statistic_nn_correlation": 27.1406, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.1076, + "svg_precision": 0.4722, + "svg_recall": 0.9135 + }, + "scaled_scores": { + "clustering_ari": 0.1319, + "clustering_nmi": 0.1611, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0008, + "ctdeconcolute_jsd": -0.1305, + "ctdeconvolute_rmse": -0.0918, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 0.9423, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.9309, + "ks_statistic_L_stats": -1.4587, + "ks_statistic_morans_I": 0.0427, + "ks_statistic_nn_correlation": -0.0436, + "ks_statistic_transition_matrix": 2, + "ks_statistic_transition_scalef": 0.9746, + "svg_precision": 0, + "svg_recall": 0.9135 + }, + "mean_score": 0.3943, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 27.9, + "cpu_pct": 137.1, + "peak_memory_mb": 5428, + "disk_read_mb": 76, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.6498, + "clustering_nmi": 0.5733, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.8123, + "ctdeconcolute_jsd": 0.0602, + "ctdeconvolute_rmse": 0.0668, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.0921, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 10.2241, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.0671, + "svg_precision": 0.9705, + "svg_recall": 0.9705 + }, + "scaled_scores": { + "clustering_ari": 0.9573, + "clustering_nmi": 0.9495, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9979, + "ctdeconcolute_jsd": 0.6438, + "ctdeconvolute_rmse": 0.7236, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.0131, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.01, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1.0235, + "svg_precision": 0, + "svg_recall": 0.9705 + }, + "mean_score": 0.6246, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 82, + "cpu_pct": 105, + "peak_memory_mb": 2356, + "disk_read_mb": 77, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "breast", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.0894, + "clustering_nmi": 0.0975, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.001, + "ctdeconcolute_jsd": 0.1582, + "ctdeconvolute_rmse": 0.1905, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.1843, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 26.1298, + "ks_statistic_L_stats": 2.7856, + "ks_statistic_morans_I": 5.1939, + "ks_statistic_nn_correlation": 9.5611, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.1076, + "svg_precision": 0.3636, + "svg_recall": 0.0675 + }, + "scaled_scores": { + "clustering_ari": 0.1319, + "clustering_nmi": 0.1611, + "crosscor_cosine": 0, + "crosscor_mantel": -0.001, + "ctdeconcolute_jsd": 0.0645, + "ctdeconvolute_rmse": 0.2123, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 0.9423, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.9129, + "ks_statistic_L_stats": -1.5923, + "ks_statistic_morans_I": 0.7985, + "ks_statistic_nn_correlation": 0.6254, + "ks_statistic_transition_matrix": 2, + "ks_statistic_transition_scalef": 0.9746, + "svg_precision": 0, + "svg_recall": 0.0675 + }, + "mean_score": 0.4384, + "resources": { + "submit": "2025-03-14 13:21:54", + "exit_code": 0, + "duration_sec": 272, + "cpu_pct": 101.7, + "peak_memory_mb": 3789, + "disk_read_mb": 337, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "breast", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.0622, + "clustering_nmi": 0.0565, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.4217, + "ctdeconcolute_jsd": 0.0792, + "ctdeconvolute_rmse": 0.0652, + "ks_statistic_celltype_interaction": -0.5633, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.701, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 135.5554, + "ks_statistic_L_stats": 3.0795, + "ks_statistic_morans_I": 3.5225, + "ks_statistic_nn_correlation": 1.2376, + "ks_statistic_transition_matrix": 0.5556, + "ks_statistic_transition_scalef": 0.7637, + "svg_precision": 0.9497, + "svg_recall": 0.9156 + }, + "scaled_scores": { + "clustering_ari": 0.0918, + "clustering_nmi": 0.0932, + "crosscor_cosine": 0, + "crosscor_mantel": 0.5182, + "ctdeconcolute_jsd": 0.5316, + "ctdeconvolute_rmse": 0.7302, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.5456, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 0.2447, + "ks_statistic_L_stats": -1.6807, + "ks_statistic_morans_I": 0.8607, + "ks_statistic_nn_correlation": 0.9422, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.1834, + "svg_precision": 0, + "svg_recall": 0.9156 + }, + "mean_score": 0.3606, + "resources": { + "submit": "2025-03-14 13:21:54", + "exit_code": 0, + "duration_sec": 288, + "cpu_pct": 389.9, + "peak_memory_mb": 52634, + "disk_read_mb": 84, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": 0.0053, + "clustering_nmi": 0.0121, + "crosscor_cosine": 0.4998, + "crosscor_mantel": -4.3873e-06, + "ctdeconcolute_jsd": 0.0931, + "ctdeconvolute_rmse": 0.3563, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.9674, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 39.7442, + "ks_statistic_L_stats": 2.5401, + "ks_statistic_morans_I": 14.0828, + "ks_statistic_nn_correlation": 11.5441, + "ks_statistic_transition_matrix": 0.625, + "ks_statistic_transition_scalef": 0.7501, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0069, + "clustering_nmi": 0.0089, + "crosscor_cosine": 0.0024, + "crosscor_mantel": 0.0025, + "ctdeconcolute_jsd": 0.089, + "ctdeconvolute_rmse": 0.1531, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0146, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 11.5, + "cpu_pct": 178.5, + "peak_memory_mb": 3277, + "disk_read_mb": 48, + "disk_write_mb": 12 + } + }, + { + "dataset_id": "cortex", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.001, + "clustering_nmi": 0.007, + "crosscor_cosine": 0.4988, + "crosscor_mantel": -0.0022, + "ctdeconcolute_jsd": 0.1022, + "ctdeconvolute_rmse": 0.4207, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.9447, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 39.3116, + "ks_statistic_L_stats": 0.0772, + "ks_statistic_morans_I": 11.9737, + "ks_statistic_nn_correlation": 7.5269, + "ks_statistic_transition_matrix": 0.625, + "ks_statistic_transition_scalef": 0.7105, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0301, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0121, + "ks_statistic_L_stats": 0.7435, + "ks_statistic_morans_I": 0.1475, + "ks_statistic_nn_correlation": 0.326, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.063, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0735, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 10.1, + "cpu_pct": 183.8, + "peak_memory_mb": 4608, + "disk_read_mb": 48, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.6301, + "clustering_nmi": 0.5719, + "crosscor_cosine": 0.9011, + "crosscor_mantel": 0.8814, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.2147, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 4.0326, + "ks_statistic_L_stats": -0.7724, + "ks_statistic_morans_I": -0.2167, + "ks_statistic_nn_correlation": -0.7794, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.1212, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.8889, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 8.3, + "cpu_pct": 280.4, + "peak_memory_mb": 5940, + "disk_read_mb": 49, + "disk_write_mb": 20 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.1849, + "clustering_nmi": 0.1817, + "crosscor_cosine": 0.7835, + "crosscor_mantel": 0.548, + "ctdeconcolute_jsd": 0.0939, + "ctdeconvolute_rmse": 0.3481, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.4167, + "ks_statistic_central_score_scalef": 0.4846, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 26.6605, + "ks_statistic_L_stats": 0.7603, + "ks_statistic_morans_I": 0.2376, + "ks_statistic_nn_correlation": 0.5332, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.5495, + "svg_precision": 0.8248, + "svg_recall": 0.277 + }, + "scaled_scores": { + "clustering_ari": 0.2924, + "clustering_nmi": 0.3092, + "crosscor_cosine": 0.7075, + "crosscor_mantel": 0.6227, + "ctdeconcolute_jsd": 0.082, + "ctdeconvolute_rmse": 0.1725, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.6, + "ks_statistic_central_score_scalef": 0.6413, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 0.3664, + "ks_statistic_L_stats": 0.5373, + "ks_statistic_morans_I": 0.9682, + "ks_statistic_nn_correlation": 0.8935, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.3191, + "svg_precision": 0, + "svg_recall": 0.277 + }, + "mean_score": 0.4235, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 326.3, + "peak_memory_mb": 19559, + "disk_read_mb": 72, + "disk_write_mb": 30 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 0.2489, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 30.2106, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.5267, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.4, + "ks_statistic_central_score_scalef": 0.9546, + "ks_statistic_enrichment": 0.6667, + "ks_statistic_enrichment_scalef": 0.267, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.3553, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1746, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 722, + "cpu_pct": 101.5, + "peak_memory_mb": 8295, + "disk_read_mb": 81, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.2915, + "clustering_nmi": 0.2907, + "crosscor_cosine": 0.8781, + "crosscor_mantel": 0.7917, + "ctdeconcolute_jsd": 0.06, + "ctdeconvolute_rmse": 0.1833, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.6719, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 41.0586, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.7692, + "svg_precision": 0.6169, + "svg_recall": 0.951 + }, + "scaled_scores": { + "clustering_ari": 0.4618, + "clustering_nmi": 0.5022, + "crosscor_cosine": 0.9426, + "crosscor_mantel": 0.8985, + "ctdeconcolute_jsd": 0.4134, + "ctdeconvolute_rmse": 0.5644, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.3926, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": -0.0368, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": -0.0302, + "svg_precision": 0, + "svg_recall": 0.951 + }, + "mean_score": 0.2987, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 555, + "cpu_pct": 102.2, + "peak_memory_mb": 8192, + "disk_read_mb": 81, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.2853, + "clustering_nmi": 0.3018, + "crosscor_cosine": 0.7209, + "crosscor_mantel": 0.464, + "ctdeconcolute_jsd": 0.0734, + "ctdeconvolute_rmse": 0.2583, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.0758, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 2.3598, + "ks_statistic_L_stats": 2.9395, + "ks_statistic_morans_I": 1.0297, + "ks_statistic_nn_correlation": 3.9862, + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.0479, + "svg_precision": 0.7315, + "svg_recall": 0.5343 + }, + "scaled_scores": { + "clustering_ari": 0.452, + "clustering_nmi": 0.5217, + "crosscor_cosine": 0.5519, + "crosscor_mantel": 0.5276, + "ctdeconcolute_jsd": 0.2817, + "ctdeconvolute_rmse": 0.386, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.1846, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0468, + "ks_statistic_L_stats": -0.1206, + "ks_statistic_morans_I": 0.9128, + "ks_statistic_nn_correlation": 0.6133, + "ks_statistic_transition_matrix": 0.875, + "ks_statistic_transition_scalef": 1.1165, + "svg_precision": 0, + "svg_recall": 0.5343 + }, + "mean_score": 0.592, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 44.8, + "cpu_pct": 119.4, + "peak_memory_mb": 3892, + "disk_read_mb": 78, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.304, + "clustering_nmi": 0.3235, + "crosscor_cosine": 0.5118, + "crosscor_mantel": -0.0051, + "ctdeconcolute_jsd": 0.1042, + "ctdeconvolute_rmse": 0.433, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 0.8366, + "ks_statistic_L_stats": 3.0155, + "ks_statistic_morans_I": 0.3811, + "ks_statistic_nn_correlation": -0.2583, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0.4417, + "svg_recall": 0.2598 + }, + "scaled_scores": { + "clustering_ari": 0.4817, + "clustering_nmi": 0.5603, + "crosscor_cosine": 0.0323, + "crosscor_mantel": -0.0033, + "ctdeconcolute_jsd": -0.0188, + "ctdeconvolute_rmse": -0.0292, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.6, + "ks_statistic_central_score_scalef": 1.2853, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0895, + "ks_statistic_L_stats": -0.1435, + "ks_statistic_morans_I": 0.9582, + "ks_statistic_nn_correlation": 0.9577, + "ks_statistic_transition_matrix": 1.25, + "ks_statistic_transition_scalef": 1.1928, + "svg_precision": 0, + "svg_recall": 0.2598 + }, + "mean_score": 0.5139, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 16.3, + "cpu_pct": 157, + "peak_memory_mb": 5120, + "disk_read_mb": 73, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.7842, + "clustering_nmi": 0.727, + "crosscor_cosine": 0.8822, + "crosscor_mantel": 0.8202, + "ctdeconcolute_jsd": 0.0157, + "ctdeconvolute_rmse": 0.0175, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1474, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 3.6638, + "ks_statistic_L_stats": -0.3537, + "ks_statistic_morans_I": -0.1459, + "ks_statistic_nn_correlation": -0.2612, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0707, + "svg_precision": 0.9123, + "svg_recall": 0.8922 + }, + "scaled_scores": { + "clustering_ari": 1.2449, + "clustering_nmi": 1.2744, + "crosscor_cosine": 0.9528, + "crosscor_mantel": 0.9308, + "ctdeconcolute_jsd": 0.8466, + "ctdeconvolute_rmse": 0.9583, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.2, + "ks_statistic_central_score_scalef": 1.0894, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0103, + "ks_statistic_L_stats": 0.8736, + "ks_statistic_morans_I": 0.9951, + "ks_statistic_nn_correlation": 0.958, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1.0804, + "svg_precision": 0, + "svg_recall": 0.8922 + }, + "mean_score": 0.856, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 50.8, + "cpu_pct": 120.1, + "peak_memory_mb": 4916, + "disk_read_mb": 73, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "cortex", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.304, + "clustering_nmi": 0.3235, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.0026, + "ctdeconcolute_jsd": 0.1075, + "ctdeconvolute_rmse": 0.4729, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 2.147, + "ks_statistic_L_stats": 2.3104, + "ks_statistic_morans_I": 6.0057, + "ks_statistic_nn_correlation": 4.5194, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0.4925, + "svg_recall": 0.1618 + }, + "scaled_scores": { + "clustering_ari": 0.4817, + "clustering_nmi": 0.5603, + "crosscor_cosine": 0, + "crosscor_mantel": -0.0005, + "ctdeconcolute_jsd": -0.051, + "ctdeconvolute_rmse": -0.1242, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.6, + "ks_statistic_central_score_scalef": 1.2853, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0528, + "ks_statistic_L_stats": 0.0694, + "ks_statistic_morans_I": 0.5649, + "ks_statistic_nn_correlation": 0.57, + "ks_statistic_transition_matrix": 1.25, + "ks_statistic_transition_scalef": 1.1928, + "svg_precision": 0, + "svg_recall": 0.1618 + }, + "mean_score": 0.4671, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 100, + "cpu_pct": 110.4, + "peak_memory_mb": 7271, + "disk_read_mb": 416, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "cortex", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.1046, + "clustering_nmi": 0.1123, + "crosscor_cosine": 0.6818, + "crosscor_mantel": 0.3683, + "ctdeconcolute_jsd": 0.0809, + "ctdeconvolute_rmse": 0.2757, + "ks_statistic_celltype_interaction": -0.3823, + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.476, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 31.1393, + "ks_statistic_L_stats": 2.4137, + "ks_statistic_morans_I": 2.0975, + "ks_statistic_nn_correlation": 4.9813, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.583, + "svg_precision": 0.6222, + "svg_recall": 0.549 + }, + "scaled_scores": { + "clustering_ari": 0.1647, + "clustering_nmi": 0.1864, + "crosscor_cosine": 0.4548, + "crosscor_mantel": 0.4193, + "ctdeconcolute_jsd": 0.2091, + "ctdeconvolute_rmse": 0.3446, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.2, + "ks_statistic_central_score_scalef": 0.6529, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 0.241, + "ks_statistic_L_stats": 0.0382, + "ks_statistic_morans_I": 0.8382, + "ks_statistic_nn_correlation": 0.5325, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.2658, + "svg_precision": 0, + "svg_recall": 0.549 + }, + "mean_score": 0.3294, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 63, + "cpu_pct": 512.4, + "peak_memory_mb": 6861, + "disk_read_mb": 79, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0002, + "clustering_nmi": 0.0015, + "crosscor_cosine": 0.4998, + "crosscor_mantel": 0.0016, + "ctdeconcolute_jsd": 0.2547, + "ctdeconvolute_rmse": 0.3827, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.75, + "ks_statistic_central_score_scalef": 1.9364, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 160.3544, + "ks_statistic_L_stats": -0.071, + "ks_statistic_morans_I": 81.8176, + "ks_statistic_nn_correlation": 51.2719, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.4625, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0.0009, + "crosscor_mantel": 0.002, + "ctdeconcolute_jsd": 0.0436, + "ctdeconvolute_rmse": 0.1102, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.357, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0.0693, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0324, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 9.6, + "cpu_pct": 196, + "peak_memory_mb": 4608, + "disk_read_mb": 56, + "disk_write_mb": 21 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.0011, + "clustering_nmi": 0.0026, + "crosscor_cosine": 0.4995, + "crosscor_mantel": 0.0006, + "ctdeconcolute_jsd": 0.2663, + "ctdeconvolute_rmse": 0.4301, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.75, + "ks_statistic_central_score_scalef": 1.9001, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 155.2731, + "ks_statistic_L_stats": 0.3869, + "ks_statistic_morans_I": 73.4456, + "ks_statistic_nn_correlation": 55.1085, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.4396, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.003, + "clustering_nmi": 0.0026, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0401, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.08, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0.102, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.039, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0148, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 12.2, + "cpu_pct": 154.7, + "peak_memory_mb": 4711, + "disk_read_mb": 56, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.4028, + "clustering_nmi": 0.4079, + "crosscor_cosine": 0.7532, + "crosscor_mantel": 0.5045, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 1.03, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 96.8063, + "ks_statistic_L_stats": -0.8957, + "ks_statistic_morans_I": -0.2444, + "ks_statistic_nn_correlation": -0.2771, + "ks_statistic_transition_matrix": 0.5625, + "ks_statistic_transition_scalef": 0.874, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.8889, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 231.6, + "peak_memory_mb": 4608, + "disk_read_mb": 57, + "disk_write_mb": 28 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.0004, + "clustering_nmi": 0.0028, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.06, + "ctdeconcolute_jsd": 0.0635, + "ctdeconvolute_rmse": 0.0429, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.8333, + "ks_statistic_central_score_scalef": 1.8993, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 155.4288, + "ks_statistic_L_stats": 0.9013, + "ks_statistic_morans_I": 78.2884, + "ks_statistic_nn_correlation": 43.2567, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.4376, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0015, + "clustering_nmi": 0.0031, + "crosscor_cosine": 0, + "crosscor_mantel": 0.1178, + "ctdeconcolute_jsd": 0.7615, + "ctdeconvolute_rmse": 0.9002, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": -1, + "ks_statistic_central_score_scalef": 0.0409, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0775, + "ks_statistic_L_stats": -0.401, + "ks_statistic_morans_I": 0.043, + "ks_statistic_nn_correlation": 0.214, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0424, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1223, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 126, + "cpu_pct": 270.1, + "peak_memory_mb": 19661, + "disk_read_mb": 77, + "disk_write_mb": 26 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.2715, + "clustering_nmi": 0.3013, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.4961, + "ctdeconcolute_jsd": 0.045, + "ctdeconvolute_rmse": 0.0228, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.6651, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 72.5766, + "ks_statistic_L_stats": -0.8789, + "ks_statistic_morans_I": 0.4369, + "ks_statistic_nn_correlation": 1.865, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.6056, + "svg_precision": 0.9723, + "svg_recall": 0.9837 + }, + "scaled_scores": { + "clustering_ari": 0.6743, + "clustering_nmi": 0.7377, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9833, + "ctdeconcolute_jsd": 0.8311, + "ctdeconvolute_rmse": 0.9469, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 2, + "ks_statistic_central_score_scalef": 1.4026, + "ks_statistic_enrichment": 1.5, + "ks_statistic_enrichment_scalef": 1.3813, + "ks_statistic_L_stats": 0.9869, + "ks_statistic_morans_I": 0.9917, + "ks_statistic_nn_correlation": 0.9613, + "ks_statistic_transition_matrix": 1.3333, + "ks_statistic_transition_scalef": 1.4561, + "svg_precision": 0, + "svg_recall": 0.9837 + }, + "mean_score": 0.7832, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 3944, + "cpu_pct": 100.4, + "peak_memory_mb": 10548, + "disk_read_mb": 88, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": -0.0007, + "clustering_nmi": 0.001, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.4933, + "ctdeconcolute_jsd": 0.0352, + "ctdeconvolute_rmse": 0.0143, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.8333, + "ks_statistic_central_score_scalef": 1.9201, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 157.5499, + "ks_statistic_L_stats": 1.2981, + "ks_statistic_morans_I": 1.525, + "ks_statistic_nn_correlation": 1.6456, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.4481, + "svg_precision": 0.9649, + "svg_recall": 0.9942 + }, + "scaled_scores": { + "clustering_ari": -0.0013, + "clustering_nmi": -0.0014, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9778, + "ctdeconcolute_jsd": 0.8676, + "ctdeconvolute_rmse": 0.9667, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": -1, + "ks_statistic_central_score_scalef": 0.0179, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0441, + "ks_statistic_L_stats": -0.7104, + "ks_statistic_morans_I": 0.9784, + "ks_statistic_nn_correlation": 0.9653, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0245, + "svg_precision": 0, + "svg_recall": 0.9942 + }, + "mean_score": 0.3243, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 8183, + "cpu_pct": 100.1, + "peak_memory_mb": 9421, + "disk_read_mb": 88, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.0033, + "clustering_nmi": 0.0022, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.4124, + "ctdeconcolute_jsd": 0.0517, + "ctdeconvolute_rmse": 0.0316, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1001, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 7.0201, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0522, + "svg_precision": 0.9778, + "svg_recall": 0.9743 + }, + "scaled_scores": { + "clustering_ari": 0.0087, + "clustering_nmi": 0.0016, + "crosscor_cosine": 0, + "crosscor_mantel": 0.8171, + "ctdeconcolute_jsd": 0.8057, + "ctdeconvolute_rmse": 0.9266, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 7, + "ks_statistic_central_score_scalef": 2.0261, + "ks_statistic_enrichment": 2.5, + "ks_statistic_enrichment_scalef": 2.4129, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 3.3333, + "ks_statistic_transition_scalef": 2.3964, + "svg_precision": 0, + "svg_recall": 0.9743 + }, + "mean_score": 0.5297, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 75, + "cpu_pct": 117.9, + "peak_memory_mb": 7476, + "disk_read_mb": 86, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0032, + "clustering_nmi": 0.0018, + "crosscor_cosine": 0.5091, + "crosscor_mantel": -0.0043, + "ctdeconcolute_jsd": 0.3044, + "ctdeconvolute_rmse": 0.5141, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0114, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 5.2771, + "ks_statistic_L_stats": 3.5892, + "ks_statistic_morans_I": 13.7528, + "ks_statistic_nn_correlation": 15.5902, + "ks_statistic_transition_matrix": 0.0625, + "ks_statistic_transition_scalef": 0.0134, + "svg_precision": 0.8563, + "svg_recall": 0.9942 + }, + "scaled_scores": { + "clustering_ari": 0.0083, + "clustering_nmi": 0.0007, + "crosscor_cosine": 0.0379, + "crosscor_mantel": -0.0097, + "ctdeconcolute_jsd": -0.1432, + "ctdeconvolute_rmse": -0.1954, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 7, + "ks_statistic_central_score_scalef": 2.1239, + "ks_statistic_enrichment": 2.5, + "ks_statistic_enrichment_scalef": 2.4403, + "ks_statistic_L_stats": -2.4967, + "ks_statistic_morans_I": 0.8294, + "ks_statistic_nn_correlation": 0.7135, + "ks_statistic_transition_matrix": 3.6667, + "ks_statistic_transition_scalef": 2.4624, + "svg_precision": 0, + "svg_recall": 0.9942 + }, + "mean_score": 0.4769, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 22.1, + "cpu_pct": 149.1, + "peak_memory_mb": 5223, + "disk_read_mb": 81, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.2974, + "clustering_nmi": 0.3438, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.5025, + "ctdeconcolute_jsd": 0.0056, + "ctdeconvolute_rmse": 0.0006, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.7971, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 74.9995, + "ks_statistic_L_stats": -0.8134, + "ks_statistic_morans_I": 0.3003, + "ks_statistic_nn_correlation": 0.0672, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.65, + "svg_precision": 0.9838, + "svg_recall": 0.9907 + }, + "scaled_scores": { + "clustering_ari": 0.7385, + "clustering_nmi": 0.8422, + "crosscor_cosine": 0, + "crosscor_mantel": 0.996, + "ctdeconcolute_jsd": 0.9789, + "ctdeconvolute_rmse": 0.9987, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 2, + "ks_statistic_central_score_scalef": 1.2571, + "ks_statistic_enrichment": 1.5, + "ks_statistic_enrichment_scalef": 1.3432, + "ks_statistic_L_stats": 0.9358, + "ks_statistic_morans_I": 0.9934, + "ks_statistic_nn_correlation": 0.9938, + "ks_statistic_transition_matrix": 1.3333, + "ks_statistic_transition_scalef": 1.3806, + "svg_precision": 0, + "svg_recall": 0.9907 + }, + "mean_score": 0.8038, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 45.5, + "cpu_pct": 124.6, + "peak_memory_mb": 4916, + "disk_read_mb": 81, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.0032, + "clustering_nmi": 0.0018, + "crosscor_cosine": 0.547, + "crosscor_mantel": -0.0054, + "ctdeconcolute_jsd": 0.2935, + "ctdeconvolute_rmse": 0.5058, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0114, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 4.9052, + "ks_statistic_L_stats": 3.8219, + "ks_statistic_morans_I": 4.8785, + "ks_statistic_nn_correlation": 5.3802, + "ks_statistic_transition_matrix": 0.0625, + "ks_statistic_transition_scalef": 0.0134, + "svg_precision": 0.8515, + "svg_recall": 0.8565 + }, + "scaled_scores": { + "clustering_ari": 0.0083, + "clustering_nmi": 0.0007, + "crosscor_cosine": 0.1873, + "crosscor_mantel": -0.0119, + "ctdeconcolute_jsd": -0.1022, + "ctdeconvolute_rmse": -0.1759, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 7, + "ks_statistic_central_score_scalef": 2.1239, + "ks_statistic_enrichment": 2.5, + "ks_statistic_enrichment_scalef": 2.4462, + "ks_statistic_L_stats": -2.6781, + "ks_statistic_morans_I": 0.9376, + "ks_statistic_nn_correlation": 0.8979, + "ks_statistic_transition_matrix": 3.6667, + "ks_statistic_transition_scalef": 2.4624, + "svg_precision": 0, + "svg_recall": 0.8565 + }, + "mean_score": 0.4938, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 357, + "cpu_pct": 103.1, + "peak_memory_mb": 7578, + "disk_read_mb": 424, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "fibrosarcoma", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": -0.001, + "clustering_nmi": 0.0012, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.2982, + "ctdeconcolute_jsd": 0.0467, + "ctdeconvolute_rmse": 0.0249, + "ks_statistic_celltype_interaction": -0.8594, + "ks_statistic_central_score": 0.8333, + "ks_statistic_central_score_scalef": 1.7454, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 144.5831, + "ks_statistic_L_stats": 3.9196, + "ks_statistic_morans_I": 12.9735, + "ks_statistic_nn_correlation": 13.8233, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.3558, + "svg_precision": 0.9744, + "svg_recall": 0.9755 + }, + "scaled_scores": { + "clustering_ari": -0.002, + "clustering_nmi": -0.0007, + "crosscor_cosine": 0, + "crosscor_mantel": 0.5906, + "ctdeconcolute_jsd": 0.8246, + "ctdeconvolute_rmse": 0.942, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": -1, + "ks_statistic_central_score_scalef": 0.2107, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.2482, + "ks_statistic_L_stats": -2.7543, + "ks_statistic_morans_I": 0.8389, + "ks_statistic_nn_correlation": 0.7454, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.1814, + "svg_precision": 0, + "svg_recall": 0.9755 + }, + "mean_score": 0.3087, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 98, + "cpu_pct": 360.9, + "peak_memory_mb": 91341, + "disk_read_mb": 88, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0004, + "clustering_nmi": 0.0003, + "crosscor_cosine": 0.4938, + "crosscor_mantel": -0.0061, + "ctdeconcolute_jsd": 0.0526, + "ctdeconvolute_rmse": 0.2417, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 0.0525, + "ks_statistic_morans_I": 573.1646, + "ks_statistic_nn_correlation": 83.3626, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0.181, + "ctdeconvolute_rmse": 0.2379, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.0992, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0288, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 10.2, + "cpu_pct": 145, + "peak_memory_mb": 1946, + "disk_read_mb": 44, + "disk_write_mb": 22 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.0003, + "clustering_nmi": 0.0012, + "crosscor_cosine": 0.4992, + "crosscor_mantel": 0.0029, + "ctdeconcolute_jsd": 0.0642, + "ctdeconvolute_rmse": 0.3171, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 0.1165, + "ks_statistic_morans_I": 569.8804, + "ks_statistic_nn_correlation": 31.6587, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0015, + "clustering_nmi": 0.0015, + "crosscor_cosine": 0.0114, + "crosscor_mantel": 0.0094, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0.0057, + "ks_statistic_nn_correlation": 0.6165, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0359, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 11.3, + "cpu_pct": 174, + "peak_memory_mb": 3277, + "disk_read_mb": 44, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.4755, + "clustering_nmi": 0.552, + "crosscor_cosine": 0.97, + "crosscor_mantel": 0.9461, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": -0.5291, + "ks_statistic_morans_I": -0.4016, + "ks_statistic_nn_correlation": -0.5086, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.5556, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 6.9, + "cpu_pct": 247.8, + "peak_memory_mb": 4608, + "disk_read_mb": 45, + "disk_write_mb": 15 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.1257, + "clustering_nmi": 0.1668, + "crosscor_cosine": 0.8473, + "crosscor_mantel": 0.6913, + "ctdeconcolute_jsd": 0.0597, + "ctdeconvolute_rmse": 0.2664, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 0.0853, + "ks_statistic_morans_I": 12.8063, + "ks_statistic_nn_correlation": 9.9518, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9967, + "svg_recall": 0.8686 + }, + "scaled_scores": { + "clustering_ari": 0.265, + "clustering_nmi": 0.3017, + "crosscor_cosine": 0.7423, + "crosscor_mantel": 0.7324, + "ctdeconcolute_jsd": 0.07, + "ctdeconvolute_rmse": 0.1599, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.0484, + "ks_statistic_morans_I": 0.977, + "ks_statistic_nn_correlation": 0.8753, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0.8686 + }, + "mean_score": 0.28, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 86, + "cpu_pct": 397, + "peak_memory_mb": 23143, + "disk_read_mb": 49, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.3818, + "clustering_nmi": 0.4042, + "crosscor_cosine": 0.9561, + "crosscor_mantel": 0.9168, + "ctdeconcolute_jsd": 0.0356, + "ctdeconvolute_rmse": 0.1332, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": -0.2968, + "ks_statistic_morans_I": 0.1542, + "ks_statistic_nn_correlation": 3.5311, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9972, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 0.8032, + "clustering_nmi": 0.7321, + "crosscor_cosine": 0.9707, + "crosscor_mantel": 0.9692, + "ctdeconcolute_jsd": 0.4449, + "ctdeconvolute_rmse": 0.5798, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.6403, + "ks_statistic_morans_I": 0.999, + "ks_statistic_nn_correlation": 0.9518, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.4495, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 2736, + "cpu_pct": 100.5, + "peak_memory_mb": 7885, + "disk_read_mb": 76, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.3792, + "clustering_nmi": 0.446, + "crosscor_cosine": 0.9507, + "crosscor_mantel": 0.9049, + "ctdeconcolute_jsd": 0.0316, + "ctdeconvolute_rmse": 0.1092, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": -0.2746, + "ks_statistic_morans_I": 0.094, + "ks_statistic_nn_correlation": 0.2923, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9972, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 0.7976, + "clustering_nmi": 0.8078, + "crosscor_cosine": 0.9595, + "crosscor_mantel": 0.9567, + "ctdeconcolute_jsd": 0.5072, + "ctdeconvolute_rmse": 0.6557, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.6059, + "ks_statistic_morans_I": 0.9991, + "ks_statistic_nn_correlation": 0.9905, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.46, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 2977, + "cpu_pct": 100.5, + "peak_memory_mb": 9216, + "disk_read_mb": 76, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.139, + "clustering_nmi": 0.1784, + "crosscor_cosine": 0.6648, + "crosscor_mantel": 0.3171, + "ctdeconcolute_jsd": 0.0521, + "ctdeconvolute_rmse": 0.2275, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 1.6722, + "ks_statistic_morans_I": 7.7967, + "ks_statistic_nn_correlation": 9.1528, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9964, + "svg_recall": 0.78 + }, + "scaled_scores": { + "clustering_ari": 0.293, + "clustering_nmi": 0.3228, + "crosscor_cosine": 0.359, + "crosscor_mantel": 0.3394, + "ctdeconcolute_jsd": 0.1886, + "ctdeconvolute_rmse": 0.2826, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": -2.4098, + "ks_statistic_morans_I": 0.9857, + "ks_statistic_nn_correlation": 0.8848, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0.78 + }, + "mean_score": 0.2464, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 162, + "cpu_pct": 107.2, + "peak_memory_mb": 9216, + "disk_read_mb": 73, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.1518, + "clustering_nmi": 0.2019, + "crosscor_cosine": 0.5116, + "crosscor_mantel": 0.0071, + "ctdeconcolute_jsd": 0.068, + "ctdeconvolute_rmse": 0.3469, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 1.2447, + "ks_statistic_morans_I": 2.764, + "ks_statistic_nn_correlation": 4.5629, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.997, + "svg_recall": 0.9486 + }, + "scaled_scores": { + "clustering_ari": 0.3197, + "clustering_nmi": 0.3653, + "crosscor_cosine": 0.0373, + "crosscor_mantel": 0.0139, + "ctdeconcolute_jsd": -0.0581, + "ctdeconvolute_rmse": -0.0941, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": -1.7475, + "ks_statistic_morans_I": 0.9945, + "ks_statistic_nn_correlation": 0.9395, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0.9486 + }, + "mean_score": 0.201, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 24.5, + "cpu_pct": 151.5, + "peak_memory_mb": 6554, + "disk_read_mb": 69, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.4854, + "clustering_nmi": 0.5597, + "crosscor_cosine": 0.9698, + "crosscor_mantel": 0.9449, + "ctdeconcolute_jsd": 0.0061, + "ctdeconvolute_rmse": 0.0065, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": -0.4741, + "ks_statistic_morans_I": -0.306, + "ks_statistic_nn_correlation": -0.3517, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9972, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1.0208, + "clustering_nmi": 1.0139, + "crosscor_cosine": 0.9996, + "crosscor_mantel": 0.9988, + "ctdeconcolute_jsd": 0.9044, + "ctdeconvolute_rmse": 0.9794, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.9149, + "ks_statistic_morans_I": 0.9998, + "ks_statistic_nn_correlation": 0.9981, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.5442, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 33.3, + "cpu_pct": 139, + "peak_memory_mb": 6247, + "disk_read_mb": 69, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.1504, + "clustering_nmi": 0.2003, + "crosscor_cosine": 0.5175, + "crosscor_mantel": -0.0019, + "ctdeconcolute_jsd": 0.1114, + "ctdeconvolute_rmse": 0.6064, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 1.4686, + "ks_statistic_morans_I": 46.6492, + "ks_statistic_nn_correlation": 26.4142, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 0.9917, + "svg_recall": 0.3429 + }, + "scaled_scores": { + "clustering_ari": 0.3169, + "clustering_nmi": 0.3624, + "crosscor_cosine": 0.0498, + "crosscor_mantel": 0.0044, + "ctdeconcolute_jsd": -0.7347, + "ctdeconvolute_rmse": -0.9122, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": -2.0943, + "ks_statistic_morans_I": 0.918, + "ks_statistic_nn_correlation": 0.679, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0.3429 + }, + "mean_score": 0.1485, + "resources": { + "submit": "2025-03-14 13:21:55", + "exit_code": 0, + "duration_sec": 263, + "cpu_pct": 103.8, + "peak_memory_mb": 4813, + "disk_read_mb": 494, + "disk_write_mb": 12 + } + }, + { + "dataset_id": "gastrulation", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.0037, + "clustering_nmi": 0.0053, + "crosscor_cosine": 0.652, + "crosscor_mantel": 0.3527, + "ctdeconcolute_jsd": 0.0478, + "ctdeconvolute_rmse": 0.2067, + "ks_statistic_celltype_interaction": -0.4413, + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": 1.3272, + "ks_statistic_morans_I": 13.8032, + "ks_statistic_nn_correlation": 27.1012, + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": 1, + "svg_recall": 0.6486 + }, + "scaled_scores": { + "clustering_ari": 0.0086, + "clustering_nmi": 0.0089, + "crosscor_cosine": 0.3322, + "crosscor_mantel": 0.3768, + "ctdeconcolute_jsd": 0.2559, + "ctdeconvolute_rmse": 0.3482, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": -1.8754, + "ks_statistic_morans_I": 0.9752, + "ks_statistic_nn_correlation": 0.6708, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0.6486 + }, + "mean_score": 0.2014, + "resources": { + "submit": "2025-03-14 13:21:56", + "exit_code": 0, + "duration_sec": 75, + "cpu_pct": 349.7, + "peak_memory_mb": 92468, + "disk_read_mb": 76, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0001, + "clustering_nmi": 0.0023, + "crosscor_cosine": 0.5003, + "crosscor_mantel": -0.0003, + "ctdeconcolute_jsd": 0.1562, + "ctdeconvolute_rmse": 0.7541, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.0561, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 6.2176, + "ks_statistic_L_stats": 0.8467, + "ks_statistic_morans_I": 5.7327, + "ks_statistic_nn_correlation": 17.4684, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.1626, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0006, + "clustering_nmi": 0.0008, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0.067, + "ctdeconvolute_rmse": 0.0631, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0.2167, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.186, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 12.5, + "cpu_pct": 201.8, + "peak_memory_mb": 5940, + "disk_read_mb": 48, + "disk_write_mb": 14 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": -0.0004, + "clustering_nmi": 0.0018, + "crosscor_cosine": 0.5007, + "crosscor_mantel": 0.0008, + "ctdeconcolute_jsd": 0.1674, + "ctdeconvolute_rmse": 0.8049, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.1025, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 5.3527, + "ks_statistic_L_stats": 0.4461, + "ks_statistic_morans_I": 7.714, + "ks_statistic_nn_correlation": 15.2059, + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.1658, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0.001, + "crosscor_mantel": 0.0013, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.4952, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.2357, + "ks_statistic_L_stats": 0.3163, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0.1252, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.942, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1731, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 6.9, + "cpu_pct": 279.1, + "peak_memory_mb": 4608, + "disk_read_mb": 48, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.5936, + "clustering_nmi": 0.5939, + "crosscor_cosine": 0.9271, + "crosscor_mantel": 0.8523, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.148, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 2.5484, + "ks_statistic_L_stats": -0.4202, + "ks_statistic_morans_I": -1.4312, + "ks_statistic_nn_correlation": -0.6048, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.219, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.6111, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 7.9, + "cpu_pct": 241, + "peak_memory_mb": 4608, + "disk_read_mb": 49, + "disk_write_mb": 20 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": -0.0002, + "clustering_nmi": 0.0013, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.3486, + "ctdeconcolute_jsd": 0.0444, + "ctdeconvolute_rmse": 0.102, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 1.3186, + "ks_statistic_enrichment": 0.6667, + "ks_statistic_enrichment_scalef": 72.5151, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.5556, + "ks_statistic_transition_scalef": 0.9209, + "svg_precision": 0, + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0004, + "clustering_nmi": -0.0009, + "crosscor_cosine": 0, + "crosscor_mantel": -0.4084, + "ctdeconcolute_jsd": 0.7346, + "ctdeconvolute_rmse": 0.8733, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": -12.7374, + "ks_statistic_enrichment": -2, + "ks_statistic_enrichment_scalef": -18.0685, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": -1, + "ks_statistic_transition_scalef": -12.4357, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0893, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 136, + "cpu_pct": 256.9, + "peak_memory_mb": 19968, + "disk_read_mb": 53, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": "NA", + "clustering_nmi": "NA", + "crosscor_cosine": "NA", + "crosscor_mantel": "NA", + "ctdeconcolute_jsd": "NA", + "ctdeconvolute_rmse": "NA", + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": "NA", + "duration_sec": 509, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.0079, + "clustering_nmi": 0.0094, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.0243, + "ctdeconcolute_jsd": 0.0288, + "ctdeconvolute_rmse": 0.0506, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.5527, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 33.6417, + "ks_statistic_L_stats": 0.6682, + "ks_statistic_morans_I": 29.6232, + "ks_statistic_nn_correlation": 4.7311, + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.4458, + "svg_precision": 0, + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0141, + "clustering_nmi": 0.0128, + "crosscor_cosine": 0, + "crosscor_mantel": -0.0282, + "ctdeconcolute_jsd": 0.8277, + "ctdeconvolute_rmse": 0.9372, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": -4.4044, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": -7.4741, + "ks_statistic_L_stats": 0.1409, + "ks_statistic_morans_I": -2.3957, + "ks_statistic_nn_correlation": 0.7048, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": -4.0175, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1465, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 3496, + "cpu_pct": 100.4, + "peak_memory_mb": 7578, + "disk_read_mb": 81, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": -0.0035, + "clustering_nmi": 0.0015, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0724, + "ctdeconcolute_jsd": 0.0586, + "ctdeconvolute_rmse": 0.1506, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.2851, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 6.0864, + "ks_statistic_L_stats": 2.1338, + "ks_statistic_morans_I": 0.4078, + "ks_statistic_nn_correlation": 0.475, + "ks_statistic_transition_matrix": 0.5556, + "ks_statistic_transition_scalef": 0.4153, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": -0.0052, + "clustering_nmi": -0.0005, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0853, + "ctdeconcolute_jsd": 0.6501, + "ctdeconvolute_rmse": 0.8129, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": -1.492, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.0358, + "ks_statistic_L_stats": -1.0159, + "ks_statistic_morans_I": 0.7989, + "ks_statistic_nn_correlation": 0.9403, + "ks_statistic_transition_matrix": -1, + "ks_statistic_transition_scalef": -3.4773, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.2402, + "resources": { + "submit": "2025-03-14 13:22:33", + "exit_code": 0, + "duration_sec": 51.6, + "cpu_pct": 108.4, + "peak_memory_mb": 2560, + "disk_read_mb": 78, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0002, + "clustering_nmi": 0.0017, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0009, + "ctdeconcolute_jsd": 0.1867, + "ctdeconvolute_rmse": 0.806, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 0.115, + "ks_statistic_L_stats": 1.2087, + "ks_statistic_morans_I": 3.1419, + "ks_statistic_nn_correlation": 13.0506, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0011, + "clustering_nmi": -0.0002, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0014, + "ctdeconcolute_jsd": -0.1153, + "ctdeconvolute_rmse": -0.0013, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 1.61, + "ks_statistic_enrichment": 2, + "ks_statistic_enrichment_scalef": 1.6632, + "ks_statistic_L_stats": -0.2857, + "ks_statistic_morans_I": 0.5, + "ks_statistic_nn_correlation": 0.2444, + "ks_statistic_transition_matrix": 4, + "ks_statistic_transition_scalef": 3.8803, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.3193, + "resources": { + "submit": "2025-03-14 13:22:33", + "exit_code": 0, + "duration_sec": 16.7, + "cpu_pct": 193.7, + "peak_memory_mb": 6452, + "disk_read_mb": 73, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.4552, + "clustering_nmi": 0.4905, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7044, + "ctdeconcolute_jsd": 0.013, + "ctdeconvolute_rmse": 0.006, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.1254, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 6.3782, + "ks_statistic_L_stats": -0.1181, + "ks_statistic_morans_I": 17.9309, + "ks_statistic_nn_correlation": 4.2956, + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.2891, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.7671, + "clustering_nmi": 0.8254, + "crosscor_cosine": 0, + "crosscor_mantel": 0.8265, + "ctdeconcolute_jsd": 0.9225, + "ctdeconvolute_rmse": 0.9925, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.2452, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": -0.0438, + "ks_statistic_L_stats": 0.7616, + "ks_statistic_morans_I": -1.1172, + "ks_statistic_nn_correlation": 0.7289, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": -1.2426, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.4483, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 30.3, + "cpu_pct": 141.9, + "peak_memory_mb": 6247, + "disk_read_mb": 73, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.0002, + "clustering_nmi": 0.0017, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0046, + "ctdeconcolute_jsd": 0.1673, + "ctdeconvolute_rmse": 0.8123, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 0.2361, + "ks_statistic_L_stats": 2.1917, + "ks_statistic_morans_I": 1.8544, + "ks_statistic_nn_correlation": 7.6943, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0011, + "clustering_nmi": -0.0002, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0057, + "ctdeconcolute_jsd": 0.0005, + "ctdeconvolute_rmse": -0.0091, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 1.61, + "ks_statistic_enrichment": 2, + "ks_statistic_enrichment_scalef": 1.6302, + "ks_statistic_L_stats": -1.0616, + "ks_statistic_morans_I": 0.6407, + "ks_statistic_nn_correlation": 0.5408, + "ks_statistic_transition_matrix": 4, + "ks_statistic_transition_scalef": 3.8803, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.3438, + "resources": { + "submit": "2025-03-14 13:22:33", + "exit_code": 0, + "duration_sec": 92, + "cpu_pct": 116.9, + "peak_memory_mb": 7168, + "disk_read_mb": 334, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "hindlimbmuscle", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": -0.0003, + "clustering_nmi": 0.0012, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0344, + "ctdeconcolute_jsd": 0.0274, + "ctdeconvolute_rmse": 0.0464, + "ks_statistic_celltype_interaction": -0.6939, + "ks_statistic_central_score": 0.1111, + "ks_statistic_central_score_scalef": 0.0249, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 1.1851, + "ks_statistic_L_stats": 1.2187, + "ks_statistic_morans_I": 0.8276, + "ks_statistic_nn_correlation": 0.2754, + "ks_statistic_transition_matrix": 0.1111, + "ks_statistic_transition_scalef": 0.0292, + "svg_precision": "NA", + "svg_recall": "NA" + }, + "scaled_scores": { + "clustering_ari": 0.0002, + "clustering_nmi": -0.0011, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0407, + "ctdeconcolute_jsd": 0.8361, + "ctdeconvolute_rmse": 0.9424, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 1.3386, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 1.3716, + "ks_statistic_L_stats": -0.2936, + "ks_statistic_morans_I": 0.753, + "ks_statistic_nn_correlation": 0.9513, + "ks_statistic_transition_matrix": 3, + "ks_statistic_transition_scalef": 3.3624, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.418, + "resources": { + "submit": "2025-03-14 13:22:33", + "exit_code": 0, + "duration_sec": 52.8, + "cpu_pct": 422.6, + "peak_memory_mb": 70861, + "disk_read_mb": 80, + "disk_write_mb": 9 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0054, + "clustering_nmi": 0.0062, + "crosscor_cosine": 0.5016, + "crosscor_mantel": 0.0066, + "ctdeconcolute_jsd": 0.2005, + "ctdeconvolute_rmse": 0.1279, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.9433, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 37.7682, + "ks_statistic_L_stats": -4.3207, + "ks_statistic_morans_I": 7.6992, + "ks_statistic_nn_correlation": 5.5218, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.8893, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0.0148, + "crosscor_mantel": 0.0116, + "ctdeconcolute_jsd": 0.0317, + "ctdeconvolute_rmse": 0.0638, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.105, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0049, + "ks_statistic_L_stats": 0.5126, + "ks_statistic_morans_I": 0.3031, + "ks_statistic_nn_correlation": 0.2101, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0248, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0712, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 3.7, + "cpu_pct": 388.6, + "peak_memory_mb": 4506, + "disk_read_mb": 30, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.0022, + "clustering_nmi": 0.015, + "crosscor_cosine": 0.4948, + "crosscor_mantel": -0.0041, + "ctdeconcolute_jsd": 0.2071, + "ctdeconvolute_rmse": 0.1366, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 1.0516, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 37.9455, + "ks_statistic_L_stats": -2.1091, + "ks_statistic_morans_I": 11.2261, + "ks_statistic_nn_correlation": 7.2267, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.9108, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0083, + "clustering_nmi": 0.0098, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.001, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 3.6, + "cpu_pct": 409.5, + "peak_memory_mb": 4506, + "disk_read_mb": 30, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.9202, + "clustering_nmi": 0.8938, + "crosscor_cosine": 0.9545, + "crosscor_mantel": 0.9284, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.0833, + "ks_statistic_central_score_scalef": 0.0198, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 1.8973, + "ks_statistic_L_stats": -6.4233, + "ks_statistic_morans_I": -0.4082, + "ks_statistic_nn_correlation": -0.8891, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.046, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.8889, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 3.7, + "cpu_pct": 549.1, + "peak_memory_mb": 5837, + "disk_read_mb": 31, + "disk_write_mb": 3 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.0193, + "clustering_nmi": 0.0316, + "crosscor_cosine": 0.8802, + "crosscor_mantel": 0.7626, + "ctdeconcolute_jsd": 0.2324, + "ctdeconvolute_rmse": 0.1729, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": 0.4076, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 23.2664, + "ks_statistic_L_stats": -2.4274, + "ks_statistic_morans_I": 1.5807, + "ks_statistic_nn_correlation": -0.6012, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.5381, + "svg_precision": 0.3953, + "svg_recall": 0.7391 + }, + "scaled_scores": { + "clustering_ari": 0.0267, + "clustering_nmi": 0.0286, + "crosscor_cosine": 0.8383, + "crosscor_mantel": 0.8222, + "ctdeconcolute_jsd": -0.1222, + "ctdeconvolute_rmse": -0.2662, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.5714, + "ks_statistic_central_score_scalef": 0.6242, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 0.4072, + "ks_statistic_L_stats": 0.0738, + "ks_statistic_morans_I": 0.829, + "ks_statistic_nn_correlation": 0.9645, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.4309, + "svg_precision": 0, + "svg_recall": 0.7391 + }, + "mean_score": 0.3716, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 17, + "cpu_pct": 323.9, + "peak_memory_mb": 19047, + "disk_read_mb": 34, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.1988, + "clustering_nmi": 0.2426, + "crosscor_cosine": 0.818, + "crosscor_mantel": 0.6335, + "ctdeconcolute_jsd": 0.1685, + "ctdeconvolute_rmse": 0.0909, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 0.5841, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 33.4917, + "ks_statistic_L_stats": -3.7296, + "ks_statistic_morans_I": -0.1326, + "ks_statistic_nn_correlation": 0.5276, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.7349, + "svg_precision": 0.9062, + "svg_recall": 0.6304 + }, + "scaled_scores": { + "clustering_ari": 0.2206, + "clustering_nmi": 0.2663, + "crosscor_cosine": 0.7031, + "crosscor_mantel": 0.6838, + "ctdeconcolute_jsd": 0.1861, + "ctdeconvolute_rmse": 0.3346, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.2857, + "ks_statistic_central_score_scalef": 0.4531, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 0.1236, + "ks_statistic_L_stats": 0.3756, + "ks_statistic_morans_I": 0.9763, + "ks_statistic_nn_correlation": 0.8254, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.2034, + "svg_precision": 0, + "svg_recall": 0.6304 + }, + "mean_score": 0.3667, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 89, + "cpu_pct": 112.1, + "peak_memory_mb": 5325, + "disk_read_mb": 62, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.5272, + "clustering_nmi": 0.5479, + "crosscor_cosine": 0.8717, + "crosscor_mantel": 0.7898, + "ctdeconcolute_jsd": 0.1044, + "ctdeconvolute_rmse": 0.0382, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.0833, + "ks_statistic_central_score_scalef": 0.0785, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 6.0498, + "ks_statistic_L_stats": -3.1535, + "ks_statistic_morans_I": 1.8357, + "ks_statistic_nn_correlation": 1.3053, + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.1561, + "svg_precision": 0.6232, + "svg_recall": 0.9348 + }, + "scaled_scores": { + "clustering_ari": 0.5754, + "clustering_nmi": 0.6103, + "crosscor_cosine": 0.8198, + "crosscor_mantel": 0.8513, + "ctdeconcolute_jsd": 0.4958, + "ctdeconvolute_rmse": 0.72, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 0.9431, + "ks_statistic_enrichment": 0.6667, + "ks_statistic_enrichment_scalef": 0.8848, + "ks_statistic_L_stats": 0.2421, + "ks_statistic_morans_I": 0.8071, + "ks_statistic_nn_correlation": 0.7296, + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 0.8727, + "svg_precision": 0, + "svg_recall": 0.9348 + }, + "mean_score": 0.6613, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 74, + "cpu_pct": 112.2, + "peak_memory_mb": 5325, + "disk_read_mb": 62, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.0104, + "clustering_nmi": 0.0206, + "crosscor_cosine": 0.8797, + "crosscor_mantel": 0.7741, + "ctdeconcolute_jsd": 0.0976, + "ctdeconvolute_rmse": 0.0361, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.0833, + "ks_statistic_central_score_scalef": 0.0125, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 1.2648, + "ks_statistic_L_stats": -0.2391, + "ks_statistic_morans_I": 0.0522, + "ks_statistic_nn_correlation": -0.2211, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0362, + "svg_precision": 0.7381, + "svg_recall": 0.6739 + }, + "scaled_scores": { + "clustering_ari": 0.0171, + "clustering_nmi": 0.0162, + "crosscor_cosine": 0.8373, + "crosscor_mantel": 0.8346, + "ctdeconcolute_jsd": 0.5285, + "ctdeconvolute_rmse": 0.7356, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.0071, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0175, + "ks_statistic_L_stats": -0.4334, + "ks_statistic_morans_I": 0.9604, + "ks_statistic_nn_correlation": 0.9177, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1.0114, + "svg_precision": 0, + "svg_recall": 0.6739 + }, + "mean_score": 0.6401, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 26.8, + "cpu_pct": 142.2, + "peak_memory_mb": 5120, + "disk_read_mb": 60, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0095, + "clustering_nmi": 0.0205, + "crosscor_cosine": 0.4999, + "crosscor_mantel": -0.0074, + "ctdeconcolute_jsd": 0.2372, + "ctdeconvolute_rmse": 0.1874, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 0.7026, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0.3333, + "svg_recall": 0.4348 + }, + "scaled_scores": { + "clustering_ari": 0.0162, + "clustering_nmi": 0.0161, + "crosscor_cosine": 0.0111, + "crosscor_mantel": -0.0035, + "ctdeconcolute_jsd": -0.1454, + "ctdeconvolute_rmse": -0.3717, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.1429, + "ks_statistic_central_score_scalef": 1.0192, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0331, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.5, + "ks_statistic_transition_scalef": 1.0532, + "svg_precision": 0, + "svg_recall": 0.4348 + }, + "mean_score": 0.3599, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 10.2, + "cpu_pct": 246.3, + "peak_memory_mb": 6349, + "disk_read_mb": 55, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.9059, + "clustering_nmi": 0.8791, + "crosscor_cosine": 0.9348, + "crosscor_mantel": 0.8836, + "ctdeconcolute_jsd": 0.0197, + "ctdeconvolute_rmse": 0.0018, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.0207, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 2.6559, + "ks_statistic_L_stats": -6.0736, + "ks_statistic_morans_I": -0.2404, + "ks_statistic_nn_correlation": -0.7377, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0538, + "svg_precision": 0.8636, + "svg_recall": 0.8261 + }, + "scaled_scores": { + "clustering_ari": 0.9845, + "clustering_nmi": 0.9834, + "crosscor_cosine": 0.9572, + "crosscor_mantel": 0.9519, + "ctdeconcolute_jsd": 0.9047, + "ctdeconvolute_rmse": 0.9868, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.8571, + "ks_statistic_central_score_scalef": 0.9991, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.979, + "ks_statistic_L_stats": 0.9189, + "ks_statistic_morans_I": 0.9856, + "ks_statistic_nn_correlation": 0.9814, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 0.991, + "svg_precision": 0, + "svg_recall": 0.8261 + }, + "mean_score": 0.8504, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 11.9, + "cpu_pct": 177, + "peak_memory_mb": 4813, + "disk_read_mb": 55, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.0095, + "clustering_nmi": 0.0205, + "crosscor_cosine": 0.4976, + "crosscor_mantel": -0.0038, + "ctdeconcolute_jsd": 0.2189, + "ctdeconvolute_rmse": 0.1566, + "ks_statistic_celltype_interaction": -2.734, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 1.2906, + "ks_statistic_L_stats": -0.1549, + "ks_statistic_morans_I": 5.0304, + "ks_statistic_nn_correlation": 2.876, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0.5, + "svg_recall": 0.087 + }, + "scaled_scores": { + "clustering_ari": 0.0162, + "clustering_nmi": 0.0161, + "crosscor_cosine": 0.0061, + "crosscor_mantel": 0.0004, + "ctdeconcolute_jsd": -0.0574, + "ctdeconvolute_rmse": -0.1465, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.1429, + "ks_statistic_central_score_scalef": 1.0192, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0168, + "ks_statistic_L_stats": -0.453, + "ks_statistic_morans_I": 0.5325, + "ks_statistic_nn_correlation": 0.5361, + "ks_statistic_transition_matrix": 1.5, + "ks_statistic_transition_scalef": 1.0532, + "svg_precision": 0, + "svg_recall": 0.087 + }, + "mean_score": 0.3997, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 85, + "cpu_pct": 113.4, + "peak_memory_mb": 5735, + "disk_read_mb": 398, + "disk_write_mb": 5 + } + }, + { + "dataset_id": "olfactorybulb", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.0092, + "clustering_nmi": 0.0211, + "crosscor_cosine": 0.5955, + "crosscor_mantel": 0.2086, + "ctdeconcolute_jsd": 0.1455, + "ctdeconvolute_rmse": 0.0839, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.9236, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 37.6223, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.897, + "svg_precision": 0.6667, + "svg_recall": 0.087 + }, + "scaled_scores": { + "clustering_ari": 0.0158, + "clustering_nmi": 0.0168, + "crosscor_cosine": 0.219, + "crosscor_mantel": 0.2281, + "ctdeconcolute_jsd": 0.2974, + "ctdeconvolute_rmse": 0.3854, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.1429, + "ks_statistic_central_score_scalef": 0.1241, + "ks_statistic_enrichment": 0.3333, + "ks_statistic_enrichment_scalef": 0.009, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0159, + "svg_precision": 0, + "svg_recall": 0.087 + }, + "mean_score": 0.1041, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 16, + "cpu_pct": 291.8, + "peak_memory_mb": 5120, + "disk_read_mb": 61, + "disk_write_mb": 2 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0007, + "clustering_nmi": 0.0043, + "crosscor_cosine": 0.498, + "crosscor_mantel": -0.0018, + "ctdeconcolute_jsd": 0.178, + "ctdeconvolute_rmse": 0.2734, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.5902, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 27.1936, + "ks_statistic_L_stats": -0.6042, + "ks_statistic_morans_I": 52.2755, + "ks_statistic_nn_correlation": 177.1397, + "ks_statistic_transition_matrix": 0.6875, + "ks_statistic_transition_scalef": 0.4451, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0023, + "clustering_nmi": 0.0025, + "crosscor_cosine": 0, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0.0742, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0307, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.0298, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0.1308, + "ks_statistic_nn_correlation": 0.3682, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.0299, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0371, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 6.2, + "cpu_pct": 316.5, + "peak_memory_mb": 5940, + "disk_read_mb": 49, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": -0.002, + "clustering_nmi": 0.0029, + "crosscor_cosine": 0.4986, + "crosscor_mantel": -0.0003, + "ctdeconcolute_jsd": 0.1705, + "ctdeconvolute_rmse": 0.2953, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.6067, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 27.8728, + "ks_statistic_L_stats": -0.9155, + "ks_statistic_morans_I": 60.2317, + "ks_statistic_nn_correlation": 288.5287, + "ks_statistic_transition_matrix": 0.6875, + "ks_statistic_transition_scalef": 0.4561, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0.0014, + "crosscor_mantel": 0.0015, + "ctdeconcolute_jsd": 0.0421, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0.8515, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0498, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 6.2, + "cpu_pct": 265.9, + "peak_memory_mb": 4711, + "disk_read_mb": 49, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.5893, + "clustering_nmi": 0.5515, + "crosscor_cosine": 0.9739, + "crosscor_mantel": 0.966, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.068, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 5.0826, + "ks_statistic_L_stats": -0.9698, + "ks_statistic_morans_I": -0.596, + "ks_statistic_nn_correlation": -13.9751, + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.0873, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 1, + "ks_statistic_morans_I": 1, + "ks_statistic_nn_correlation": 1, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.8889, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 7.6, + "cpu_pct": 309.2, + "peak_memory_mb": 5940, + "disk_read_mb": 50, + "disk_write_mb": 21 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.0196, + "clustering_nmi": 0.0266, + "crosscor_cosine": 0.6873, + "crosscor_mantel": 0.3645, + "ctdeconcolute_jsd": 0.1097, + "ctdeconvolute_rmse": 0.1144, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.7521, + "ks_statistic_enrichment": 0.625, + "ks_statistic_enrichment_scalef": 39.9705, + "ks_statistic_L_stats": -0.7126, + "ks_statistic_morans_I": 8.3194, + "ks_statistic_nn_correlation": 25.9377, + "ks_statistic_transition_matrix": 0.625, + "ks_statistic_transition_scalef": 0.6545, + "svg_precision": 0.2633, + "svg_recall": 0.6503 + }, + "scaled_scores": { + "clustering_ari": 0.0367, + "clustering_nmi": 0.0432, + "crosscor_cosine": 0.3978, + "crosscor_mantel": 0.3784, + "ctdeconcolute_jsd": 0.3835, + "ctdeconvolute_rmse": 0.6126, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": -0.2699, + "ks_statistic_enrichment": 0.2, + "ks_statistic_enrichment_scalef": -0.5308, + "ks_statistic_L_stats": 0.2966, + "ks_statistic_morans_I": 0.8534, + "ks_statistic_nn_correlation": 0.8681, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": -0.5376, + "svg_precision": 0, + "svg_recall": 0.6503 + }, + "mean_score": 0.2692, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 58.1, + "cpu_pct": 340.4, + "peak_memory_mb": 24679, + "disk_read_mb": 81, + "disk_write_mb": 36 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.0077, + "clustering_nmi": 0.013, + "crosscor_cosine": 0.8295, + "crosscor_mantel": 0.6558, + "ctdeconcolute_jsd": 0.0993, + "ctdeconvolute_rmse": 0.098, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.3545, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 18.6056, + "ks_statistic_L_stats": -0.6865, + "ks_statistic_morans_I": 4.0152, + "ks_statistic_nn_correlation": 30.0471, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.3142, + "svg_precision": 0.523, + "svg_recall": 0.8087 + }, + "scaled_scores": { + "clustering_ari": 0.0165, + "clustering_nmi": 0.0185, + "crosscor_cosine": 0.6965, + "crosscor_mantel": 0.6795, + "ctdeconcolute_jsd": 0.4423, + "ctdeconvolute_rmse": 0.6683, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.4682, + "ks_statistic_enrichment": 0.4, + "ks_statistic_enrichment_scalef": 0.4066, + "ks_statistic_L_stats": 0.2251, + "ks_statistic_morans_I": 0.9242, + "ks_statistic_nn_correlation": 0.8545, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.3847, + "svg_precision": 0, + "svg_recall": 0.8087 + }, + "mean_score": 0.4186, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 823, + "cpu_pct": 101.4, + "peak_memory_mb": 7066, + "disk_read_mb": 81, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.0494, + "clustering_nmi": 0.0535, + "crosscor_cosine": 0.9096, + "crosscor_mantel": 0.8425, + "ctdeconcolute_jsd": 0.0661, + "ctdeconvolute_rmse": 0.0449, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.5833, + "ks_statistic_central_score_scalef": 0.3458, + "ks_statistic_enrichment": 0.625, + "ks_statistic_enrichment_scalef": 22.1379, + "ks_statistic_L_stats": -0.4607, + "ks_statistic_morans_I": 20.1007, + "ks_statistic_nn_correlation": 50.3765, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.3602, + "svg_precision": 0.244, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 0.087, + "clustering_nmi": 0.0922, + "crosscor_cosine": 0.8648, + "crosscor_mantel": 0.8723, + "ctdeconcolute_jsd": 0.6288, + "ctdeconvolute_rmse": 0.8479, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.4844, + "ks_statistic_enrichment": 0.2, + "ks_statistic_enrichment_scalef": 0.2516, + "ks_statistic_L_stats": -0.3923, + "ks_statistic_morans_I": 0.6597, + "ks_statistic_nn_correlation": 0.7873, + "ks_statistic_transition_matrix": 0.375, + "ks_statistic_transition_scalef": 0.2602, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.421, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 945, + "cpu_pct": 101.3, + "peak_memory_mb": 6964, + "disk_read_mb": 81, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.0319, + "clustering_nmi": 0.0373, + "crosscor_cosine": 0.6439, + "crosscor_mantel": 0.2737, + "ctdeconcolute_jsd": 0.0751, + "ctdeconvolute_rmse": 0.066, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.126, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 2.7326, + "ks_statistic_L_stats": -0.1979, + "ks_statistic_morans_I": 25.2479, + "ks_statistic_nn_correlation": 41.7334, + "ks_statistic_transition_matrix": 0.125, + "ks_statistic_transition_scalef": 0.0885, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0574, + "clustering_nmi": 0.0627, + "crosscor_cosine": 0.3067, + "crosscor_mantel": 0.2846, + "ctdeconcolute_jsd": 0.5783, + "ctdeconvolute_rmse": 0.7766, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 0.8924, + "ks_statistic_enrichment": 0.8, + "ks_statistic_enrichment_scalef": 1.1031, + "ks_statistic_L_stats": -1.1113, + "ks_statistic_morans_I": 0.5751, + "ks_statistic_nn_correlation": 0.8158, + "ks_statistic_transition_matrix": 1.125, + "ks_statistic_transition_scalef": 0.9965, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.5081, + "resources": { + "submit": "2025-03-14 13:22:33", + "exit_code": 0, + "duration_sec": 36.6, + "cpu_pct": 130.9, + "peak_memory_mb": 5223, + "disk_read_mb": 78, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.0326, + "clustering_nmi": 0.0377, + "crosscor_cosine": 0.5044, + "crosscor_mantel": 0.0023, + "ctdeconcolute_jsd": 0.1769, + "ctdeconvolute_rmse": 0.2773, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.1139, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 3.7205, + "ks_statistic_L_stats": -0.585, + "ks_statistic_morans_I": 11.0961, + "ks_statistic_nn_correlation": 8.6733, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.093, + "svg_precision": 0.1882, + "svg_recall": 0.0874 + }, + "scaled_scores": { + "clustering_ari": 0.0585, + "clustering_nmi": 0.0635, + "crosscor_cosine": 0.0136, + "crosscor_mantel": 0.0042, + "ctdeconcolute_jsd": 0.0059, + "ctdeconvolute_rmse": 0.0611, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.3333, + "ks_statistic_central_score_scalef": 0.9148, + "ks_statistic_enrichment": 0.8, + "ks_statistic_enrichment_scalef": 1.0598, + "ks_statistic_L_stats": -0.0525, + "ks_statistic_morans_I": 0.8078, + "ks_statistic_nn_correlation": 0.9251, + "ks_statistic_transition_matrix": 1.375, + "ks_statistic_transition_scalef": 0.9844, + "svg_precision": 0, + "svg_recall": 0.0874 + }, + "mean_score": 0.4292, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 16, + "cpu_pct": 185, + "peak_memory_mb": 6452, + "disk_read_mb": 74, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.6695, + "clustering_nmi": 0.6244, + "crosscor_cosine": 0.9642, + "crosscor_mantel": 0.9438, + "ctdeconcolute_jsd": 0.0118, + "ctdeconvolute_rmse": 0.0021, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.088, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 5.3291, + "ks_statistic_L_stats": -0.9455, + "ks_statistic_morans_I": -0.1197, + "ks_statistic_nn_correlation": -0.5949, + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": 0.0835, + "svg_precision": 0.7874, + "svg_recall": 0.8907 + }, + "scaled_scores": { + "clustering_ari": 1.1356, + "clustering_nmi": 1.133, + "crosscor_cosine": 0.9796, + "crosscor_mantel": 0.977, + "ctdeconcolute_jsd": 0.9335, + "ctdeconvolute_rmse": 0.9928, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 0.9629, + "ks_statistic_enrichment": 0.8, + "ks_statistic_enrichment_scalef": 0.9892, + "ks_statistic_L_stats": 0.9336, + "ks_statistic_morans_I": 0.9922, + "ks_statistic_nn_correlation": 0.9558, + "ks_statistic_transition_matrix": 0.875, + "ks_statistic_transition_scalef": 1.0103, + "svg_precision": 0, + "svg_recall": 0.8907 + }, + "mean_score": 0.849, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 35.6, + "cpu_pct": 138.4, + "peak_memory_mb": 6247, + "disk_read_mb": 74, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.0326, + "clustering_nmi": 0.0377, + "crosscor_cosine": 0.4845, + "crosscor_mantel": -0.0003, + "ctdeconcolute_jsd": 0.1718, + "ctdeconvolute_rmse": 0.2816, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.1139, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 3.1176, + "ks_statistic_L_stats": -0.2394, + "ks_statistic_morans_I": 18.8611, + "ks_statistic_nn_correlation": 47.5237, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.093, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0585, + "clustering_nmi": 0.0635, + "crosscor_cosine": -0.0282, + "crosscor_mantel": 0.0015, + "ctdeconcolute_jsd": 0.0349, + "ctdeconvolute_rmse": 0.0464, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.3333, + "ks_statistic_central_score_scalef": 0.9148, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1.0862, + "ks_statistic_L_stats": -0.9976, + "ks_statistic_morans_I": 0.6801, + "ks_statistic_nn_correlation": 0.7967, + "ks_statistic_transition_matrix": 1.375, + "ks_statistic_transition_scalef": 0.9844, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.4212, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 169, + "cpu_pct": 107.9, + "peak_memory_mb": 7168, + "disk_read_mb": 417, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "osteosarcoma", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": -0.0026, + "clustering_nmi": 0.0025, + "crosscor_cosine": 0.5857, + "crosscor_mantel": 0.1436, + "ctdeconcolute_jsd": 0.091, + "ctdeconvolute_rmse": 0.0838, + "ks_statistic_celltype_interaction": -0.4544, + "ks_statistic_central_score": 0.5, + "ks_statistic_central_score_scalef": 1.0538, + "ks_statistic_enrichment": 0.75, + "ks_statistic_enrichment_scalef": 20.7402, + "ks_statistic_L_stats": -0.0541, + "ks_statistic_morans_I": 38.8594, + "ks_statistic_nn_correlation": 125.085, + "ks_statistic_transition_matrix": 0.4375, + "ks_statistic_transition_scalef": 0.7473, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": -0.001, + "clustering_nmi": -0.0007, + "crosscor_cosine": 0.1842, + "crosscor_mantel": 0.1501, + "ctdeconcolute_jsd": 0.4886, + "ctdeconvolute_rmse": 0.7162, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": -0.8299, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.313, + "ks_statistic_L_stats": -1.5045, + "ks_statistic_morans_I": 0.3514, + "ks_statistic_nn_correlation": 0.5403, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": -0.7893, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.1987, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 36.4, + "cpu_pct": 484.1, + "peak_memory_mb": 26420, + "disk_read_mb": 80, + "disk_write_mb": 7 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": 0.0233, + "clustering_nmi": 0.0359, + "crosscor_cosine": 0.4997, + "crosscor_mantel": 0.0003, + "ctdeconcolute_jsd": 0.1279, + "ctdeconvolute_rmse": 0.6527, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.75, + "ks_statistic_central_score_scalef": 1.2436, + "ks_statistic_enrichment": 0.625, + "ks_statistic_enrichment_scalef": 47.4647, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.75, + "ks_statistic_transition_scalef": 1.008, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0.0541, + "clustering_nmi": 0.0294, + "crosscor_cosine": 0.0003, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0047, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 13.3, + "cpu_pct": 186.6, + "peak_memory_mb": 5940, + "disk_read_mb": 46, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "pdac", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.0043, + "clustering_nmi": 0.0244, + "crosscor_cosine": 0.4996, + "crosscor_mantel": 0.0008, + "ctdeconcolute_jsd": 0.1109, + "ctdeconvolute_rmse": 0.5956, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": "NA", + "ks_statistic_central_score_scalef": "NA", + "ks_statistic_enrichment": "NA", + "ks_statistic_enrichment_scalef": "NA", + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": "NA", + "ks_statistic_transition_scalef": "NA", + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0005, + "ctdeconcolute_jsd": 0.1328, + "ctdeconvolute_rmse": 0.0875, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0123, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 12.9, + "cpu_pct": 184.3, + "peak_memory_mb": 5940, + "disk_read_mb": 46, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.3573, + "clustering_nmi": 0.4163, + "crosscor_cosine": 0.9142, + "crosscor_mantel": 0.7936, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4167, + "ks_statistic_central_score_scalef": 0.5937, + "ks_statistic_enrichment": 0.5, + "ks_statistic_enrichment_scalef": 34.5369, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.3125, + "ks_statistic_transition_scalef": 0.7423, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 0, + "svg_recall": 1 + }, + "mean_score": 0.7222, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 7.7, + "cpu_pct": 291.9, + "peak_memory_mb": 5940, + "disk_read_mb": 47, + "disk_write_mb": 18 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": 0.1447, + "clustering_nmi": 0.1574, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7123, + "ctdeconcolute_jsd": 0.0964, + "ctdeconvolute_rmse": 0.3999, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4167, + "ks_statistic_central_score_scalef": 0.421, + "ks_statistic_enrichment": 0.375, + "ks_statistic_enrichment_scalef": 15.1256, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": 0.3363, + "svg_precision": 0.6925, + "svg_recall": 0.8711 + }, + "scaled_scores": { + "clustering_ari": 0.3978, + "clustering_nmi": 0.3393, + "crosscor_cosine": 0, + "crosscor_mantel": 0.8976, + "ctdeconcolute_jsd": 0.246, + "ctdeconvolute_rmse": 0.3872, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.2657, + "ks_statistic_enrichment": 2, + "ks_statistic_enrichment_scalef": 2.5015, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.1429, + "ks_statistic_transition_scalef": 2.5279, + "svg_precision": 0, + "svg_recall": 0.8711 + }, + "mean_score": 0.5077, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 127, + "cpu_pct": 307.4, + "peak_memory_mb": 24679, + "disk_read_mb": 51, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.5615, + "clustering_nmi": 0.534, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7675, + "ctdeconcolute_jsd": 0.075, + "ctdeconvolute_rmse": 0.2648, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.1742, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 10.8881, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.131, + "svg_precision": 0.8789, + "svg_recall": 0.8789 + }, + "scaled_scores": { + "clustering_ari": 1.5784, + "clustering_nmi": 1.3002, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9671, + "ctdeconcolute_jsd": 0.4139, + "ctdeconvolute_rmse": 0.5944, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 1.6456, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 2.8293, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.2857, + "ks_statistic_transition_scalef": 3.3003, + "svg_precision": 0, + "svg_recall": 0.8789 + }, + "mean_score": 0.603, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 816, + "cpu_pct": 101.5, + "peak_memory_mb": 8192, + "disk_read_mb": 79, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.3795, + "clustering_nmi": 0.4326, + "crosscor_cosine": 0.9087, + "crosscor_mantel": 0.7639, + "ctdeconcolute_jsd": 0.0569, + "ctdeconvolute_rmse": 0.1737, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.371, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 16.1707, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": 0.2602, + "svg_precision": 0.8909, + "svg_recall": 0.9237 + }, + "scaled_scores": { + "clustering_ari": 1.0629, + "clustering_nmi": 1.0416, + "crosscor_cosine": 0.9866, + "crosscor_mantel": 0.9625, + "ctdeconcolute_jsd": 0.5554, + "ctdeconvolute_rmse": 0.7339, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 1.3427, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 2.4207, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.1429, + "ks_statistic_transition_scalef": 2.8141, + "svg_precision": 0, + "svg_recall": 0.9237 + }, + "mean_score": 0.6757, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 3025, + "cpu_pct": 100.5, + "peak_memory_mb": 7988, + "disk_read_mb": 79, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": 0.2489, + "clustering_nmi": 0.2298, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.6982, + "ctdeconcolute_jsd": 0.1104, + "ctdeconvolute_rmse": 0.4944, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.2882, + "ks_statistic_enrichment": 0.1875, + "ks_statistic_enrichment_scalef": 37.2093, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.1875, + "ks_statistic_transition_scalef": 0.7773, + "svg_precision": 0.8864, + "svg_recall": 0.7184 + }, + "scaled_scores": { + "clustering_ari": 0.6929, + "clustering_nmi": 0.524, + "crosscor_cosine": 0, + "crosscor_mantel": 0.8797, + "ctdeconcolute_jsd": 0.1368, + "ctdeconvolute_rmse": 0.2424, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 1.4701, + "ks_statistic_enrichment": 3.5, + "ks_statistic_enrichment_scalef": 0.7933, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.2857, + "ks_statistic_transition_scalef": 0.868, + "svg_precision": 0, + "svg_recall": 0.7184 + }, + "mean_score": 0.492, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 32.6, + "cpu_pct": 140.4, + "peak_memory_mb": 6554, + "disk_read_mb": 76, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "splatter", + "metric_values": { + "clustering_ari": 0.1912, + "clustering_nmi": 0.2493, + "crosscor_cosine": 0.5815, + "crosscor_mantel": -0.0005, + "ctdeconcolute_jsd": 0.1473, + "ctdeconvolute_rmse": 0.6897, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1666, + "ks_statistic_enrichment": 0.125, + "ks_statistic_enrichment_scalef": 11.8223, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.0625, + "ks_statistic_transition_scalef": 0.2037, + "svg_precision": 0.3707, + "svg_recall": 0.3658 + }, + "scaled_scores": { + "clustering_ari": 0.5294, + "clustering_nmi": 0.574, + "crosscor_cosine": 0.1977, + "crosscor_mantel": -0.0011, + "ctdeconcolute_jsd": -0.1516, + "ctdeconvolute_rmse": -0.0567, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.75, + "ks_statistic_central_score_scalef": 1.6573, + "ks_statistic_enrichment": 4, + "ks_statistic_enrichment_scalef": 2.757, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.5714, + "ks_statistic_transition_scalef": 3.0266, + "svg_precision": 0, + "svg_recall": 0.3658 + }, + "mean_score": 0.4259, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 15.1, + "cpu_pct": 198.5, + "peak_memory_mb": 6349, + "disk_read_mb": 71, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.3971, + "clustering_nmi": 0.4944, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.7386, + "ctdeconcolute_jsd": 0.0263, + "ctdeconvolute_rmse": 0.0422, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.25, + "ks_statistic_central_score_scalef": 0.3291, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 16.3308, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.25, + "ks_statistic_transition_scalef": 0.2347, + "svg_precision": 0.8283, + "svg_recall": 0.9395 + }, + "scaled_scores": { + "clustering_ari": 1.1127, + "clustering_nmi": 1.1993, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9307, + "ctdeconcolute_jsd": 0.7941, + "ctdeconvolute_rmse": 0.9354, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 1.4072, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 2.4083, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.1429, + "ks_statistic_transition_scalef": 2.9102, + "svg_precision": 0, + "svg_recall": 0.9395 + }, + "mean_score": 0.6444, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 28, + "cpu_pct": 144.9, + "peak_memory_mb": 6247, + "disk_read_mb": 72, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "pdac", + "method_id": "symsim", + "metric_values": { + "clustering_ari": 0.1912, + "clustering_nmi": 0.2493, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.0345, + "ctdeconcolute_jsd": 0.1203, + "ctdeconvolute_rmse": 0.5995, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.1667, + "ks_statistic_central_score_scalef": 0.1666, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 13.3715, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.0625, + "ks_statistic_transition_scalef": 0.2037, + "svg_precision": 0.3781, + "svg_recall": 0.6737 + }, + "scaled_scores": { + "clustering_ari": 0.5294, + "clustering_nmi": 0.574, + "crosscor_cosine": 0, + "crosscor_mantel": -0.0439, + "ctdeconcolute_jsd": 0.0591, + "ctdeconvolute_rmse": 0.0814, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.75, + "ks_statistic_central_score_scalef": 1.6573, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 2.6372, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.5714, + "ks_statistic_transition_scalef": 3.0266, + "svg_precision": 0, + "svg_recall": 0.6737 + }, + "mean_score": 0.4399, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 92, + "cpu_pct": 115.9, + "peak_memory_mb": 7271, + "disk_read_mb": 414, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "pdac", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.1196, + "clustering_nmi": 0.1615, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.6107, + "ctdeconcolute_jsd": 0.0884, + "ctdeconvolute_rmse": 0.3193, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": 0.4523, + "ks_statistic_enrichment": 0.25, + "ks_statistic_enrichment_scalef": 11.7862, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.3125, + "ks_statistic_transition_scalef": 0.2582, + "svg_precision": 0.7253, + "svg_recall": 0.8895 + }, + "scaled_scores": { + "clustering_ari": 0.3268, + "clustering_nmi": 0.3497, + "crosscor_cosine": 0, + "crosscor_mantel": 0.7695, + "ctdeconcolute_jsd": 0.3086, + "ctdeconvolute_rmse": 0.5108, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.25, + "ks_statistic_central_score_scalef": 1.2177, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 2.7598, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 2.8216, + "svg_precision": 0, + "svg_recall": 0.8895 + }, + "mean_score": 0.5086, + "resources": { + "submit": "2025-03-14 13:22:24", + "exit_code": 0, + "duration_sec": 39.6, + "cpu_pct": 448.1, + "peak_memory_mb": 87245, + "disk_read_mb": 78, + "disk_write_mb": 8 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_normal", + "metric_values": { + "clustering_ari": -0.0024, + "clustering_nmi": 0.0053, + "crosscor_cosine": 0.499, + "crosscor_mantel": -0.002, + "ctdeconcolute_jsd": 0.1373, + "ctdeconvolute_rmse": 0.7454, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.9498, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 30.8133, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.6817, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": 0, + "clustering_nmi": 0, + "crosscor_cosine": 0.0001, + "crosscor_mantel": 0, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0.0123, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0562, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 8, + "cpu_pct": 242.7, + "peak_memory_mb": 5940, + "disk_read_mb": 49, + "disk_write_mb": 12 + } + }, + { + "dataset_id": "prostate", + "method_id": "negative_shuffle", + "metric_values": { + "clustering_ari": 0.0025, + "clustering_nmi": 0.0084, + "crosscor_cosine": 0.499, + "crosscor_mantel": -0.0015, + "ctdeconcolute_jsd": 0.1371, + "ctdeconvolute_rmse": 0.7547, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.9468, + "ks_statistic_enrichment": 0.5556, + "ks_statistic_enrichment_scalef": 28.0227, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.6158, + "svg_precision": 0.6667, + "svg_recall": 0.011 + }, + "scaled_scores": { + "clustering_ari": 0.0354, + "clustering_nmi": 0.0187, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0008, + "ctdeconcolute_jsd": 0.0017, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.0065, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.1562, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.1861, + "svg_precision": 0, + "svg_recall": 0.011 + }, + "mean_score": 0.0231, + "resources": { + "submit": "2025-03-14 13:22:35", + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 282.2, + "peak_memory_mb": 5940, + "disk_read_mb": 49, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "positive", + "metric_values": { + "clustering_ari": 0.1383, + "clustering_nmi": 0.1739, + "crosscor_cosine": 0.8758, + "crosscor_mantel": 0.6642, + "ctdeconcolute_jsd": 0, + "ctdeconvolute_rmse": 0, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.4869, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 12.9467, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.2222, + "ks_statistic_transition_scalef": 0.3277, + "svg_precision": 1, + "svg_recall": 1 + }, + "scaled_scores": { + "clustering_ari": 1, + "clustering_nmi": 1, + "crosscor_cosine": 1, + "crosscor_mantel": 1, + "ctdeconcolute_jsd": 1, + "ctdeconvolute_rmse": 1, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 1, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 1, + "svg_precision": 1, + "svg_recall": 1 + }, + "mean_score": 0.7778, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 9, + "cpu_pct": 191.4, + "peak_memory_mb": 4608, + "disk_read_mb": 49, + "disk_write_mb": 20 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign2", + "metric_values": { + "clustering_ari": -0.0025, + "clustering_nmi": 0.0042, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.0706, + "ctdeconcolute_jsd": 0.0628, + "ctdeconvolute_rmse": 0.2287, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.6667, + "ks_statistic_central_score_scalef": 0.8764, + "ks_statistic_enrichment": 0.5556, + "ks_statistic_enrichment_scalef": 28.9607, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.4444, + "ks_statistic_transition_scalef": 0.6354, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": -0.0002, + "clustering_nmi": -0.0062, + "crosscor_cosine": 0, + "crosscor_mantel": -0.103, + "ctdeconcolute_jsd": 0.5428, + "ctdeconvolute_rmse": 0.697, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0.1586, + "ks_statistic_enrichment": 0, + "ks_statistic_enrichment_scalef": 0.1037, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0.1309, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.0907, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 213, + "cpu_pct": 207.1, + "peak_memory_mb": 6964, + "disk_read_mb": 53, + "disk_write_mb": 11 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_nb", + "metric_values": { + "clustering_ari": 0.003, + "clustering_nmi": 0.0103, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.628, + "ctdeconcolute_jsd": 0.0534, + "ctdeconvolute_rmse": 0.186, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.4249, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 17.9852, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.3709, + "svg_precision": 0.7561, + "svg_recall": 0.6813 + }, + "scaled_scores": { + "clustering_ari": 0.0385, + "clustering_nmi": 0.0299, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9456, + "ctdeconcolute_jsd": 0.6111, + "ctdeconvolute_rmse": 0.7536, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.134, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.718, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 0.8779, + "svg_precision": 0.2683, + "svg_recall": 0.6813 + }, + "mean_score": 0.468, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 2771, + "cpu_pct": 100.5, + "peak_memory_mb": 7783, + "disk_read_mb": 81, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "scdesign3_poisson", + "metric_values": { + "clustering_ari": 0.0594, + "clustering_nmi": 0.072, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.6078, + "ctdeconcolute_jsd": 0.04, + "ctdeconvolute_rmse": 0.1179, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.3333, + "ks_statistic_central_score_scalef": 0.3, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 16.5604, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.2222, + "ks_statistic_transition_scalef": 0.3389, + "svg_precision": 0.6974, + "svg_recall": 0.8736 + }, + "scaled_scores": { + "clustering_ari": 0.4393, + "clustering_nmi": 0.3959, + "crosscor_cosine": 0, + "crosscor_mantel": 0.9153, + "ctdeconcolute_jsd": 0.7087, + "ctdeconvolute_rmse": 0.8438, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1.5, + "ks_statistic_central_score_scalef": 1.4039, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.7977, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 0.9684, + "svg_precision": 0.0921, + "svg_recall": 0.8736 + }, + "mean_score": 0.5575, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 2358, + "cpu_pct": 100.7, + "peak_memory_mb": 7680, + "disk_read_mb": 81, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "sparsim", + "metric_values": { + "clustering_ari": -0.0036, + "clustering_nmi": 0.0047, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.0142, + "ctdeconcolute_jsd": 0.1075, + "ctdeconvolute_rmse": 0.5391, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.2222, + "ks_statistic_central_score_scalef": 0.0302, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 1.8287, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.1111, + "ks_statistic_transition_scalef": 0.0051, + "svg_precision": 0.3071, + "svg_recall": 0.4286 + }, + "scaled_scores": { + "clustering_ari": -0.008, + "clustering_nmi": -0.0037, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0243, + "ctdeconcolute_jsd": 0.2167, + "ctdeconvolute_rmse": 0.2857, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 2, + "ks_statistic_central_score_scalef": 1.9867, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 1.6223, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1.5, + "ks_statistic_transition_scalef": 1.9114, + "svg_precision": -1.0787, + "svg_recall": 0.4286 + }, + "mean_score": 0.3864, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 27.6, + "cpu_pct": 134.2, + "peak_memory_mb": 6554, + "disk_read_mb": 78, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "splatter", + "metric_values": { + "clustering_ari": -0.0038, + "clustering_nmi": 0.0054, + "crosscor_cosine": "NA", + "crosscor_mantel": -0.019, + "ctdeconcolute_jsd": 0.1847, + "ctdeconvolute_rmse": 0.8611, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 0.8073, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": "NA", + "svg_recall": 0 + }, + "scaled_scores": { + "clustering_ari": -0.0094, + "clustering_nmi": 0.0009, + "crosscor_cosine": 0, + "crosscor_mantel": -0.0256, + "ctdeconcolute_jsd": -0.3451, + "ctdeconvolute_rmse": -0.141, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 3, + "ks_statistic_central_score_scalef": 2.052, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 1.6795, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 2, + "ks_statistic_transition_scalef": 1.9257, + "svg_precision": 0, + "svg_recall": 0 + }, + "mean_score": 0.3334, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 19, + "cpu_pct": 131.5, + "peak_memory_mb": 5120, + "disk_read_mb": 73, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "srtsim", + "metric_values": { + "clustering_ari": 0.2737, + "clustering_nmi": 0.2635, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.58, + "ctdeconcolute_jsd": 0.0184, + "ctdeconvolute_rmse": 0.0339, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.4567, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 13.2062, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.3333, + "ks_statistic_transition_scalef": 0.2866, + "svg_precision": 0.8247, + "svg_recall": 0.8791 + }, + "scaled_scores": { + "clustering_ari": 1.9623, + "clustering_nmi": 1.5316, + "crosscor_cosine": 0, + "crosscor_mantel": 0.8736, + "ctdeconcolute_jsd": 0.8658, + "ctdeconvolute_rmse": 0.955, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.0654, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.9855, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 0.5, + "ks_statistic_transition_scalef": 1.116, + "svg_precision": 0.4742, + "svg_recall": 0.8791 + }, + "mean_score": 0.6407, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 21.8, + "cpu_pct": 156.8, + "peak_memory_mb": 6247, + "disk_read_mb": 74, + "disk_write_mb": 10 + } + }, + { + "dataset_id": "prostate", + "method_id": "symsim", + "metric_values": { + "clustering_ari": -0.0038, + "clustering_nmi": 0.0054, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.003, + "ctdeconcolute_jsd": 0.1683, + "ctdeconvolute_rmse": 0.9037, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0, + "ks_statistic_central_score_scalef": 0, + "ks_statistic_enrichment": 0.2222, + "ks_statistic_enrichment_scalef": 0.9277, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0, + "ks_statistic_transition_scalef": 0, + "svg_precision": 0.2, + "svg_recall": 0.0879 + }, + "scaled_scores": { + "clustering_ari": -0.0094, + "clustering_nmi": 0.0009, + "crosscor_cosine": 0, + "crosscor_mantel": 0.0075, + "ctdeconcolute_jsd": -0.2261, + "ctdeconvolute_rmse": -0.1975, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 3, + "ks_statistic_central_score_scalef": 2.052, + "ks_statistic_enrichment": 3, + "ks_statistic_enrichment_scalef": 1.6727, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 2, + "ks_statistic_transition_scalef": 1.9257, + "svg_precision": -1.4, + "svg_recall": 0.0879 + }, + "mean_score": 0.3387, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 72, + "cpu_pct": 112.9, + "peak_memory_mb": 5837, + "disk_read_mb": 334, + "disk_write_mb": 12 + } + }, + { + "dataset_id": "prostate", + "method_id": "zinbwave", + "metric_values": { + "clustering_ari": 0.0001, + "clustering_nmi": 0.0048, + "crosscor_cosine": "NA", + "crosscor_mantel": 0.4279, + "ctdeconcolute_jsd": 0.0566, + "ctdeconvolute_rmse": 0.1938, + "ks_statistic_celltype_interaction": "NA", + "ks_statistic_central_score": 0.4444, + "ks_statistic_central_score_scalef": 0.4819, + "ks_statistic_enrichment": 0.4444, + "ks_statistic_enrichment_scalef": 29.8396, + "ks_statistic_L_stats": "NA", + "ks_statistic_morans_I": "NA", + "ks_statistic_nn_correlation": "NA", + "ks_statistic_transition_matrix": 0.2222, + "ks_statistic_transition_scalef": 0.6223, + "svg_precision": 0.6587, + "svg_recall": 0.7527 + }, + "scaled_scores": { + "clustering_ari": 0.0183, + "clustering_nmi": -0.003, + "crosscor_cosine": 0, + "crosscor_mantel": 0.6452, + "ctdeconcolute_jsd": 0.5877, + "ctdeconvolute_rmse": 0.7431, + "ks_statistic_celltype_interaction": 0, + "ks_statistic_central_score": 1, + "ks_statistic_central_score_scalef": 1.011, + "ks_statistic_enrichment": 1, + "ks_statistic_enrichment_scalef": 0.0545, + "ks_statistic_L_stats": 0, + "ks_statistic_morans_I": 0, + "ks_statistic_nn_correlation": 0, + "ks_statistic_transition_matrix": 1, + "ks_statistic_transition_scalef": 0.1679, + "svg_precision": -0.024, + "svg_recall": 0.7527 + }, + "mean_score": 0.3872, + "resources": { + "submit": "2025-03-14 13:22:34", + "exit_code": 0, + "duration_sec": 35, + "cpu_pct": 381, + "peak_memory_mb": 40039, + "disk_read_mb": 80, + "disk_write_mb": 11 + } + } +] diff --git a/results/spatial_simulators/data/state.yaml b/results/spatial_simulators/data/state.yaml new file mode 100644 index 00000000..abbb0fc1 --- /dev/null +++ b/results/spatial_simulators/data/state.yaml @@ -0,0 +1,9 @@ +id: process +output_scores: !file results.json +output_method_info: !file method_info.json +output_metric_info: !file metric_info.json +output_dataset_info: !file dataset_info.json +output_task_info: !file task_info.json +output_qc: !file quality_control.json +output_metric_execution_info: !file metric_execution_info.json + diff --git a/results/spatial_simulators/data/task_info.json b/results/spatial_simulators/data/task_info.json new file mode 100644 index 00000000..371ac791 --- /dev/null +++ b/results/spatial_simulators/data/task_info.json @@ -0,0 +1,53 @@ +{ + "task_id": "task_spatial_simulators", + "commit_sha": null, + "task_name": "Spatial Simulators", + "task_summary": "Assessing the quality of spatial transcriptomics simulators", + "task_description": "Computational methods for spatially resolved transcriptomics (SRT) are frequently developed \nand assessed through data simulation. The effectiveness of these evaluations relies on the \nsimulation methods' ability to accurately reflect experimental data. However, a systematic \nevaluation framework for spatial simulators is lacking. Here, we present SpatialSimBench, \na comprehensive evaluation framework that assesses 13 simulation methods using 10 distinct \nSTR datasets.\n\nThe research goal of this benchmark is to systematically evaluate and compare the\nperformance of various simulation methods for spatial transcriptomics (ST) data.\nIt aims to address the lack of a comprehensive evaluation framework for spatial simulators\nand explore the feasibility of leveraging existing single-cell simulators for ST data.\nThe experimental setup involves collecting public spatial transcriptomics datasets and\ncorresponding scRNA-seq datasets.\nThe spatial and scRNA-seq datasets can originate from different study but should consist\nof similar cell types from similar tissues.\n", + "repo": "https://github.com/openproblems-bio/task_spatial_simulators", + "issue_tracker": "https://github.com/openproblems-bio/task_spatial_simulators/issues", + "authors": [ + { + "name": "Xiaoqi Liang", + "roles": ["author", "maintainer"], + "info": { + "orcid": "0009-0004-9625-1441", + "github": "littlecabiria" + } + }, + { + "name": "Yue Cao", + "roles": "author", + "info": { + "orcid": "0000-0002-2356-4031", + "github": "ycao6928" + } + }, + { + "name": "Jean Yang", + "roles": "author", + "info": { + "orcid": "0000-0002-5271-2603", + "github": "jeany21" + } + }, + { + "name": "Robrecht Cannoodt", + "roles": "contributor", + "info": { + "github": "rcannood", + "orcid": "0000-0003-3641-729X" + } + }, + { + "name": "Sai Nirmayi Yasa", + "roles": "contributor", + "info": { + "github": "sainirmayi", + "orcid": "0009-0003-6319-9803" + } + } + ], + "version": "build_main", + "license": "MIT" +} diff --git a/results/spatial_simulators/index.qmd b/results/spatial_simulators/index.qmd new file mode 100644 index 00000000..0c8f0ec3 --- /dev/null +++ b/results/spatial_simulators/index.qmd @@ -0,0 +1,20 @@ +--- +title: "Spatial Simulators" +subtitle: "Assessing the quality of spatial transcriptomics simulators." +image: thumbnail.svg +page-layout: full +css: ../_include/task_template.css +engine: knitr +fig-cap-location: bottom +citation-location: document +toc: false +--- + +```{r} +#| include: false +params <- list(data_dir = "results/spatial_simulators/data") +params <- list(data_dir = "./data") +``` + +{{< include ../_include/_task_template.qmd >}} +