From 68020e7b6eca5a1b4db271a6a07bdf48f42f8934 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Tue, 5 Mar 2024 15:11:25 +0100 Subject: [PATCH 01/12] Update denoising results to v2 --- results/denoising/data/dataset_info.json | 174 +- results/denoising/data/method_info.json | 269 +- results/denoising/data/metric_info.json | 46 +- results/denoising/data/quality_control.json | 578 ++-- results/denoising/data/results.json | 3284 +++++++++++++------ results/denoising/data/state.yaml | 8 + results/denoising/data/task_info.json | 14 +- 7 files changed, 2824 insertions(+), 1549 deletions(-) create mode 100644 results/denoising/data/state.yaml diff --git a/results/denoising/data/dataset_info.json b/results/denoising/data/dataset_info.json index dc288024..dd86f9c0 100644 --- a/results/denoising/data/dataset_info.json +++ b/results/denoising/data/dataset_info.json @@ -1,38 +1,138 @@ [ - { - "dataset_name": "Pancreas (inDrop)", - "image": "openproblems-python-pytorch", - "data_url": "https://ndownloader.figshare.com/files/36086813", - "data_reference": "luecken2022benchmarking", - "dataset_summary": "Human pancreatic islet scRNA-seq data from 6 datasets across technologies (CEL-seq, CEL-seq2, Smart-seq2, inDrop, Fluidigm C1, and SMARTER-seq). Here we just use the inDrop1 batch, which includes1937 cells \u00d7 15502 genes.", - "task_id": "denoising", - "commit_sha": "9d1665076cf6215a31f89ed2be8be20a02502887", - "dataset_id": "pancreas", - "source_dataset_id": "openproblems_v1/pancreas", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/datasets/pancreas.py" - }, - { - "dataset_name": "1k Peripheral blood mononuclear cells", - "image": "openproblems-python-pytorch", - "data_url": "https://ndownloader.figshare.com/files/36088667", - "data_reference": "10x2018pbmc", - "dataset_summary": "1k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in November 2018 by 10X Genomics.", - "task_id": "denoising", - "commit_sha": "9d1665076cf6215a31f89ed2be8be20a02502887", - "dataset_id": "pbmc", - "source_dataset_id": "openproblems_v1/tenx_1k_pbmc", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/datasets/pbmc.py" - }, - { - "dataset_name": "Tabula Muris Senis Lung", - "image": "openproblems-python-pytorch", - "data_url": "https://tabula-muris-senis.ds.czbiohub.org/", - "data_reference": "tabula2020single", - "dataset_summary": "All lung cells from Tabula Muris Senis, a 500k cell-atlas from 18 organs and tissues across the mouse lifespan. Here we use just 10x data from lung. 24540 cells \u00d7 16160 genes across 3 time points.", - "task_id": "denoising", - "commit_sha": "9d1665076cf6215a31f89ed2be8be20a02502887", - "dataset_id": "tabula_muris_senis_lung_random", - "source_dataset_id": "openproblems_v1/tabula_muris_senis_droplet_lung", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/datasets/tabula_muris_senis.py" - } -] \ No newline at end of file + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/dkd", + "dataset_name": "Diabetic Kidney Disease", + "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", + "data_reference": "wilson2022multimodal", + "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/tabula_sapiens", + "dataset_name": "Tabula Sapiens", + "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", + "data_reference": "consortium2022tabula", + "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/hcla", + "dataset_name": "Human Lung Cell Atlas", + "dataset_summary": "An integrated cell atlas of the human lung in health and disease (core)", + "data_reference": "sikkema2023integrated", + "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "dataset_name": "Mouse Pancreatic Islet Atlas", + "dataset_summary": "Mouse pancreatic islet scRNA-seq atlas across sexes, ages, and stress conditions including diabetes", + "data_reference": "hrovatin2023delineating", + "data_url": "https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/cengen", + "dataset_name": "CeNGEN", + "dataset_summary": "Complete Gene Expression Map of an Entire Nervous System", + "data_reference": "hammarlund2018cengen", + "data_url": "https://www.cengen.org" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/zebrafish", + "dataset_name": "Zebrafish embryonic cells", + "dataset_summary": "Single-cell mRNA sequencing of zebrafish embryonic cells.", + "data_reference": "wagner2018single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_name": "5k PBMCs", + "dataset_summary": "5k peripheral blood mononuclear cells from a healthy donor", + "data_reference": "10x2019pbmc", + "data_url": "https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-v-3-chemistry-3-1-standard-3-1-0" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_name": "Mouse HSPC", + "dataset_summary": "Haematopoeitic stem and progenitor cells from mouse bone marrow", + "data_reference": "nestorowa2016single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81682" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/gtex_v9", + "dataset_name": "GTEX v9", + "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", + "data_reference": "eraslan2022singlenucleus", + "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/immune_cells", + "dataset_name": "Human immune", + "dataset_summary": "Human immune cells dataset from the scIB benchmarks", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_name": "1k PBMCs", + "dataset_summary": "1k peripheral blood mononuclear cells from a healthy donor", + "data_reference": "10x2018pbmc", + "data_url": "https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_name": "Mouse myeloid", + "dataset_summary": "Myeloid lineage differentiation from mouse blood", + "data_reference": "olsson2016single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70245" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/pancreas", + "dataset_name": "Human pancreas", + "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/immune_cell_atlas", + "dataset_name": "Immune Cell Atlas", + "dataset_summary": "Cross-tissue immune cell analysis reveals tissue-specific features in humans", + "data_reference": "dominguez2022crosstissue", + "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_name": "Mouse Brain Atlas", + "dataset_summary": "Adult mouse primary visual cortex", + "data_reference": "tasic2016adult", + "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_name": "Triple-Negative Breast Cancer", + "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", + "data_reference": "wu2021single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/hypomap", + "dataset_name": "HypoMap", + "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", + "data_reference": "steuernagel2022hypomap", + "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36" + } +] diff --git a/results/denoising/data/method_info.json b/results/denoising/data/method_info.json index c6c5a5f8..55dc86e9 100644 --- a/results/denoising/data/method_info.json +++ b/results/denoising/data/method_info.json @@ -1,197 +1,74 @@ [ - { - "method_name": "ALRA (log norm)", - "method_summary": "ALRA (Adaptively-thresholded Low Rank Approximation) is a method for imputation of missing values in single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first imputes values using rank-k approximation, using singular value decomposition. Next, a symmetric distribution is fitted to the near-zero imputed values for each gene (row) of the matrix. The right \u201ctail\u201d of this distribution is then used to threshold the accepted nonzero entries. This same threshold is then used to rescale the matrix, once the \u201cbiological zeros\u201d have been removed.", - "paper_name": "Zero-preserving imputation of scRNA-seq data using low-rank approximation", - "paper_reference": "linderman2018zero", - "paper_year": 2018, - "code_url": "https://github.com/KlugerLab/ALRA", - "image": "openproblems-r-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "alra_log", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/alra.py" - }, - { - "method_name": "ALRA (log norm, reversed normalization)", - "method_summary": "ALRA (Adaptively-thresholded Low Rank Approximation) is a method for imputation of missing values in single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first imputes values using rank-k approximation, using singular value decomposition. Next, a symmetric distribution is fitted to the near-zero imputed values for each gene (row) of the matrix. The right \u201ctail\u201d of this distribution is then used to threshold the accepted nonzero entries. This same threshold is then used to rescale the matrix, once the \u201cbiological zeros\u201d have been removed.", - "paper_name": "Zero-preserving imputation of scRNA-seq data using low-rank approximation", - "paper_reference": "linderman2018zero", - "paper_year": 2018, - "code_url": "https://github.com/KlugerLab/ALRA", - "image": "openproblems-r-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "alra_log_reversenorm", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/alra.py" - }, - { - "method_name": "ALRA (sqrt norm)", - "method_summary": "ALRA (Adaptively-thresholded Low Rank Approximation) is a method for imputation of missing values in single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first imputes values using rank-k approximation, using singular value decomposition. Next, a symmetric distribution is fitted to the near-zero imputed values for each gene (row) of the matrix. The right \u201ctail\u201d of this distribution is then used to threshold the accepted nonzero entries. This same threshold is then used to rescale the matrix, once the \u201cbiological zeros\u201d have been removed.", - "paper_name": "Zero-preserving imputation of scRNA-seq data using low-rank approximation", - "paper_reference": "linderman2018zero", - "paper_year": 2018, - "code_url": "https://github.com/KlugerLab/ALRA", - "image": "openproblems-r-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "alra_sqrt", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/alra.py" - }, - { - "method_name": "ALRA (sqrt norm, reversed normalization)", - "method_summary": "ALRA (Adaptively-thresholded Low Rank Approximation) is a method for imputation of missing values in single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first imputes values using rank-k approximation, using singular value decomposition. Next, a symmetric distribution is fitted to the near-zero imputed values for each gene (row) of the matrix. The right \u201ctail\u201d of this distribution is then used to threshold the accepted nonzero entries. This same threshold is then used to rescale the matrix, once the \u201cbiological zeros\u201d have been removed.", - "paper_name": "Zero-preserving imputation of scRNA-seq data using low-rank approximation", - "paper_reference": "linderman2018zero", - "paper_year": 2018, - "code_url": "https://github.com/KlugerLab/ALRA", - "image": "openproblems-r-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "alra_sqrt_reversenorm", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/alra.py" - }, - { - "method_name": "DCA", - "method_summary": "DCA (Deep Count Autoencoder) is a method to remove the effect of dropout in scRNA-seq data. DCA takes into account the count structure, overdispersed nature and sparsity of scRNA-seq datatypes using a deep autoencoder with a zero-inflated negative binomial (ZINB) loss. The autoencoder is then applied to the dataset, where the mean of the fitted negative binomial distributions is used to fill each entry of the imputed matrix.", - "paper_name": "Single-cell RNA-seq denoising using a deep count autoencoder", - "paper_reference": "eraslan2019single", - "paper_year": 2019, - "code_url": "https://github.com/theislab/dca", - "image": "openproblems-python-tensorflow", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "dca", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/dca.py" - }, - { - "method_name": "KNN smoothing", - "method_summary": "KNN-smoothing is a method for denoising data based on the k-nearest neighbours. Given a normalised scRNA-seq matrix, KNN-smoothing calculates a k-nearest neighbour matrix using Euclidean distances between cell pairs. Each cell\u2019s denoised expression is then defined as the average expression of each of its neighbours.", - "paper_name": "Open Problems for Single Cell Analysis", - "paper_reference": "openproblems", - "paper_year": 2022, - "code_url": "https://github.com/openproblems-bio/openproblems", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "knn_naive", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/magic.py" - }, - { - "method_name": "Iterative KNN smoothing", - "method_summary": "Iterative kNN-smoothing is a method to repair or denoise noisy scRNA-seq expression matrices. Given a scRNA-seq expression matrix, KNN-smoothing first applies initial normalisation and smoothing. Then, a chosen number of principal components is used to calculate Euclidean distances between cells. Minimally sized neighbourhoods are initially determined from these Euclidean distances, and expression profiles are shared between neighbouring cells. Then, the resultant smoothed matrix is used as input to the next step of smoothing, where the size (k) of the considered neighbourhoods is increased, leading to greater smoothing. This process continues until a chosen maximum k value has been reached, at which point the iteratively smoothed object is then optionally scaled to yield a final result.", - "paper_name": "K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data", - "paper_reference": "wagner2018knearest", - "paper_year": 2018, - "code_url": "https://github.com/yanailab/knn-smoothing", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "knn_smoothing", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/knn_smoothing.py" - }, - { - "method_name": "MAGIC", - "method_summary": "MAGIC (Markov Affinity-based Graph Imputation of Cells) is a method for imputation and denoising of noisy or dropout-prone single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first calculates Euclidean distances between each pair of cells in the dataset, which is then augmented using a Gaussian kernel (function) and row-normalised to give a normalised affinity matrix. A t-step markov process is then calculated, by powering this affinity matrix t times. Finally, the powered affinity matrix is right-multiplied by the normalised data, causing the final imputed values to take the value of a per-gene average weighted by the affinities of cells. The resultant imputed matrix is then rescaled, to more closely match the magnitude of measurements in the normalised (input) matrix.", - "paper_name": "Recovering Gene Interactions from Single-Cell Data Using Data Diffusion", - "paper_reference": "van2018recovering", - "paper_year": 2018, - "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "magic", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/magic.py" - }, - { - "method_name": "MAGIC (approximate)", - "method_summary": "MAGIC (Markov Affinity-based Graph Imputation of Cells) is a method for imputation and denoising of noisy or dropout-prone single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first calculates Euclidean distances between each pair of cells in the dataset, which is then augmented using a Gaussian kernel (function) and row-normalised to give a normalised affinity matrix. A t-step markov process is then calculated, by powering this affinity matrix t times. Finally, the powered affinity matrix is right-multiplied by the normalised data, causing the final imputed values to take the value of a per-gene average weighted by the affinities of cells. The resultant imputed matrix is then rescaled, to more closely match the magnitude of measurements in the normalised (input) matrix.", - "paper_name": "Recovering Gene Interactions from Single-Cell Data Using Data Diffusion", - "paper_reference": "van2018recovering", - "paper_year": 2018, - "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "magic_approx", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/magic.py" - }, - { - "method_name": "MAGIC (approximate, reversed normalization)", - "method_summary": "MAGIC (Markov Affinity-based Graph Imputation of Cells) is a method for imputation and denoising of noisy or dropout-prone single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first calculates Euclidean distances between each pair of cells in the dataset, which is then augmented using a Gaussian kernel (function) and row-normalised to give a normalised affinity matrix. A t-step markov process is then calculated, by powering this affinity matrix t times. Finally, the powered affinity matrix is right-multiplied by the normalised data, causing the final imputed values to take the value of a per-gene average weighted by the affinities of cells. The resultant imputed matrix is then rescaled, to more closely match the magnitude of measurements in the normalised (input) matrix.", - "paper_name": "Recovering Gene Interactions from Single-Cell Data Using Data Diffusion", - "paper_reference": "van2018recovering", - "paper_year": 2018, - "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "magic_approx_reverse_norm", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/magic.py" - }, - { - "method_name": "MAGIC (reversed normalization)", - "method_summary": "MAGIC (Markov Affinity-based Graph Imputation of Cells) is a method for imputation and denoising of noisy or dropout-prone single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first calculates Euclidean distances between each pair of cells in the dataset, which is then augmented using a Gaussian kernel (function) and row-normalised to give a normalised affinity matrix. A t-step markov process is then calculated, by powering this affinity matrix t times. Finally, the powered affinity matrix is right-multiplied by the normalised data, causing the final imputed values to take the value of a per-gene average weighted by the affinities of cells. The resultant imputed matrix is then rescaled, to more closely match the magnitude of measurements in the normalised (input) matrix.", - "paper_name": "Recovering Gene Interactions from Single-Cell Data Using Data Diffusion", - "paper_reference": "van2018recovering", - "paper_year": 2018, - "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "image": "openproblems-python-extras", - "is_baseline": false, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "magic_reverse_norm", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/magic.py" - }, - { - "method_name": "No denoising", - "method_summary": "Denoised outputs are defined from the unmodified input data.", - "paper_name": "Open Problems for Single Cell Analysis", - "paper_reference": "openproblems", - "paper_year": 2022, - "code_url": "https://github.com/openproblems-bio/openproblems", - "image": "openproblems", - "is_baseline": true, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "no_denoising", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/baseline.py" - }, - { - "method_name": "Perfect denoising", - "method_summary": "Denoised outputs are defined from the target data.", - "paper_name": "Open Problems for Single Cell Analysis", - "paper_reference": "openproblems", - "paper_year": 2022, - "code_url": "https://github.com/openproblems-bio/openproblems", - "image": "openproblems", - "is_baseline": true, - "code_version": null, - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "method_id": "perfect_denoising", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/methods/baseline.py" - } -] \ No newline at end of file + { + "task_id": "denoising", + "method_id": "no_denoising", + "method_name": "No Denoising", + "method_summary": "negative control by copying train counts", + "is_baseline": true, + "paper_reference": null, + "code_url": null, + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/control_methods/no_denoising/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + }, + { + "task_id": "denoising", + "method_id": "perfect_denoising", + "method_name": "Perfect Denoising", + "method_summary": "Positive control by copying the test counts", + "is_baseline": true, + "paper_reference": null, + "code_url": null, + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/control_methods/perfect_denoising/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + }, + { + "task_id": "denoising", + "method_id": "alra", + "method_name": "ALRA", + "method_summary": "ALRA imputes missing values in scRNA-seq data by computing rank-k approximation, thresholding by gene, and rescaling the matrix.", + "is_baseline": false, + "paper_reference": "linderman2018zero", + "code_url": "https://github.com/KlugerLab/ALRA", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/alra/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + }, + { + "task_id": "denoising", + "method_id": "dca", + "method_name": "DCA", + "method_summary": "A deep autoencoder with ZINB loss function to address the dropout effect in count data", + "is_baseline": false, + "paper_reference": "eraslan2019single", + "code_url": "https://github.com/theislab/dca", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/dca/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + }, + { + "task_id": "denoising", + "method_id": "knn_smoothing", + "method_name": "KNN Smoothing", + "method_summary": "Iterative kNN-smoothing denoises scRNA-seq data by iteratively increasing the size of neighbourhoods for smoothing until a maximum k value is reached.", + "is_baseline": false, + "paper_reference": "wagner2018knearest", + "code_url": "https://github.com/yanailab/knn-smoothing", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/knn_smoothing/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + }, + { + "task_id": "denoising", + "method_id": "magic", + "method_name": "MAGIC", + "method_summary": "MAGIC imputes and denoises scRNA-seq data that is noisy or dropout-prone.", + "is_baseline": false, + "paper_reference": "van2018recovering", + "code_url": "https://github.com/KrishnaswamyLab/MAGIC", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/magic/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + } +] diff --git a/results/denoising/data/metric_info.json b/results/denoising/data/metric_info.json index e7b64855..0a1cde4b 100644 --- a/results/denoising/data/metric_info.json +++ b/results/denoising/data/metric_info.json @@ -1,24 +1,24 @@ [ - { - "metric_name": "Mean-squared error", - "metric_summary": "The mean squared error between the denoised counts of the training dataset and the true counts of the test dataset after reweighting by the train/test ratio.", - "paper_reference": "batson2019molecular", - "maximize": false, - "image": "openproblems", - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "metric_id": "mse", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/metrics/mse.py" - }, - { - "metric_name": "Poisson loss", - "metric_summary": "The Poisson log likelihood of observing the true counts of the test dataset given the distribution given in the denoised dataset.", - "paper_reference": "batson2019molecular", - "maximize": false, - "image": "openproblems-python-pytorch", - "task_id": "denoising", - "commit_sha": "b3456fd73c04c28516f6df34c57e6e3e8b0dab32", - "metric_id": "poisson", - "implementation_url": "https://github.com/openproblems-bio/openproblems/blob/main/openproblems/tasks/denoising/metrics/poisson.py" - } -] \ No newline at end of file + { + "task_id": "denoising", + "metric_id": "mse", + "metric_name": "Mean-squared error", + "metric_summary": "The mean squared error between the denoised counts of the training dataset and the true counts of the test dataset after reweighing by the train/test ratio", + "paper_reference": "batson2019molecular", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/metrics/mse/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb", + "maximize": false + }, + { + "task_id": "denoising", + "metric_id": "poisson", + "metric_name": "Poisson Loss", + "metric_summary": "The Poisson log likelihood of observing the true counts of the test dataset given the distribution given in the denoised dataset.", + "paper_reference": "batson2019molecular", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/metrics/poisson/config.vsh.yaml", + "code_version": null, + "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb", + "maximize": false + } +] diff --git a/results/denoising/data/quality_control.json b/results/denoising/data/quality_control.json index d2bb908a..7c5a6d14 100644 --- a/results/denoising/data/quality_control.json +++ b/results/denoising/data/quality_control.json @@ -9,16 +9,6 @@ "code": "percent_missing([task_info], field)", "message": "Task metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" }, - { - "task_id": "denoising", - "category": "Task info", - "name": "Pct 'commit_sha' missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, - "code": "percent_missing([task_info], field)", - "message": "Task metadata field 'commit_sha' should be defined\n Task id: denoising\n Field: commit_sha\n" - }, { "task_id": "denoising", "category": "Task info", @@ -199,16 +189,6 @@ "code": "percent_missing(dataset_info, field)", "message": "Dataset metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" }, - { - "task_id": "denoising", - "category": "Dataset info", - "name": "Pct 'commit_sha' missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, - "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'commit_sha' should be defined\n Task id: denoising\n Field: commit_sha\n" - }, { "task_id": "denoising", "category": "Dataset info", @@ -249,355 +229,275 @@ "code": "percent_missing(dataset_info, field)", "message": "Dataset metadata field 'data_reference' should be defined\n Task id: denoising\n Field: data_reference\n" }, + { + "task_id": "denoising", + "category": "Dataset info", + "name": "Pct 'data_url' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'data_url' should be defined\n Task id: denoising\n Field: data_url\n" + }, { "task_id": "denoising", "category": "Raw data", "name": "Number of results", - "value": 39, + "value": 102, "severity": 0, - "severity_value": -1.8181818181818188, + "severity_value": 0.0, "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", - "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: denoising\n Number of results: 39\n Number of methods: 11\n Number of metrics: 2\n Number of datasets: 3\n" + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: denoising\n Number of results: 102\n Number of methods: 6\n Number of metrics: 2\n Number of datasets: 17\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Metric 'mse' %missing", - "value": -0.18181818181818188, - "severity": 0, - "severity_value": -1.8181818181818188, + "value": 0.37254901960784315, + "severity": 3, + "severity_value": 3.7254901960784315, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: mse\n Percentage missing: -18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: mse\n Percentage missing: 37%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Metric 'poisson' %missing", - "value": -0.18181818181818188, - "severity": 0, - "severity_value": -1.8181818181818188, + "value": 0.37254901960784315, + "severity": 3, + "severity_value": 3.7254901960784315, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: poisson\n Percentage missing: -18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: poisson\n Percentage missing: 37%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'alra_log' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Method 'no_denoising' %missing", + "value": 0.3529411764705882, + "severity": 3, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra_log\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: no_denoising\n Percentage missing: 35%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'alra_sqrt' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Method 'perfect_denoising' %missing", + "value": 0.3529411764705882, + "severity": 3, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra_sqrt\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: perfect_denoising\n Percentage missing: 35%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'dca' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Method 'alra' %missing", + "value": 0.4117647058823529, + "severity": 3, + "severity_value": 4.117647058823529, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: dca\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra\n Percentage missing: 41%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'knn_naive' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Method 'dca' %missing", + "value": 0.3529411764705882, + "severity": 3, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_naive\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: dca\n Percentage missing: 35%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'knn_smoothing' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "value": 0.4117647058823529, + "severity": 3, + "severity_value": 4.117647058823529, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_smoothing\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_smoothing\n Percentage missing: 41%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'magic' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "value": 0.3529411764705882, + "severity": 3, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic\n Percentage missing: 35%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'magic_approx' %missing", + "name": "Dataset 'cellxgene_census/dkd' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic_approx\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'magic_approx_reverse_norm' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic_approx_reverse_norm\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'magic_reverse_norm' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Dataset 'cellxgene_census/hcla' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic_reverse_norm\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'no_denoising' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: no_denoising\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Method 'perfect_denoising' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Dataset 'openproblems_v1/cengen' %missing", + "value": 0.33333333333333337, + "severity": 3, + "severity_value": 3.3333333333333335, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: perfect_denoising\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 33%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'pancreas' %missing", - "value": -0.18181818181818188, + "name": "Dataset 'openproblems_v1/zebrafish' %missing", + "value": 0.0, "severity": 0, - "severity_value": -1.8181818181818188, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: pancreas\n Percentage missing: -18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'pbmc' %missing", - "value": -0.18181818181818188, + "name": "Dataset 'openproblems_v1/tenx_5k_pbmc' %missing", + "value": 0.0, "severity": 0, - "severity_value": -1.8181818181818188, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: pbmc\n Percentage missing: -18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_5k_pbmc\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'tabula_muris_senis_lung_random' %missing", - "value": -0.18181818181818188, + "name": "Dataset 'openproblems_v1/mouse_hspc_nestorowa2016' %missing", + "value": 0.0, "severity": 0, - "severity_value": -1.8181818181818188, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: tabula_muris_senis_lung_random\n Percentage missing: -18%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score alra_log mse", - "value": -0.08824883049777621, - "severity": 0, - "severity_value": 0.08824883049777621, - "code": "worst_score >= -1", - "message": "Method alra_log performs much worse than baselines.\n Task id: denoising\n Method id: alra_log\n Metric id: mse\n Worst score: -0.08824883049777621%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Best score alra_log mse", - "value": -0.0432249510912992, - "severity": 0, - "severity_value": -0.0216124755456496, - "code": "best_score <= 2", - "message": "Method alra_log performs a lot better than baselines.\n Task id: denoising\n Method id: alra_log\n Metric id: mse\n Best score: -0.0432249510912992%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score alra_sqrt mse", - "value": -0.04036796164907197, - "severity": 0, - "severity_value": 0.04036796164907197, - "code": "worst_score >= -1", - "message": "Method alra_sqrt performs much worse than baselines.\n Task id: denoising\n Method id: alra_sqrt\n Metric id: mse\n Worst score: -0.04036796164907197%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Best score alra_sqrt mse", - "value": 0.027482608312493717, - "severity": 0, - "severity_value": 0.013741304156246859, - "code": "best_score <= 2", - "message": "Method alra_sqrt performs a lot better than baselines.\n Task id: denoising\n Method id: alra_sqrt\n Metric id: mse\n Best score: 0.027482608312493717%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score dca mse", - "value": 0.11691012188156669, - "severity": 0, - "severity_value": -0.11691012188156669, - "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Worst score: 0.11691012188156669%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Best score dca mse", - "value": 0.19457688013784935, - "severity": 0, - "severity_value": 0.09728844006892468, - "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Best score: 0.19457688013784935%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score knn_naive mse", - "value": 0.08175097425019529, - "severity": 0, - "severity_value": -0.08175097425019529, - "code": "worst_score >= -1", - "message": "Method knn_naive performs much worse than baselines.\n Task id: denoising\n Method id: knn_naive\n Metric id: mse\n Worst score: 0.08175097425019529%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Best score knn_naive mse", - "value": 0.16114857838168273, - "severity": 0, - "severity_value": 0.08057428919084136, - "code": "best_score <= 2", - "message": "Method knn_naive performs a lot better than baselines.\n Task id: denoising\n Method id: knn_naive\n Metric id: mse\n Best score: 0.16114857838168273%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score knn_smoothing mse", - "value": 0.09082714173836992, - "severity": 0, - "severity_value": -0.09082714173836992, - "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: 0.09082714173836992%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_hspc_nestorowa2016\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Best score knn_smoothing mse", - "value": 0.17426517380173512, - "severity": 0, - "severity_value": 0.08713258690086756, - "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.17426517380173512%\n" + "category": "Raw results", + "name": "Dataset 'cellxgene_census/gtex_v9' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 100%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Worst score magic mse", - "value": 0.23906123480992536, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/immune_cells' %missing", + "value": 0.0, "severity": 0, - "severity_value": -0.23906123480992536, - "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Worst score: 0.23906123480992536%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Best score magic mse", - "value": 0.3037404140348672, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", + "value": 0.0, "severity": 0, - "severity_value": 0.1518702070174336, - "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 0.3037404140348672%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Worst score magic_approx mse", - "value": 0.2389228519856721, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", + "value": 0.0, "severity": 0, - "severity_value": -0.2389228519856721, - "code": "worst_score >= -1", - "message": "Method magic_approx performs much worse than baselines.\n Task id: denoising\n Method id: magic_approx\n Metric id: mse\n Worst score: 0.2389228519856721%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Best score magic_approx mse", - "value": 0.3042795795970009, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/pancreas' %missing", + "value": 0.0, "severity": 0, - "severity_value": 0.15213978979850046, - "code": "best_score <= 2", - "message": "Method magic_approx performs a lot better than baselines.\n Task id: denoising\n Method id: magic_approx\n Metric id: mse\n Best score: 0.3042795795970009%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Worst score magic_approx_reverse_norm mse", - "value": 0.24000776413948743, - "severity": 0, - "severity_value": -0.24000776413948743, - "code": "worst_score >= -1", - "message": "Method magic_approx_reverse_norm performs much worse than baselines.\n Task id: denoising\n Method id: magic_approx_reverse_norm\n Metric id: mse\n Worst score: 0.24000776413948743%\n" + "category": "Raw results", + "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 100%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Best score magic_approx_reverse_norm mse", - "value": 0.30381809668430537, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", + "value": 0.0, "severity": 0, - "severity_value": 0.15190904834215269, - "code": "best_score <= 2", - "message": "Method magic_approx_reverse_norm performs a lot better than baselines.\n Task id: denoising\n Method id: magic_approx_reverse_norm\n Metric id: mse\n Best score: 0.30381809668430537%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Worst score magic_reverse_norm mse", - "value": 0.24054344382246362, + "category": "Raw results", + "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", + "value": 0.0, "severity": 0, - "severity_value": -0.24054344382246362, - "code": "worst_score >= -1", - "message": "Method magic_reverse_norm performs much worse than baselines.\n Task id: denoising\n Method id: magic_reverse_norm\n Metric id: mse\n Worst score: 0.24054344382246362%\n" + "severity_value": 0.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" }, { "task_id": "denoising", - "category": "Scaling", - "name": "Best score magic_reverse_norm mse", - "value": 0.3033183444568984, - "severity": 0, - "severity_value": 0.1516591722284492, - "code": "best_score <= 2", - "message": "Method magic_reverse_norm performs a lot better than baselines.\n Task id: denoising\n Method id: magic_reverse_norm\n Metric id: mse\n Best score: 0.3033183444568984%\n" + "category": "Raw results", + "name": "Dataset 'cellxgene_census/hypomap' %missing", + "value": 1.0, + "severity": 3, + "severity_value": 10.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 100%\n" }, { "task_id": "denoising", @@ -613,250 +513,230 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score no_denoising mse", - "value": 0.0, + "value": 0.9621, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.48105, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0.0%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0.9621%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score perfect_denoising mse", - "value": 1.0, + "value": 0, "severity": 0, - "severity_value": -1.0, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 1.0%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score perfect_denoising mse", - "value": 1.0, + "value": 0, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.0, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 1.0%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score alra_log poisson", - "value": -0.4910232707982263, - "severity": 0, - "severity_value": 0.4910232707982263, - "code": "worst_score >= -1", - "message": "Method alra_log performs much worse than baselines.\n Task id: denoising\n Method id: alra_log\n Metric id: poisson\n Worst score: -0.4910232707982263%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Best score alra_log poisson", - "value": -0.17080706376936683, + "name": "Worst score alra mse", + "value": 0.0, "severity": 0, - "severity_value": -0.08540353188468341, - "code": "best_score <= 2", - "message": "Method alra_log performs a lot better than baselines.\n Task id: denoising\n Method id: alra_log\n Metric id: poisson\n Best score: -0.17080706376936683%\n" - }, - { - "task_id": "denoising", - "category": "Scaling", - "name": "Worst score alra_sqrt poisson", - "value": -2.3012026201185467, - "severity": 2, - "severity_value": 2.3012026201185467, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method alra_sqrt performs much worse than baselines.\n Task id: denoising\n Method id: alra_sqrt\n Metric id: poisson\n Worst score: -2.3012026201185467%\n" + "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score alra_sqrt poisson", - "value": -1.7521723656810537, + "name": "Best score alra mse", + "value": 1.0, "severity": 0, - "severity_value": -0.8760861828405269, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method alra_sqrt performs a lot better than baselines.\n Task id: denoising\n Method id: alra_sqrt\n Metric id: poisson\n Best score: -1.7521723656810537%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 1.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score dca poisson", - "value": -0.07602158378601098, + "name": "Worst score dca mse", + "value": 0.0, "severity": 0, - "severity_value": 0.07602158378601098, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Worst score: -0.07602158378601098%\n" + "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score dca poisson", - "value": -0.03348925480745857, + "name": "Best score dca mse", + "value": 1.0, "severity": 0, - "severity_value": -0.016744627403729284, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Best score: -0.03348925480745857%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Best score: 1.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score knn_naive poisson", - "value": -0.07984726373877193, + "name": "Worst score knn_smoothing mse", + "value": 0.0, "severity": 0, - "severity_value": 0.07984726373877193, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method knn_naive performs much worse than baselines.\n Task id: denoising\n Method id: knn_naive\n Metric id: poisson\n Worst score: -0.07984726373877193%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score knn_naive poisson", - "value": -0.028799829793881626, + "name": "Best score knn_smoothing mse", + "value": 0.9832, "severity": 0, - "severity_value": -0.014399914896940813, + "severity_value": 0.4916, "code": "best_score <= 2", - "message": "Method knn_naive performs a lot better than baselines.\n Task id: denoising\n Method id: knn_naive\n Metric id: poisson\n Best score: -0.028799829793881626%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.9832%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score knn_smoothing poisson", - "value": -10.298315065894421, - "severity": 3, - "severity_value": 10.298315065894421, + "name": "Worst score magic mse", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -10.298315065894421%\n" + "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score knn_smoothing poisson", - "value": -9.381554355715261, + "name": "Best score magic mse", + "value": 0.991, "severity": 0, - "severity_value": -4.690777177857631, + "severity_value": 0.4955, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: -9.381554355715261%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 0.991%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score magic poisson", - "value": 0.5000706596522453, + "name": "Worst score no_denoising poisson", + "value": 0.0, "severity": 0, - "severity_value": -0.5000706596522453, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Worst score: 0.5000706596522453%\n" + "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score magic poisson", - "value": 0.5903190095352917, + "name": "Best score no_denoising poisson", + "value": 0.865, "severity": 0, - "severity_value": 0.29515950476764585, + "severity_value": 0.4325, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5903190095352917%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 0.865%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score magic_approx poisson", - "value": 0.5047105153603313, + "name": "Worst score perfect_denoising poisson", + "value": 0.0, "severity": 0, - "severity_value": -0.5047105153603313, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method magic_approx performs much worse than baselines.\n Task id: denoising\n Method id: magic_approx\n Metric id: poisson\n Worst score: 0.5047105153603313%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score magic_approx poisson", - "value": 0.5933196737483786, + "name": "Best score perfect_denoising poisson", + "value": 1.0, "severity": 0, - "severity_value": 0.2966598368741893, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method magic_approx performs a lot better than baselines.\n Task id: denoising\n Method id: magic_approx\n Metric id: poisson\n Best score: 0.5933196737483786%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score magic_approx_reverse_norm poisson", - "value": 0.9770398381710521, + "name": "Worst score alra poisson", + "value": 0.0, "severity": 0, - "severity_value": -0.9770398381710521, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method magic_approx_reverse_norm performs much worse than baselines.\n Task id: denoising\n Method id: magic_approx_reverse_norm\n Metric id: poisson\n Worst score: 0.9770398381710521%\n" + "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score magic_approx_reverse_norm poisson", - "value": 0.9847398989203555, + "name": "Best score alra poisson", + "value": 0.9125, "severity": 0, - "severity_value": 0.49236994946017776, + "severity_value": 0.45625, "code": "best_score <= 2", - "message": "Method magic_approx_reverse_norm performs a lot better than baselines.\n Task id: denoising\n Method id: magic_approx_reverse_norm\n Metric id: poisson\n Best score: 0.9847398989203555%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.9125%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score magic_reverse_norm poisson", - "value": 0.9770382645348494, + "name": "Worst score dca poisson", + "value": 0.0, "severity": 0, - "severity_value": -0.9770382645348494, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method magic_reverse_norm performs much worse than baselines.\n Task id: denoising\n Method id: magic_reverse_norm\n Metric id: poisson\n Worst score: 0.9770382645348494%\n" + "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score magic_reverse_norm poisson", - "value": 0.9847373494114091, + "name": "Best score dca poisson", + "value": 1.0, "severity": 0, - "severity_value": 0.49236867470570456, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method magic_reverse_norm performs a lot better than baselines.\n Task id: denoising\n Method id: magic_reverse_norm\n Metric id: poisson\n Best score: 0.9847373494114091%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Best score: 1.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score no_denoising poisson", - "value": 0.0, + "name": "Worst score knn_smoothing poisson", + "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score no_denoising poisson", - "value": 0.0, + "name": "Best score knn_smoothing poisson", + "value": 1, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 0.0%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 1%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Worst score perfect_denoising poisson", - "value": 1.0, + "name": "Worst score magic poisson", + "value": 0.0, "severity": 0, - "severity_value": -1.0, + "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 1.0%\n" + "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", - "name": "Best score perfect_denoising poisson", - "value": 1.0, + "name": "Best score magic poisson", + "value": 0.8966, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.4483, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.8966%\n" } ] \ No newline at end of file diff --git a/results/denoising/data/results.json b/results/denoising/data/results.json index b2892dc6..1dd976e7 100644 --- a/results/denoising/data/results.json +++ b/results/denoising/data/results.json @@ -1,938 +1,2348 @@ [ - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "no_denoising", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.531", - "code_version": "0.7.0", - "resources": { - "duration_sec": 330.0, - "cpu_pct": 59.6, - "peak_memory_mb": 614.3, - "disk_read_mb": 179.1, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.30473435, - "poisson": 0.25766019101929694 - }, - "scaled_scores": { - "mse": 0.0, - "poisson": 0.0 - }, - "mean_score": 0.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_reverse_norm", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.213", - "code_version": "3.0.0", - "resources": { - "duration_sec": 350.0, - "cpu_pct": 154.7, - "peak_memory_mb": 1000.0, - "disk_read_mb": 179.5, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.2314325, - "poisson": 0.03695760560680217 - }, - "scaled_scores": { - "mse": 0.24054344382246362, - "poisson": 0.9770382645348494 - }, - "mean_score": 0.6087908541786565 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_naive", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.396", - "code_version": "3.0.0", - "resources": { - "duration_sec": 350.0, - "cpu_pct": 224.8, - "peak_memory_mb": 1000.0, - "disk_read_mb": 179.5, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.27982202, - "poisson": 0.2756968413583193 - }, - "scaled_scores": { - "mse": 0.08175097425019529, - "poisson": -0.07984726373877193 - }, - "mean_score": 0.0009518552557116755 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_smoothing", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.497", - "code_version": "2.0", - "resources": { - "duration_sec": 350.0, - "cpu_pct": 501.8, - "peak_memory_mb": 1800.0, - "disk_read_mb": 178.6, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.2770562, - "poisson": 2.5839403818134783 - }, - "scaled_scores": { - "mse": 0.09082714173836992, - "poisson": -10.298315065894421 - }, - "mean_score": -5.103743962078026 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "perfect_denoising", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.334", - "code_version": "0.7.0", - "resources": { - "duration_sec": 380.0, - "cpu_pct": 39.9, - "peak_memory_mb": 169.6, - "disk_read_mb": 179.1, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 8.998869e-18, - "poisson": 0.03177079300522084 - }, - "scaled_scores": { - "mse": 1.0, - "poisson": 1.0 - }, - "mean_score": 1.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx_reverse_norm", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.548", - "code_version": "3.0.0", - "resources": { - "duration_sec": 380.0, - "cpu_pct": 151.3, - "peak_memory_mb": 548.3, - "disk_read_mb": 179.5, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.23159574, - "poisson": 0.03695725013906764 - }, - "scaled_scores": { - "mse": 0.24000776413948743, - "poisson": 0.9770398381710521 - }, - "mean_score": 0.6085238011552698 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.469", - "code_version": "3.0.0", - "resources": { - "duration_sec": 400.0, - "cpu_pct": 144.3, - "peak_memory_mb": 804.3, - "disk_read_mb": 179.5, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.23192635, - "poisson": 0.12363556708636766 - }, - "scaled_scores": { - "mse": 0.2389228519856721, - "poisson": 0.5933196737483786 - }, - "mean_score": 0.41612126286702533 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.130", - "code_version": "3.0.0", - "resources": { - "duration_sec": 410.0, - "cpu_pct": 145.8, - "peak_memory_mb": 1000.0, - "disk_read_mb": 179.5, - "disk_write_mb": 362.9 - }, - "metric_values": { - "mse": 0.23188418, - "poisson": 0.12431338531910426 - }, - "scaled_scores": { - "mse": 0.23906123480992536, - "poisson": 0.5903190095352917 - }, - "mean_score": 0.41469012217260853 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "dca", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.337", - "code_version": "0.3.4", - "resources": { - "duration_sec": 510.0, - "cpu_pct": 296.1, - "peak_memory_mb": 1300.0, - "disk_read_mb": 209.2, - "disk_write_mb": 248.3 - }, - "metric_values": { - "mse": 0.26910782, - "poisson": 0.2748326608167956 - }, - "scaled_scores": { - "mse": 0.11691012188156669, - "poisson": -0.07602158378601098 - }, - "mean_score": 0.020444269047777852 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt_reversenorm", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.376", - "code_version": "1.0.0", - "resources": { - "duration_sec": 639.0, - "cpu_pct": 94.3, - "peak_memory_mb": 3800.0, - "disk_read_mb": 217.0, - "disk_write_mb": 402.4 - }, - "metric_values": { - "mse": 0.30851027, - "poisson": 0.037226507155250874 - }, - "scaled_scores": { - "mse": -0.012390857807792255, - "poisson": 0.9758478520993267 - }, - "mean_score": 0.4817284971457672 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.419", - "code_version": "1.0.0", - "resources": { - "duration_sec": 639.0, - "cpu_pct": 99.0, - "peak_memory_mb": 3700.0, - "disk_read_mb": 217.0, - "disk_write_mb": 402.4 - }, - "metric_values": { - "mse": 0.3316268, - "poisson": 0.29624369583071114 - }, - "scaled_scores": { - "mse": -0.08824883049777621, - "poisson": -0.17080706376936683 - }, - "mean_score": -0.12952794713357152 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log_reversenorm", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.215", - "code_version": "1.0.0", - "resources": { - "duration_sec": 659.0, - "cpu_pct": 88.1, - "peak_memory_mb": 3800.0, - "disk_read_mb": 217.0, - "disk_write_mb": 402.4 - }, - "metric_values": { - "mse": 0.4158261, - "poisson": 0.469913771745459 - }, - "scaled_scores": { - "mse": -0.36455276538401393, - "poisson": -0.9396349832803383 - }, - "mean_score": -0.6520938743321761 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt", - "dataset_id": "pancreas", - "submission_time": "2023-02-21 17:59:32.166", - "code_version": "1.0.0", - "resources": { - "duration_sec": 669.0, - "cpu_pct": 95.1, - "peak_memory_mb": 3400.0, - "disk_read_mb": 217.0, - "disk_write_mb": 402.4 - }, - "metric_values": { - "mse": 0.31002083, - "poisson": 0.6534573519198899 - }, - "scaled_scores": { - "mse": -0.0173478309878754, - "poisson": -1.7521723656810537 - }, - "mean_score": -0.8847600983344646 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "perfect_denoising", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.204", - "code_version": "0.7.0", - "resources": { - "duration_sec": 480.0, - "cpu_pct": 76.0, - "peak_memory_mb": 231.6, - "disk_read_mb": 115.2, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 2.0541418e-17, - "poisson": 0.04364447378862427 - }, - "scaled_scores": { - "mse": 1.0, - "poisson": 1.0 - }, - "mean_score": 1.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_naive", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.306", - "code_version": "3.0.0", - "resources": { - "duration_sec": 480.0, - "cpu_pct": 405.8, - "peak_memory_mb": 432.3, - "disk_read_mb": 115.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.22730716, - "poisson": 0.308616332967148 - }, - "scaled_scores": { - "mse": 0.16114857838168273, - "poisson": -0.028799829793881626 - }, - "mean_score": 0.06617437429390055 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.463", - "code_version": "3.0.0", - "resources": { - "duration_sec": 480.0, - "cpu_pct": 106.1, - "peak_memory_mb": 705.6, - "disk_read_mb": 115.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.18852234, - "poisson": 0.16136674909923707 - }, - "scaled_scores": { - "mse": 0.3042795795970009, - "poisson": 0.5429225685399756 - }, - "mean_score": 0.42360107406848824 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "no_denoising", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.389", - "code_version": "0.7.0", - "resources": { - "duration_sec": 550.0, - "cpu_pct": 29.5, - "peak_memory_mb": 232.3, - "disk_read_mb": 115.2, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.27097428, - "poisson": 0.3011988118677921 - }, - "scaled_scores": { - "mse": 0.0, - "poisson": 0.0 - }, - "mean_score": 0.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "dca", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.202", - "code_version": "0.3.4", - "resources": { - "duration_sec": 560.0, - "cpu_pct": 758.5, - "peak_memory_mb": 1900.0, - "disk_read_mb": 145.3, - "disk_write_mb": 132.4 - }, - "metric_values": { - "mse": 0.21824895, - "poisson": 0.3116518799515975 - }, - "scaled_scores": { - "mse": 0.19457688013784935, - "poisson": -0.04058587466149488 - }, - "mean_score": 0.07699550273817724 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx_reverse_norm", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.475", - "code_version": "3.0.0", - "resources": { - "duration_sec": 560.0, - "cpu_pct": 194.2, - "peak_memory_mb": 644.7, - "disk_read_mb": 115.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.18864739, - "poisson": 0.04945602054015161 - }, - "scaled_scores": { - "mse": 0.30381809668430537, - "poisson": 0.9774356479690085 - }, - "mean_score": 0.6406268723266569 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_smoothing", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.281", - "code_version": "2.0", - "resources": { - "duration_sec": 579.0, - "cpu_pct": 200.4, - "peak_memory_mb": 1100.0, - "disk_read_mb": 114.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.2237529, - "poisson": 2.71745883410777 - }, - "scaled_scores": { - "mse": 0.17426517380173512, - "poisson": -9.381554355715261 - }, - "mean_score": -4.603644590956763 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:41.995", - "code_version": "3.0.0", - "resources": { - "duration_sec": 640.0, - "cpu_pct": 56.4, - "peak_memory_mb": 713.0, - "disk_read_mb": 115.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.18866844, - "poisson": 0.16190760647144947 - }, - "scaled_scores": { - "mse": 0.3037404140348672, - "poisson": 0.5408225947004894 - }, - "mean_score": 0.4222815043676783 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_reverse_norm", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:41.971", - "code_version": "3.0.0", - "resources": { - "duration_sec": 670.0, - "cpu_pct": 60.3, - "peak_memory_mb": 427.0, - "disk_read_mb": 115.6, - "disk_write_mb": 195.0 - }, - "metric_values": { - "mse": 0.18878281, - "poisson": 0.04945624078995779 - }, - "scaled_scores": { - "mse": 0.3033183444568984, - "poisson": 0.9774347928104123 - }, - "mean_score": 0.6403765686336553 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log_reversenorm", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:41.996", - "code_version": "1.0.0", - "resources": { - "duration_sec": 720.0, - "cpu_pct": 71.9, - "peak_memory_mb": 2300.0, - "disk_read_mb": 153.1, - "disk_write_mb": 220.8 - }, - "metric_values": { - "mse": 0.40305546, - "poisson": 0.5184464546245224 - }, - "scaled_scores": { - "mse": -0.48743068899380404, - "poisson": -0.8435021688120512 - }, - "mean_score": -0.6654664289029276 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:41.840", - "code_version": "1.0.0", - "resources": { - "duration_sec": 863.0, - "cpu_pct": 83.7, - "peak_memory_mb": 2100.0, - "disk_read_mb": 153.1, - "disk_write_mb": 220.8 - }, - "metric_values": { - "mse": 0.2635272, - "poisson": 0.893883529478471 - }, - "scaled_scores": { - "mse": 0.027482608312493717, - "poisson": -2.3012026201185467 - }, - "mean_score": -1.1368600059030265 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt_reversenorm", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.132", - "code_version": "1.0.0", - "resources": { - "duration_sec": 863.0, - "cpu_pct": 84.5, - "peak_memory_mb": 2300.0, - "disk_read_mb": 153.1, - "disk_write_mb": 220.8 - }, - "metric_values": { - "mse": 0.26320186, - "poisson": 0.04971593238925376 - }, - "scaled_scores": { - "mse": 0.02868323886680313, - "poisson": 0.9764264945179715 - }, - "mean_score": 0.5025548666923874 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log", - "dataset_id": "pbmc", - "submission_time": "2023-02-21 18:02:42.249", - "code_version": "1.0.0", - "resources": { - "duration_sec": 873.0, - "cpu_pct": 83.2, - "peak_memory_mb": 2700.0, - "disk_read_mb": 153.1, - "disk_write_mb": 220.8 - }, - "metric_values": { - "mse": 0.28268713, - "poisson": 0.4276639853596973 - }, - "scaled_scores": { - "mse": -0.0432249510912992, - "poisson": -0.4910232707982263 - }, - "mean_score": -0.26712411094476274 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "perfect_denoising", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:13.943", - "code_version": "0.7.0", - "resources": { - "duration_sec": 622.0, - "cpu_pct": 27.2, - "peak_memory_mb": 4300.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 1.5782482e-17, - "poisson": 0.026936694795145644 - }, - "scaled_scores": { - "mse": 1.0, - "poisson": 1.0 - }, - "mean_score": 1.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "no_denoising", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:14.113", - "code_version": "0.7.0", - "resources": { - "duration_sec": 652.0, - "cpu_pct": 28.6, - "peak_memory_mb": 4300.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.26162183, - "poisson": 0.20639474229979976 - }, - "scaled_scores": { - "mse": 0.0, - "poisson": 0.0 - }, - "mean_score": 0.0 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:13.771", - "code_version": "3.0.0", - "resources": { - "duration_sec": 863.0, - "cpu_pct": 90.6, - "peak_memory_mb": 8199.999999, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.18416373, - "poisson": 0.11665303810424339 - }, - "scaled_scores": { - "mse": 0.2960689480690508, - "poisson": 0.5000706596522453 - }, - "mean_score": 0.39806980386064805 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_reverse_norm", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:13.761", - "code_version": "3.0.0", - "resources": { - "duration_sec": 876.0, - "cpu_pct": 91.5, - "peak_memory_mb": 8199.999999, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.1841126, - "poisson": 0.029675700269519923 - }, - "scaled_scores": { - "mse": 0.29626438283074485, - "poisson": 0.9847373494114091 - }, - "mean_score": 0.6405008661210769 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:14.014", - "code_version": "3.0.0", - "resources": { - "duration_sec": 885.0, - "cpu_pct": 101.2, - "peak_memory_mb": 7800.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.18383336, - "poisson": 0.11582037865816695 - }, - "scaled_scores": { - "mse": 0.2973317249558266, - "poisson": 0.5047105153603313 - }, - "mean_score": 0.40102112015807895 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "magic_approx_reverse_norm", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:14.108", - "code_version": "3.0.0", - "resources": { - "duration_sec": 895.0, - "cpu_pct": 91.4, - "peak_memory_mb": 7800.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.18365796, - "poisson": 0.0296752427396223 - }, - "scaled_scores": { - "mse": 0.2980021583061322, - "poisson": 0.9847398989203555 - }, - "mean_score": 0.6413710286132439 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_naive", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:14.008", - "code_version": "3.0.0", - "resources": { - "duration_sec": 1047.0, - "cpu_pct": 125.3, - "peak_memory_mb": 8199.999999, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.22786775, - "poisson": 0.2118407180202311 - }, - "scaled_scores": { - "mse": 0.1290185914531674, - "poisson": -0.030346790217307573 - }, - "mean_score": 0.04933590061792992 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "knn_smoothing", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:18:41.543", - "code_version": "2.0", - "resources": { - "duration_sec": 1450.0, - "cpu_pct": 302.6, - "peak_memory_mb": 28100.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4000.0 - }, - "metric_values": { - "mse": 0.22546002, - "poisson": 1.9294813736552212 - }, - "scaled_scores": { - "mse": 0.13822168432962956, - "poisson": -9.601612495593068 - }, - "mean_score": -4.7316954056317195 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "dca", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 18:05:13.872", - "code_version": "0.3.4", - "resources": { - "duration_sec": 2308.0, - "cpu_pct": 386.4, - "peak_memory_mb": 5800.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 2500.0 - }, - "metric_values": { - "mse": 0.21642867, - "poisson": 0.21240465857993213 - }, - "scaled_scores": { - "mse": 0.17274231282611252, - "poisson": -0.03348925480745857 - }, - "mean_score": 0.06962652900932698 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 19:23:41.501", - "code_version": "1.0.0", - "resources": { - "duration_sec": 6450.0, - "cpu_pct": 99.5, - "peak_memory_mb": 39800.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4400.0 - }, - "metric_values": { - "mse": 0.27218297, - "poisson": 0.5426856260122213 - }, - "scaled_scores": { - "mse": -0.04036796164907197, - "poisson": -1.8739247884868475 - }, - "mean_score": -0.9571463750679597 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 19:27:31.364", - "code_version": "1.0.0", - "resources": { - "duration_sec": 6520.0, - "cpu_pct": 99.0, - "peak_memory_mb": 47100.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4400.0 - }, - "metric_values": { - "mse": 0.27971414, - "poisson": 0.2377193314220217 - }, - "scaled_scores": { - "mse": -0.06915443562182855, - "poisson": -0.17455104163779311 - }, - "mean_score": -0.12185273862981083 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_log_reversenorm", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 19:27:21.361", - "code_version": "1.0.0", - "resources": { - "duration_sec": 7100.0, - "cpu_pct": 98.7, - "peak_memory_mb": 42800.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4400.0 - }, - "metric_values": { - "mse": 0.3831463, - "poisson": 0.29278641957245716 - }, - "scaled_scores": { - "mse": -0.464504319077655, - "poisson": -0.48140319408310117 - }, - "mean_score": -0.4729537565803781 - }, - { - "task_id": "denoising", - "commit_sha": "65efdc87e3f4048b94b98c6f9fbfe10dae8d5ab0", - "method_id": "alra_sqrt_reversenorm", - "dataset_id": "tabula_muris_senis_lung_random", - "submission_time": "2023-02-21 19:46:41.357", - "code_version": "1.0.0", - "resources": { - "duration_sec": 6710.0, - "cpu_pct": 98.4, - "peak_memory_mb": 39900.0, - "disk_read_mb": 1100.0, - "disk_write_mb": 4400.0 - }, - "metric_values": { - "mse": 0.2723056, - "poisson": 0.029897397854720054 - }, - "scaled_scores": { - "mse": -0.04083669164763504, - "poisson": 0.9835019766416571 - }, - "mean_score": 0.471332642497011 - } -] \ No newline at end of file + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "alra", + "metric_values": { + "mse": 0.2267, + "poisson": 0.2706 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.155 + }, + "mean_score": 0.5775, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3992, + "cpu_pct": 100.5, + "peak_memory_mb": 86528, + "disk_read_mb": 927, + "disk_write_mb": 1127 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "dca", + "metric_values": { + "mse": 0.1863, + "poisson": 0.1804 + }, + "scaled_scores": { + "mse": 0.8217, + "poisson": 0.1 + }, + "mean_score": 0.4609, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 2186, + "cpu_pct": 1728.9, + "peak_memory_mb": 52532, + "disk_read_mb": 963, + "disk_write_mb": 5530 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1989, + "poisson": 1.6567 + }, + "scaled_scores": { + "mse": 0.8774, + "poisson": 1 + }, + "mean_score": 0.9387, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1193, + "cpu_pct": 227.2, + "peak_memory_mb": 78132, + "disk_read_mb": 919, + "disk_write_mb": 826 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "magic", + "metric_values": { + "mse": 0.1669, + "poisson": 0.0863 + }, + "scaled_scores": { + "mse": 0.7361, + "poisson": 0.0426 + }, + "mean_score": 0.3894, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 983, + "cpu_pct": 103.7, + "peak_memory_mb": 39834, + "disk_read_mb": 930, + "disk_write_mb": 7168 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.214, + "poisson": 0.168 + }, + "scaled_scores": { + "mse": 0.944, + "poisson": 0.0924 + }, + "mean_score": 0.5182, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 38.9, + "cpu_pct": 98.1, + "peak_memory_mb": 2356, + "disk_read_mb": 911, + "disk_write_mb": 360 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0164 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 22.5, + "cpu_pct": 111.2, + "peak_memory_mb": 2560, + "disk_read_mb": 1127, + "disk_write_mb": 215 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "alra", + "metric_values": { + "mse": 0.022, + "poisson": -6.5314 + }, + "scaled_scores": { + "mse": 0.7602, + "poisson": 0.9125 + }, + "mean_score": 0.8364, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1702, + "cpu_pct": 100.1, + "peak_memory_mb": 41472, + "disk_read_mb": 1434, + "disk_write_mb": 1127 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "dca", + "metric_values": { + "mse": 0.029, + "poisson": -4.7813 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.9295 + }, + "mean_score": 0.9648, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1927, + "cpu_pct": 2095.7, + "peak_memory_mb": 27956, + "disk_read_mb": 1434, + "disk_write_mb": 2868 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0259, + "poisson": -100.661 + }, + "scaled_scores": { + "mse": 0.8918, + "poisson": 0 + }, + "mean_score": 0.4459, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 356, + "cpu_pct": 291.2, + "peak_memory_mb": 30106, + "disk_read_mb": 1434, + "disk_write_mb": 1229 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "magic", + "metric_values": { + "mse": 0.0258, + "poisson": -8.1711 + }, + "scaled_scores": { + "mse": 0.8904, + "poisson": 0.8966 + }, + "mean_score": 0.8935, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 500, + "cpu_pct": 425.6, + "peak_memory_mb": 24064, + "disk_read_mb": 1434, + "disk_write_mb": 3892 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.003, + "poisson": -13.9182 + }, + "scaled_scores": { + "mse": 0.1046, + "poisson": 0.8409 + }, + "mean_score": 0.4728, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 96, + "cpu_pct": 91.5, + "peak_memory_mb": 4301, + "disk_read_mb": 1434, + "disk_write_mb": 776 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 2.4902 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 140, + "cpu_pct": 56.2, + "peak_memory_mb": 5428, + "disk_read_mb": 2560, + "disk_write_mb": 650 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 10411, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "dca", + "metric_values": { + "mse": 0.1423, + "poisson": 0.0448 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 2258, + "cpu_pct": 1428.3, + "peak_memory_mb": 105165, + "disk_read_mb": 566, + "disk_write_mb": 11264 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 120, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "magic", + "metric_values": { + "mse": 0.0923, + "poisson": 0.0185 + }, + "scaled_scores": { + "mse": 0.6489, + "poisson": 0.3199 + }, + "mean_score": 0.4844, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 5351, + "cpu_pct": 100.7, + "peak_memory_mb": 56218, + "disk_read_mb": 533, + "disk_write_mb": 9216 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1267, + "poisson": 0.0396 + }, + "scaled_scores": { + "mse": 0.8903, + "poisson": 0.865 + }, + "mean_score": 0.8777, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 142, + "cpu_pct": 19, + "peak_memory_mb": 3277, + "disk_read_mb": 514, + "disk_write_mb": 212 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0061 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 20.2, + "cpu_pct": 108, + "peak_memory_mb": 6144, + "disk_read_mb": 620, + "disk_write_mb": 129 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "alra", + "metric_values": { + "mse": 0.3377, + "poisson": -0.1143 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.8933 + }, + "mean_score": 0.9466, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1166, + "cpu_pct": 101.9, + "peak_memory_mb": 39424, + "disk_read_mb": 582, + "disk_write_mb": 270 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "dca", + "metric_values": { + "mse": 0.2104, + "poisson": 0.1551 + }, + "scaled_scores": { + "mse": 0.623, + "poisson": 1 + }, + "mean_score": 0.8115, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 641, + "cpu_pct": 1180.2, + "peak_memory_mb": 30823, + "disk_read_mb": 619, + "disk_write_mb": 2151 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2177, + "poisson": -2.3698 + }, + "scaled_scores": { + "mse": 0.6449, + "poisson": 0 + }, + "mean_score": 0.3224, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 664, + "cpu_pct": 333.4, + "peak_memory_mb": 42189, + "disk_read_mb": 575, + "disk_write_mb": 495 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "magic", + "metric_values": { + "mse": 0.1715, + "poisson": -0.3085 + }, + "scaled_scores": { + "mse": 0.5079, + "poisson": 0.8164 + }, + "mean_score": 0.6621, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 527, + "cpu_pct": 108.7, + "peak_memory_mb": 19559, + "disk_read_mb": 586, + "disk_write_mb": 3380 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.2581, + "poisson": -0.5963 + }, + "scaled_scores": { + "mse": 0.7643, + "poisson": 0.7024 + }, + "mean_score": 0.7334, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 22.4, + "cpu_pct": 112.9, + "peak_memory_mb": 2048, + "disk_read_mb": 566, + "disk_write_mb": 233 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.1369 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0.9928 + }, + "mean_score": 0.4964, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 14.9, + "cpu_pct": 118.7, + "peak_memory_mb": 2151, + "disk_read_mb": 711, + "disk_write_mb": 147 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "alra", + "metric_values": { + "mse": 0.046, + "poisson": 0.4006 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.1922 + }, + "mean_score": 0.5961, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 330, + "cpu_pct": 100.8, + "peak_memory_mb": 10855, + "disk_read_mb": 68, + "disk_write_mb": 55 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "dca", + "metric_values": { + "mse": 0.0449, + "poisson": 0.2144 + }, + "scaled_scores": { + "mse": 0.9762, + "poisson": 0.0976 + }, + "mean_score": 0.5369, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 258, + "cpu_pct": 4227.1, + "peak_memory_mb": 28058, + "disk_read_mb": 104, + "disk_write_mb": 360 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0452, + "poisson": 1.992 + }, + "scaled_scores": { + "mse": 0.9832, + "poisson": 1 + }, + "mean_score": 0.9916, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 26.4, + "cpu_pct": 1774.7, + "peak_memory_mb": 9114, + "disk_read_mb": 61, + "disk_write_mb": 28 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "magic", + "metric_values": { + "mse": 0.0455, + "poisson": 0.1639 + }, + "scaled_scores": { + "mse": 0.991, + "poisson": 0.072 + }, + "mean_score": 0.5315, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 20.3, + "cpu_pct": 929.9, + "peak_memory_mb": 7168, + "disk_read_mb": 71, + "disk_write_mb": 82 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.0402, + "poisson": 0.1586 + }, + "scaled_scores": { + "mse": 0.8742, + "poisson": 0.0693 + }, + "mean_score": 0.4718, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 17, + "cpu_pct": 56.3, + "peak_memory_mb": 5530, + "disk_read_mb": 52, + "disk_write_mb": 17 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0221 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 10.7, + "cpu_pct": 104.7, + "peak_memory_mb": 5530, + "disk_read_mb": 71, + "disk_write_mb": 13 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "alra", + "metric_values": { + "mse": 0.0422, + "poisson": -4.2661 + }, + "scaled_scores": { + "mse": 0.8869, + "poisson": 0.8952 + }, + "mean_score": 0.891, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 437, + "cpu_pct": 84.6, + "peak_memory_mb": 12596, + "disk_read_mb": 279, + "disk_write_mb": 174 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "dca", + "metric_values": { + "mse": 0.0475, + "poisson": -2.5369 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.9257 + }, + "mean_score": 0.9629, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 125, + "cpu_pct": 2484.8, + "peak_memory_mb": 20583, + "disk_read_mb": 316, + "disk_write_mb": 469 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0452, + "poisson": -54.96 + }, + "scaled_scores": { + "mse": 0.9502, + "poisson": 0 + }, + "mean_score": 0.4751, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 53.9, + "cpu_pct": 457.6, + "peak_memory_mb": 7066, + "disk_read_mb": 272, + "disk_write_mb": 198 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "magic", + "metric_values": { + "mse": 0.0443, + "poisson": -5.9438 + }, + "scaled_scores": { + "mse": 0.9319, + "poisson": 0.8655 + }, + "mean_score": 0.8987, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 79, + "cpu_pct": 320.8, + "peak_memory_mb": 9626, + "disk_read_mb": 283, + "disk_write_mb": 723 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.0112, + "poisson": -13.6558 + }, + "scaled_scores": { + "mse": 0.2354, + "poisson": 0.7294 + }, + "mean_score": 0.4824, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 23.3, + "cpu_pct": 108.9, + "peak_memory_mb": 5735, + "disk_read_mb": 263, + "disk_write_mb": 122 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 1.6705 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 19.8, + "cpu_pct": 96, + "peak_memory_mb": 5837, + "disk_read_mb": 397, + "disk_write_mb": 93 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "alra", + "metric_values": { + "mse": 0.2308, + "poisson": -0.8934 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.8504 + }, + "mean_score": 0.9252, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 787, + "cpu_pct": 101.3, + "peak_memory_mb": 27648, + "disk_read_mb": 632, + "disk_write_mb": 351 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "dca", + "metric_values": { + "mse": 0.1859, + "poisson": 1.0028 + }, + "scaled_scores": { + "mse": 0.8052, + "poisson": 1 + }, + "mean_score": 0.9026, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 370, + "cpu_pct": 1304.2, + "peak_memory_mb": 20276, + "disk_read_mb": 669, + "disk_write_mb": 1639 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1851, + "poisson": -11.6721 + }, + "scaled_scores": { + "mse": 0.8018, + "poisson": 0 + }, + "mean_score": 0.4009, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 272, + "cpu_pct": 366.1, + "peak_memory_mb": 21709, + "disk_read_mb": 625, + "disk_write_mb": 491 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "magic", + "metric_values": { + "mse": 0.1614, + "poisson": -1.537 + }, + "scaled_scores": { + "mse": 0.6992, + "poisson": 0.7996 + }, + "mean_score": 0.7494, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 307, + "cpu_pct": 667, + "peak_memory_mb": 14746, + "disk_read_mb": 636, + "disk_write_mb": 2151 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.186, + "poisson": -3.081 + }, + "scaled_scores": { + "mse": 0.806, + "poisson": 0.6778 + }, + "mean_score": 0.7419, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 39, + "cpu_pct": 86.4, + "peak_memory_mb": 6144, + "disk_read_mb": 616, + "disk_write_mb": 263 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.3788 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0.9508 + }, + "mean_score": 0.4754, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 35.4, + "cpu_pct": 108.9, + "peak_memory_mb": 6349, + "disk_read_mb": 877, + "disk_write_mb": 187 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "alra", + "metric_values": { + "mse": 0.2842, + "poisson": 0.3653 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.1202 + }, + "mean_score": 0.5601, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 65, + "cpu_pct": 127.8, + "peak_memory_mb": 6861, + "disk_read_mb": 54, + "disk_write_mb": 24 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "dca", + "metric_values": { + "mse": 0.2175, + "poisson": 0.3099 + }, + "scaled_scores": { + "mse": 0.7655, + "poisson": 0.0995 + }, + "mean_score": 0.4325, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 44.6, + "cpu_pct": 1899.2, + "peak_memory_mb": 17511, + "disk_read_mb": 90, + "disk_write_mb": 86 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2239, + "poisson": 2.7203 + }, + "scaled_scores": { + "mse": 0.7879, + "poisson": 1 + }, + "mean_score": 0.8939, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 12, + "cpu_pct": 1267.3, + "peak_memory_mb": 6452, + "disk_read_mb": 47, + "disk_write_mb": 22 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "magic", + "metric_values": { + "mse": 0.1886, + "poisson": 0.1618 + }, + "scaled_scores": { + "mse": 0.6636, + "poisson": 0.0441 + }, + "mean_score": 0.3539, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 23.9, + "cpu_pct": 499.4, + "peak_memory_mb": 6452, + "disk_read_mb": 58, + "disk_write_mb": 133 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.2712, + "poisson": 0.3013 + }, + "scaled_scores": { + "mse": 0.9543, + "poisson": 0.0963 + }, + "mean_score": 0.5253, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 10.2, + "cpu_pct": 104.9, + "peak_memory_mb": 5530, + "disk_read_mb": 38, + "disk_write_mb": 11 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0436 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 9.2, + "cpu_pct": 95.6, + "peak_memory_mb": 5530, + "disk_read_mb": 44, + "disk_write_mb": 7 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "alra", + "metric_values": { + "mse": 0.1957, + "poisson": 0.2884 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.1689 + }, + "mean_score": 0.5845, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 321, + "cpu_pct": 103.1, + "peak_memory_mb": 11981, + "disk_read_mb": 128, + "disk_write_mb": 121 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "dca", + "metric_values": { + "mse": 0.1443, + "poisson": 0.1788 + }, + "scaled_scores": { + "mse": 0.7375, + "poisson": 0.0983 + }, + "mean_score": 0.4179, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 253, + "cpu_pct": 2922.8, + "peak_memory_mb": 20480, + "disk_read_mb": 164, + "disk_write_mb": 548 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1535, + "poisson": 1.5775 + }, + "scaled_scores": { + "mse": 0.7845, + "poisson": 1 + }, + "mean_score": 0.8923, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 57.6, + "cpu_pct": 723.9, + "peak_memory_mb": 11060, + "disk_read_mb": 120, + "disk_write_mb": 92 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "magic", + "metric_values": { + "mse": 0.1187, + "poisson": 0.0908 + }, + "scaled_scores": { + "mse": 0.6065, + "poisson": 0.0416 + }, + "mean_score": 0.324, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 73, + "cpu_pct": 507.7, + "peak_memory_mb": 9421, + "disk_read_mb": 131, + "disk_write_mb": 706 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.181, + "poisson": 0.1744 + }, + "scaled_scores": { + "mse": 0.9253, + "poisson": 0.0955 + }, + "mean_score": 0.5104, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 5.4, + "cpu_pct": 214.8, + "peak_memory_mb": 2868, + "disk_read_mb": 112, + "disk_write_mb": 42 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0264 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 17.7, + "cpu_pct": 56.9, + "peak_memory_mb": 5632, + "disk_read_mb": 133, + "disk_write_mb": 26 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "alra", + "metric_values": { + "mse": 0.1715, + "poisson": 0.5158 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.3541 + }, + "mean_score": 0.677, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3560, + "cpu_pct": 100.2, + "peak_memory_mb": 91546, + "disk_read_mb": 858, + "disk_write_mb": 1844 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "dca", + "metric_values": { + "mse": 0.1277, + "poisson": 0.1641 + }, + "scaled_scores": { + "mse": 0.7447, + "poisson": 0.1018 + }, + "mean_score": 0.4233, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1097, + "cpu_pct": 1229.6, + "peak_memory_mb": 47821, + "disk_read_mb": 894, + "disk_write_mb": 5940 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1329, + "poisson": 1.4165 + }, + "scaled_scores": { + "mse": 0.7752, + "poisson": 1 + }, + "mean_score": 0.8876, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1136, + "cpu_pct": 287.7, + "peak_memory_mb": 85914, + "disk_read_mb": 850, + "disk_write_mb": 736 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "magic", + "metric_values": { + "mse": 0.1042, + "poisson": 0.0751 + }, + "scaled_scores": { + "mse": 0.6079, + "poisson": 0.038 + }, + "mean_score": 0.3229, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1245, + "cpu_pct": 105.9, + "peak_memory_mb": 36250, + "disk_read_mb": 861, + "disk_write_mb": 5837 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.146, + "poisson": 0.1314 + }, + "scaled_scores": { + "mse": 0.8515, + "poisson": 0.0784 + }, + "mean_score": 0.4649, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 52.7, + "cpu_pct": 105.6, + "peak_memory_mb": 6349, + "disk_read_mb": 842, + "disk_write_mb": 333 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0221 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 29.8, + "cpu_pct": 92.1, + "peak_memory_mb": 6554, + "disk_read_mb": 1024, + "disk_write_mb": 204 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "alra", + "metric_values": { + "mse": 0.1954, + "poisson": 0.2319 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0.1259 + }, + "mean_score": 0.563, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1878, + "cpu_pct": 100.5, + "peak_memory_mb": 54580, + "disk_read_mb": 561, + "disk_write_mb": 559 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "dca", + "metric_values": { + "mse": 0.1589, + "poisson": 0.1848 + }, + "scaled_scores": { + "mse": 0.8132, + "poisson": 0.0979 + }, + "mean_score": 0.4556, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 790, + "cpu_pct": 1469.5, + "peak_memory_mb": 30516, + "disk_read_mb": 597, + "disk_write_mb": 3277 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.165, + "poisson": 1.6996 + }, + "scaled_scores": { + "mse": 0.8448, + "poisson": 1 + }, + "mean_score": 0.9224, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 495, + "cpu_pct": 319.3, + "peak_memory_mb": 43930, + "disk_read_mb": 554, + "disk_write_mb": 461 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "magic", + "metric_values": { + "mse": 0.1412, + "poisson": 0.1056 + }, + "scaled_scores": { + "mse": 0.7226, + "poisson": 0.0507 + }, + "mean_score": 0.3867, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 565, + "cpu_pct": 108.6, + "peak_memory_mb": 25908, + "disk_read_mb": 564, + "disk_write_mb": 4506 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.188, + "poisson": 0.1791 + }, + "scaled_scores": { + "mse": 0.9621, + "poisson": 0.0945 + }, + "mean_score": 0.5283, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 21.3, + "cpu_pct": 120.4, + "peak_memory_mb": 3380, + "disk_read_mb": 545, + "disk_write_mb": 215 + }, + "task_id": "denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0204 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 13.6, + "cpu_pct": 135.1, + "peak_memory_mb": 3482, + "disk_read_mb": 663, + "disk_write_mb": 131 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 86, + "cpu_pct": 95, + "peak_memory_mb": 3584, + "disk_read_mb": 2048, + "disk_write_mb": 795 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 53.6, + "cpu_pct": 96.7, + "peak_memory_mb": 5223, + "disk_read_mb": 2356, + "disk_write_mb": 459 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 249, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 160, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 179, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 209, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 219, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 200, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 269, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 210, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 230, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 180, + "cpu_pct": 92.1, + "peak_memory_mb": 11162, + "disk_read_mb": 8295, + "disk_write_mb": 1639 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 290, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 309, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 329, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 350, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 235, + "cpu_pct": 89.3, + "peak_memory_mb": 13415, + "disk_read_mb": 10445, + "disk_write_mb": 2048 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 256, + "cpu_pct": 91.4, + "peak_memory_mb": 14336, + "disk_read_mb": 11367, + "disk_write_mb": 2253 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 390, + "cpu_pct": 70.2, + "peak_memory_mb": 9728, + "disk_read_mb": 6861, + "disk_write_mb": 2663 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 430, + "cpu_pct": 84.7, + "peak_memory_mb": 11776, + "disk_read_mb": 8909, + "disk_write_mb": 3482 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 330, + "cpu_pct": 91.8, + "peak_memory_mb": 17920, + "disk_read_mb": 14951, + "disk_write_mb": 2970 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "perfect_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 440, + "cpu_pct": 97.6, + "peak_memory_mb": 20071, + "disk_read_mb": 17101, + "disk_write_mb": 3482 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 434, + "cpu_pct": 86.5, + "peak_memory_mb": 12288, + "disk_read_mb": 9319, + "disk_write_mb": 3789 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 525, + "cpu_pct": 93.8, + "peak_memory_mb": 15258, + "disk_read_mb": 12288, + "disk_write_mb": 4916 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "no_denoising", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 620, + "cpu_pct": 95.8, + "peak_memory_mb": 16692, + "disk_read_mb": 13722, + "disk_write_mb": 5530 + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 3701, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "alra", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 6111, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 143, + "duration_sec": 14410, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 143, + "duration_sec": 14401, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "dca", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 137, + "duration_sec": 18761, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 143, + "duration_sec": 19270, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": "NA", + "duration_sec": 23160, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": "NA", + "duration_sec": 23101, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "magic", + "metric_values": { + "mse": "NA", + "poisson": "NA" + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 143, + "duration_sec": 30361, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + }, + "task_id": "denoising" + } +] diff --git a/results/denoising/data/state.yaml b/results/denoising/data/state.yaml new file mode 100644 index 00000000..9cc4fc6d --- /dev/null +++ b/results/denoising/data/state.yaml @@ -0,0 +1,8 @@ +id: process +output_scores: !file results.json +output_method_info: !file method_info.json +output_metric_info: !file metric_info.json +output_dataset_info: !file dataset_info.json +output_task_info: !file task_info.json +output_qc: !file quality_control.json + diff --git a/results/denoising/data/task_info.json b/results/denoising/data/task_info.json index 0dcfa9ee..35a93bdd 100644 --- a/results/denoising/data/task_info.json +++ b/results/denoising/data/task_info.json @@ -1,8 +1,8 @@ { - "task_id": "denoising", - "commit_sha": "c97decf07adb2e3050561d6fa9ae46132be07bef", - "task_name": "Denoising", - "task_summary": "Removing noise in sparse single-cell RNA-sequencing count data", - "task_description": "\nSingle-cell RNA-Seq protocols only detect a fraction of the mRNA molecules present\nin each cell. As a result, the measurements (UMI counts) observed for each gene and each\ncell are associated with generally high levels of technical noise ([Gr\u00fcn et al.,\n2014](https://openproblems.bio/bibliography#grn2014validation)). Denoising describes the\ntask of estimating the true expression level of each gene in each cell. In the\nsingle-cell literature, this task is also referred to as *imputation*, a term which is\ntypically used for missing data problems in statistics. Similar to the use of the terms\n\"dropout\", \"missing data\", and \"technical zeros\", this terminology can create confusion\nabout the underlying measurement process ([Sarkar and Stephens,\n2021](https://openproblems.bio/bibliography#sarkar2021separating)).\n\nA key challenge in evaluating denoising methods is the general lack of a ground truth. A\nrecent benchmark study ([Hou et al.,\n2020](https://openproblems.bio/bibliography#hou2020systematic))\nrelied on flow-sorted datasets, mixture control experiments ([Tian et al.,\n2019](https://openproblems.bio/bibliography#tian2019benchmarking)), and comparisons with\nbulk RNA-Seq data. Since each of these approaches suffers from specific limitations, it\nis difficult to combine these different approaches into a single quantitative measure of\ndenoising accuracy. Here, we instead rely on an approach termed molecular\ncross-validation (MCV), which was specifically developed to quantify denoising accuracy\nin the absence of a ground truth ([Batson et al.,\n2019](https://openproblems.bio/bibliography#batson2019molecular)). In MCV, the observed\nmolecules in a given scRNA-Seq dataset are first partitioned between a *training* and a\n*test* dataset. Next, a denoising method is applied to the training dataset. Finally,\ndenoising accuracy is measured by comparing the result to the test dataset. The authors\nshow that both in theory and in practice, the measured denoising accuracy is\nrepresentative of the accuracy that would be obtained on a ground truth dataset.\n\n", - "repo": "openproblems-bio/openproblems" -} \ No newline at end of file + "task_id": "denoising", + "commit_sha": null, + "task_name": "Denoising", + "task_summary": "Removing noise in sparse single-cell RNA-sequencing count data", + "task_description": "Single-cell RNA-Seq protocols only detect a fraction of the mRNA molecules present\nin each cell. As a result, the measurements (UMI counts) observed for each gene and each\ncell are associated with generally high levels of technical noise ([Grün et al.,\n2014](https://www.nature.com/articles/nmeth.2930)). Denoising describes the task of\nestimating the true expression level of each gene in each cell. In the single-cell\nliterature, this task is also referred to as *imputation*, a term which is typically\nused for missing data problems in statistics. Similar to the use of the terms \"dropout\",\n\"missing data\", and \"technical zeros\", this terminology can create confusion about the\nunderlying measurement process ([Sarkar and Stephens,\n2020](https://www.biorxiv.org/content/10.1101/2020.04.07.030007v2)).\n\n\nA key challenge in evaluating denoising methods is the general lack of a ground truth. A\nrecent benchmark study ([Hou et al.,\n2020](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02132-x))\nrelied on flow-sorted datasets, mixture control experiments ([Tian et al.,\n2019](https://www.nature.com/articles/s41592-019-0425-8)), and comparisons with bulk\nRNA-Seq data. Since each of these approaches suffers from specific limitations, it is\ndifficult to combine these different approaches into a single quantitative measure of\ndenoising accuracy. Here, we instead rely on an approach termed molecular\ncross-validation (MCV), which was specifically developed to quantify denoising accuracy\nin the absence of a ground truth ([Batson et al.,\n2019](https://www.biorxiv.org/content/10.1101/786269v1)). In MCV, the observed molecules\nin a given scRNA-Seq dataset are first partitioned between a *training* and a *test*\ndataset. Next, a denoising method is applied to the training dataset. Finally, denoising\naccuracy is measured by comparing the result to the test dataset. The authors show that\nboth in theory and in practice, the measured denoising accuracy is representative of the\naccuracy that would be obtained on a ground truth dataset.\n", + "repo": "openproblems-bio/openproblems-v2" +} From 6f071d7e1ad493e120b7c35dcbe3119803e4fb67 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Tue, 5 Mar 2024 15:13:28 +0100 Subject: [PATCH 02/12] Update changelog --- CHANGELOG.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index e5f662ee..d457dd85 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,11 @@ # openproblems.bio unreleased +## MAJOR CHANGES + +* Update Denoising task to OpenProblems v2 results (PR #325) + +# openproblems.bio v2.3.6 + ## NEW CONTENT * Add an event page for the Weekly wednesday work meeting (PR #299). From d3d4fceb87eef46d82a232e03008491c7bc711ce Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Tue, 5 Mar 2024 16:34:42 +0100 Subject: [PATCH 03/12] Update CHANGELOG.md --- CHANGELOG.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index d457dd85..1ff3e764 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,7 +2,7 @@ ## MAJOR CHANGES -* Update Denoising task to OpenProblems v2 results (PR #325) +* Update Denoising task to OpenProblems v2 results (PR #325). # openproblems.bio v2.3.6 From 992e64cb1ff0f80fec4fa60b4d1ca072478f43f6 Mon Sep 17 00:00:00 2001 From: Robrecht Cannoodt Date: Mon, 18 Mar 2024 11:16:51 +0100 Subject: [PATCH 04/12] update denoising results --- results/denoising/data/dataset_info.json | 122 +- results/denoising/data/method_info.json | 24 +- .../denoising/data/metric_execution_info.json | 2214 +++++++++++++++++ results/denoising/data/metric_info.json | 8 +- results/denoising/data/quality_control.json | 218 +- results/denoising/data/results.json | 2066 +++++++-------- results/denoising/data/state.yaml | 1 + 7 files changed, 3434 insertions(+), 1219 deletions(-) create mode 100644 results/denoising/data/metric_execution_info.json diff --git a/results/denoising/data/dataset_info.json b/results/denoising/data/dataset_info.json index dd86f9c0..5e166a91 100644 --- a/results/denoising/data/dataset_info.json +++ b/results/denoising/data/dataset_info.json @@ -1,20 +1,4 @@ [ - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/dkd", - "dataset_name": "Diabetic Kidney Disease", - "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", - "data_reference": "wilson2022multimodal", - "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/tabula_sapiens", - "dataset_name": "Tabula Sapiens", - "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", - "data_reference": "consortium2022tabula", - "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5" - }, { "task_id": "denoising", "dataset_id": "cellxgene_census/hcla", @@ -23,6 +7,14 @@ "data_reference": "sikkema2023integrated", "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293" }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_name": "Mouse Brain Atlas", + "dataset_summary": "Adult mouse primary visual cortex", + "data_reference": "tasic2016adult", + "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585" + }, { "task_id": "denoising", "dataset_id": "cellxgene_census/mouse_pancreas_atlas", @@ -39,6 +31,54 @@ "data_reference": "hammarlund2018cengen", "data_url": "https://www.cengen.org" }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_name": "Triple-Negative Breast Cancer", + "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", + "data_reference": "wu2021single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389" + }, + { + "task_id": "denoising", + "dataset_id": "openproblems_v1/immune_cells", + "dataset_name": "Human immune", + "dataset_summary": "Human immune cells dataset from the scIB benchmarks", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/gtex_v9", + "dataset_name": "GTEX v9", + "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", + "data_reference": "eraslan2022singlenucleus", + "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/dkd", + "dataset_name": "Diabetic Kidney Disease", + "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", + "data_reference": "wilson2022multimodal", + "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/tabula_sapiens", + "dataset_name": "Tabula Sapiens", + "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", + "data_reference": "consortium2022tabula", + "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5" + }, + { + "task_id": "denoising", + "dataset_id": "cellxgene_census/immune_cell_atlas", + "dataset_name": "Immune Cell Atlas", + "dataset_summary": "Cross-tissue immune cell analysis reveals tissue-specific features in humans", + "data_reference": "dominguez2022crosstissue", + "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3" + }, { "task_id": "denoising", "dataset_id": "openproblems_v1/zebrafish", @@ -65,19 +105,11 @@ }, { "task_id": "denoising", - "dataset_id": "cellxgene_census/gtex_v9", - "dataset_name": "GTEX v9", - "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", - "data_reference": "eraslan2022singlenucleus", - "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/immune_cells", - "dataset_name": "Human immune", - "dataset_summary": "Human immune cells dataset from the scIB benchmarks", - "data_reference": "luecken2022benchmarking", - "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html" + "dataset_id": "cellxgene_census/hypomap", + "dataset_name": "HypoMap", + "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", + "data_reference": "steuernagel2022hypomap", + "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36" }, { "task_id": "denoising", @@ -102,37 +134,5 @@ "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", "data_reference": "luecken2022benchmarking", "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/immune_cell_atlas", - "dataset_name": "Immune Cell Atlas", - "dataset_summary": "Cross-tissue immune cell analysis reveals tissue-specific features in humans", - "data_reference": "dominguez2022crosstissue", - "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/allen_brain_atlas", - "dataset_name": "Mouse Brain Atlas", - "dataset_summary": "Adult mouse primary visual cortex", - "data_reference": "tasic2016adult", - "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/tnbc_wu2021", - "dataset_name": "Triple-Negative Breast Cancer", - "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", - "data_reference": "wu2021single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/hypomap", - "dataset_name": "HypoMap", - "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", - "data_reference": "steuernagel2022hypomap", - "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36" } ] diff --git a/results/denoising/data/method_info.json b/results/denoising/data/method_info.json index 55dc86e9..bc630d36 100644 --- a/results/denoising/data/method_info.json +++ b/results/denoising/data/method_info.json @@ -7,9 +7,9 @@ "is_baseline": true, "paper_reference": null, "code_url": null, - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/control_methods/no_denoising/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/control_methods/no_denoising/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" }, { "task_id": "denoising", @@ -19,9 +19,9 @@ "is_baseline": true, "paper_reference": null, "code_url": null, - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/control_methods/perfect_denoising/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/control_methods/perfect_denoising/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" }, { "task_id": "denoising", @@ -31,9 +31,9 @@ "is_baseline": false, "paper_reference": "linderman2018zero", "code_url": "https://github.com/KlugerLab/ALRA", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/alra/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/alra/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" }, { "task_id": "denoising", @@ -43,9 +43,9 @@ "is_baseline": false, "paper_reference": "eraslan2019single", "code_url": "https://github.com/theislab/dca", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/dca/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/dca/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" }, { "task_id": "denoising", @@ -55,9 +55,9 @@ "is_baseline": false, "paper_reference": "wagner2018knearest", "code_url": "https://github.com/yanailab/knn-smoothing", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/knn_smoothing/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/knn_smoothing/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" }, { "task_id": "denoising", @@ -67,8 +67,8 @@ "is_baseline": false, "paper_reference": "van2018recovering", "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/methods/magic/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/magic/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb" + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" } ] diff --git a/results/denoising/data/metric_execution_info.json b/results/denoising/data/metric_execution_info.json new file mode 100644 index 00000000..149363ea --- /dev/null +++ b/results/denoising/data/metric_execution_info.json @@ -0,0 +1,2214 @@ +[ + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 123, + "cpu_pct": 102.7, + "peak_memory_mb": 31335, + "disk_read_mb": 3584, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 76, + "cpu_pct": 96.8, + "peak_memory_mb": 35431, + "disk_read_mb": 4096, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 65, + "cpu_pct": 103, + "peak_memory_mb": 31335, + "disk_read_mb": 742, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 93, + "cpu_pct": 98.7, + "peak_memory_mb": 31335, + "disk_read_mb": 6759, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 54, + "cpu_pct": 83.5, + "peak_memory_mb": 33997, + "disk_read_mb": 562, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 32.6, + "cpu_pct": 116.9, + "peak_memory_mb": 32461, + "disk_read_mb": 417, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 344, + "cpu_pct": 101.7, + "peak_memory_mb": 163431, + "disk_read_mb": 20992, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 158, + "cpu_pct": 104.6, + "peak_memory_mb": 147047, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 129, + "cpu_pct": 100.9, + "peak_memory_mb": 143565, + "disk_read_mb": 797, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 137, + "duration_sec": 510, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 137, + "duration_sec": 400, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 137, + "duration_sec": 430, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 137, + "duration_sec": 360, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 283, + "cpu_pct": 101.2, + "peak_memory_mb": 250676, + "disk_read_mb": 4199, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 298, + "cpu_pct": 102.2, + "peak_memory_mb": 239924, + "disk_read_mb": 3072, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 303, + "cpu_pct": 96.6, + "peak_memory_mb": 210125, + "disk_read_mb": 5837, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 234, + "cpu_pct": 103.5, + "peak_memory_mb": 195584, + "disk_read_mb": 4404, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 1, + "duration_sec": 240, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 1, + "duration_sec": 270, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.4, + "cpu_pct": 110, + "peak_memory_mb": 19456, + "disk_read_mb": 2560, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.7, + "cpu_pct": 96.7, + "peak_memory_mb": 21300, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 41.6, + "cpu_pct": 102.6, + "peak_memory_mb": 19456, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 53.7, + "cpu_pct": 97.6, + "peak_memory_mb": 19456, + "disk_read_mb": 4301, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 40.7, + "cpu_pct": 102.2, + "peak_memory_mb": 23655, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 58, + "cpu_pct": 111.1, + "peak_memory_mb": 23143, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 128, + "cpu_pct": 101.8, + "peak_memory_mb": 57856, + "disk_read_mb": 3380, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 133, + "cpu_pct": 100.1, + "peak_memory_mb": 66356, + "disk_read_mb": 8192, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 106, + "cpu_pct": 105.6, + "peak_memory_mb": 57754, + "disk_read_mb": 659, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 159, + "cpu_pct": 97.2, + "peak_memory_mb": 55092, + "disk_read_mb": 9216, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 57.2, + "cpu_pct": 117.1, + "peak_memory_mb": 59188, + "disk_read_mb": 349, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 59.7, + "cpu_pct": 108.2, + "peak_memory_mb": 58471, + "disk_read_mb": 267, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 40.9, + "cpu_pct": 101.9, + "peak_memory_mb": 15565, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 34.6, + "cpu_pct": 105.7, + "peak_memory_mb": 17101, + "disk_read_mb": 1639, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 28.4, + "cpu_pct": 136.9, + "peak_memory_mb": 15565, + "disk_read_mb": 474, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 42.8, + "cpu_pct": 98.6, + "peak_memory_mb": 12391, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 21.1, + "cpu_pct": 128.2, + "peak_memory_mb": 17204, + "disk_read_mb": 408, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 18.2, + "cpu_pct": 132.3, + "peak_memory_mb": 16384, + "disk_read_mb": 323, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8.7, + "cpu_pct": 157.4, + "peak_memory_mb": 7578, + "disk_read_mb": 110, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 33.7, + "cpu_pct": 43.1, + "peak_memory_mb": 7885, + "disk_read_mb": 314, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8.5, + "cpu_pct": 175.9, + "peak_memory_mb": 7578, + "disk_read_mb": 67, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8.6, + "cpu_pct": 184.4, + "peak_memory_mb": 7578, + "disk_read_mb": 118, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 7, + "cpu_pct": 162.6, + "peak_memory_mb": 7168, + "disk_read_mb": 69, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 6, + "cpu_pct": 226.1, + "peak_memory_mb": 7066, + "disk_read_mb": 65, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.3, + "cpu_pct": 164.3, + "peak_memory_mb": 7373, + "disk_read_mb": 331, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13, + "cpu_pct": 152.7, + "peak_memory_mb": 7168, + "disk_read_mb": 468, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.3, + "cpu_pct": 156.7, + "peak_memory_mb": 7373, + "disk_read_mb": 267, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 16.5, + "cpu_pct": 83.1, + "peak_memory_mb": 6452, + "disk_read_mb": 736, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 9.9, + "cpu_pct": 190.9, + "peak_memory_mb": 8704, + "disk_read_mb": 285, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 9.3, + "cpu_pct": 157.1, + "peak_memory_mb": 7885, + "disk_read_mb": 257, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 29, + "cpu_pct": 105.1, + "peak_memory_mb": 13415, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 28, + "cpu_pct": 106.7, + "peak_memory_mb": 12186, + "disk_read_mb": 1434, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 23.9, + "cpu_pct": 121.5, + "peak_memory_mb": 11060, + "disk_read_mb": 554, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 35.4, + "cpu_pct": 96.7, + "peak_memory_mb": 13415, + "disk_read_mb": 2151, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 33.8, + "cpu_pct": 76.1, + "peak_memory_mb": 15156, + "disk_read_mb": 551, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 19.4, + "cpu_pct": 134.8, + "peak_memory_mb": 12084, + "disk_read_mb": 477, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 6.1, + "cpu_pct": 187, + "peak_memory_mb": 5940, + "disk_read_mb": 88, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.7, + "cpu_pct": 254.7, + "peak_memory_mb": 6144, + "disk_read_mb": 99, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.9, + "cpu_pct": 266.4, + "peak_memory_mb": 5940, + "disk_read_mb": 52, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.8, + "cpu_pct": 225.5, + "peak_memory_mb": 5940, + "disk_read_mb": 149, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.9, + "cpu_pct": 261.5, + "peak_memory_mb": 6042, + "disk_read_mb": 50, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 6, + "cpu_pct": 252.5, + "peak_memory_mb": 5837, + "disk_read_mb": 46, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 11, + "cpu_pct": 153.1, + "peak_memory_mb": 8295, + "disk_read_mb": 260, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 11.2, + "cpu_pct": 148.1, + "peak_memory_mb": 8704, + "disk_read_mb": 443, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.8, + "cpu_pct": 185.8, + "peak_memory_mb": 8295, + "disk_read_mb": 118, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.3, + "cpu_pct": 138.8, + "peak_memory_mb": 6656, + "disk_read_mb": 667, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8.6, + "cpu_pct": 216.6, + "peak_memory_mb": 8602, + "disk_read_mb": 96, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8, + "cpu_pct": 132.6, + "peak_memory_mb": 8500, + "disk_read_mb": 80, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 79, + "cpu_pct": 99.1, + "peak_memory_mb": 33485, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 79, + "cpu_pct": 97.9, + "peak_memory_mb": 38093, + "disk_read_mb": 4404, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 65, + "cpu_pct": 108, + "peak_memory_mb": 33485, + "disk_read_mb": 723, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 92, + "cpu_pct": 98.4, + "peak_memory_mb": 33485, + "disk_read_mb": 5735, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 37.9, + "cpu_pct": 115.2, + "peak_memory_mb": 35943, + "disk_read_mb": 549, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 34.9, + "cpu_pct": 128.4, + "peak_memory_mb": 34714, + "disk_read_mb": 421, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 53.2, + "cpu_pct": 98.9, + "peak_memory_mb": 21095, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 49.2, + "cpu_pct": 98.5, + "peak_memory_mb": 23655, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 38.5, + "cpu_pct": 113.1, + "peak_memory_mb": 21095, + "disk_read_mb": 491, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 61, + "cpu_pct": 101.3, + "peak_memory_mb": 21197, + "disk_read_mb": 4506, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 27.8, + "cpu_pct": 119, + "peak_memory_mb": 22733, + "disk_read_mb": 364, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 22.9, + "cpu_pct": 129.7, + "peak_memory_mb": 21914, + "disk_read_mb": 281, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 127, + "cpu_pct": 104.2, + "peak_memory_mb": 47719, + "disk_read_mb": 3584, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 69, + "cpu_pct": 102.5, + "peak_memory_mb": 43418, + "disk_read_mb": 4096, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 64, + "cpu_pct": 109.5, + "peak_memory_mb": 47616, + "disk_read_mb": 730, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 95, + "cpu_pct": 98.9, + "peak_memory_mb": 47719, + "disk_read_mb": 6759, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 51.3, + "cpu_pct": 113.7, + "peak_memory_mb": 41063, + "disk_read_mb": 550, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 48.8, + "cpu_pct": 109.6, + "peak_memory_mb": 40244, + "disk_read_mb": 405, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 344, + "cpu_pct": 100.9, + "peak_memory_mb": 207770, + "disk_read_mb": 20992, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 236, + "cpu_pct": 100.8, + "peak_memory_mb": 189236, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 214, + "cpu_pct": 101.2, + "peak_memory_mb": 184832, + "disk_read_mb": 786, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 137, + "duration_sec": 350, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 137, + "duration_sec": 300, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 137, + "duration_sec": 500, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 1, + "duration_sec": 200, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 428, + "cpu_pct": 100.1, + "peak_memory_mb": 316007, + "disk_read_mb": 4096, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 394, + "cpu_pct": 102.3, + "peak_memory_mb": 310580, + "disk_read_mb": 3072, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 360, + "cpu_pct": 101.1, + "peak_memory_mb": 255898, + "disk_read_mb": 5837, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 345, + "cpu_pct": 101.4, + "peak_memory_mb": 248628, + "disk_read_mb": 4301, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 1, + "duration_sec": 190, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 1, + "duration_sec": 140, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 44.6, + "cpu_pct": 100.5, + "peak_memory_mb": 25600, + "disk_read_mb": 2560, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 37.8, + "cpu_pct": 100.7, + "peak_memory_mb": 23757, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 39.8, + "cpu_pct": 100.7, + "peak_memory_mb": 25600, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 45.8, + "cpu_pct": 109.9, + "peak_memory_mb": 25600, + "disk_read_mb": 4301, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 42.4, + "cpu_pct": 105.1, + "peak_memory_mb": 24679, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 36.1, + "cpu_pct": 116.5, + "peak_memory_mb": 24372, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 139, + "cpu_pct": 100.9, + "peak_memory_mb": 91956, + "disk_read_mb": 3380, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 223, + "cpu_pct": 105.8, + "peak_memory_mb": 83252, + "disk_read_mb": 8090, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 197, + "cpu_pct": 110.5, + "peak_memory_mb": 91956, + "disk_read_mb": 647, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 163, + "cpu_pct": 97.4, + "peak_memory_mb": 89293, + "disk_read_mb": 9216, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 86, + "cpu_pct": 107.3, + "peak_memory_mb": 75674, + "disk_read_mb": 337, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 83, + "cpu_pct": 113.8, + "peak_memory_mb": 75264, + "disk_read_mb": 255, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 40.2, + "cpu_pct": 101.3, + "peak_memory_mb": 21504, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 32.5, + "cpu_pct": 106.8, + "peak_memory_mb": 19866, + "disk_read_mb": 1639, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 82, + "cpu_pct": 44.1, + "peak_memory_mb": 21504, + "disk_read_mb": 463, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 39.2, + "cpu_pct": 108, + "peak_memory_mb": 21504, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 23.5, + "cpu_pct": 147.2, + "peak_memory_mb": 19456, + "disk_read_mb": 396, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 90.2, + "peak_memory_mb": 19047, + "disk_read_mb": 312, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.4, + "cpu_pct": 183.1, + "peak_memory_mb": 8500, + "disk_read_mb": 98, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.5, + "cpu_pct": 178.3, + "peak_memory_mb": 8192, + "disk_read_mb": 302, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 10.9, + "cpu_pct": 110.6, + "peak_memory_mb": 8500, + "disk_read_mb": 56, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 13.2, + "cpu_pct": 101, + "peak_memory_mb": 8500, + "disk_read_mb": 106, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 5.8, + "cpu_pct": 208.3, + "peak_memory_mb": 7988, + "disk_read_mb": 57, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 5.8, + "cpu_pct": 188.2, + "peak_memory_mb": 7988, + "disk_read_mb": 53, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8.4, + "cpu_pct": 227.4, + "peak_memory_mb": 8909, + "disk_read_mb": 320, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8, + "cpu_pct": 225.8, + "peak_memory_mb": 8602, + "disk_read_mb": 456, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8.7, + "cpu_pct": 158.1, + "peak_memory_mb": 8909, + "disk_read_mb": 255, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 12.4, + "cpu_pct": 154.5, + "peak_memory_mb": 8909, + "disk_read_mb": 724, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8.5, + "cpu_pct": 172, + "peak_memory_mb": 8704, + "disk_read_mb": 273, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 18.3, + "cpu_pct": 74.5, + "peak_memory_mb": 8602, + "disk_read_mb": 245, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 23.5, + "cpu_pct": 123.5, + "peak_memory_mb": 17613, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 25.3, + "cpu_pct": 98.6, + "peak_memory_mb": 16384, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 21.4, + "cpu_pct": 130, + "peak_memory_mb": 17613, + "disk_read_mb": 542, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 35.4, + "cpu_pct": 106.6, + "peak_memory_mb": 17613, + "disk_read_mb": 2151, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 26.8, + "cpu_pct": 88.2, + "peak_memory_mb": 16384, + "disk_read_mb": 539, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 18.9, + "cpu_pct": 154.1, + "peak_memory_mb": 16077, + "disk_read_mb": 465, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 4.3, + "cpu_pct": 261.5, + "peak_memory_mb": 6247, + "disk_read_mb": 77, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9, + "cpu_pct": 172.4, + "peak_memory_mb": 5940, + "disk_read_mb": 87, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 4.1, + "cpu_pct": 297.3, + "peak_memory_mb": 5735, + "disk_read_mb": 41, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 4.4, + "cpu_pct": 340.7, + "peak_memory_mb": 6247, + "disk_read_mb": 137, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 3.9, + "cpu_pct": 258.7, + "peak_memory_mb": 5735, + "disk_read_mb": 38, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 18.1, + "cpu_pct": 84.7, + "peak_memory_mb": 2765, + "disk_read_mb": 34, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9.6, + "cpu_pct": 161.7, + "peak_memory_mb": 9728, + "disk_read_mb": 249, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9.4, + "cpu_pct": 205.9, + "peak_memory_mb": 9319, + "disk_read_mb": 431, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.2, + "cpu_pct": 68.6, + "peak_memory_mb": 9728, + "disk_read_mb": 107, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 15.3, + "cpu_pct": 93.7, + "peak_memory_mb": 8909, + "disk_read_mb": 655, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8, + "cpu_pct": 173.5, + "peak_memory_mb": 9114, + "disk_read_mb": 84, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.7, + "cpu_pct": 169.7, + "peak_memory_mb": 9012, + "disk_read_mb": 68, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 88, + "cpu_pct": 93.3, + "peak_memory_mb": 51303, + "disk_read_mb": 2970, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 77, + "cpu_pct": 99.9, + "peak_memory_mb": 46797, + "disk_read_mb": 4404, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 69, + "cpu_pct": 108.9, + "peak_memory_mb": 51303, + "disk_read_mb": 711, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 94, + "cpu_pct": 100.4, + "peak_memory_mb": 51303, + "disk_read_mb": 5735, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 53.1, + "cpu_pct": 121.3, + "peak_memory_mb": 43828, + "disk_read_mb": 537, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 49.4, + "cpu_pct": 111.3, + "peak_memory_mb": 43213, + "disk_read_mb": 409, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 50.7, + "cpu_pct": 103, + "peak_memory_mb": 30823, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 62, + "cpu_pct": 111.6, + "peak_memory_mb": 28365, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 40.2, + "cpu_pct": 121.2, + "peak_memory_mb": 30823, + "disk_read_mb": 479, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 62, + "cpu_pct": 101.2, + "peak_memory_mb": 30823, + "disk_read_mb": 4404, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 31.5, + "cpu_pct": 119.8, + "peak_memory_mb": 26829, + "disk_read_mb": 353, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 30.3, + "cpu_pct": 120, + "peak_memory_mb": 26420, + "disk_read_mb": 269, + "disk_write_mb": 1 + } + } +] diff --git a/results/denoising/data/metric_info.json b/results/denoising/data/metric_info.json index 0a1cde4b..334d512e 100644 --- a/results/denoising/data/metric_info.json +++ b/results/denoising/data/metric_info.json @@ -5,9 +5,9 @@ "metric_name": "Mean-squared error", "metric_summary": "The mean squared error between the denoised counts of the training dataset and the true counts of the test dataset after reweighing by the train/test ratio", "paper_reference": "batson2019molecular", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/metrics/mse/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/metrics/mse/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb", + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c", "maximize": false }, { @@ -16,9 +16,9 @@ "metric_name": "Poisson Loss", "metric_summary": "The Poisson log likelihood of observing the true counts of the test dataset given the distribution given in the denoised dataset.", "paper_reference": "batson2019molecular", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/d9e44545337b90926df41f2f383e165eda6ef6fb/src/tasks/denoising/metrics/poisson/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/metrics/poisson/config.vsh.yaml", "code_version": null, - "commit_sha": "d9e44545337b90926df41f2f383e165eda6ef6fb", + "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c", "maximize": false } ] diff --git a/results/denoising/data/quality_control.json b/results/denoising/data/quality_control.json index 7c5a6d14..e2399978 100644 --- a/results/denoising/data/quality_control.json +++ b/results/denoising/data/quality_control.json @@ -253,71 +253,71 @@ "task_id": "denoising", "category": "Raw results", "name": "Metric 'mse' %missing", - "value": 0.37254901960784315, - "severity": 3, - "severity_value": 3.7254901960784315, + "value": 0.28431372549019607, + "severity": 2, + "severity_value": 2.8431372549019605, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: mse\n Percentage missing: 37%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: mse\n Percentage missing: 28%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Metric 'poisson' %missing", - "value": 0.37254901960784315, - "severity": 3, - "severity_value": 3.7254901960784315, + "value": 0.28431372549019607, + "severity": 2, + "severity_value": 2.8431372549019605, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: poisson\n Percentage missing: 37%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: poisson\n Percentage missing: 28%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'no_denoising' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.17647058823529416, + "severity": 1, + "severity_value": 1.7647058823529416, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: no_denoising\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: no_denoising\n Percentage missing: 18%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'perfect_denoising' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.17647058823529416, + "severity": 1, + "severity_value": 1.7647058823529416, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: perfect_denoising\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: perfect_denoising\n Percentage missing: 18%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'alra' %missing", - "value": 0.4117647058823529, + "value": 0.3529411764705882, "severity": 3, - "severity_value": 4.117647058823529, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra\n Percentage missing: 41%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra\n Percentage missing: 35%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'dca' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.2941176470588235, + "severity": 2, + "severity_value": 2.9411764705882346, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: dca\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: dca\n Percentage missing: 29%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Method 'knn_smoothing' %missing", - "value": 0.4117647058823529, + "value": 0.3529411764705882, "severity": 3, - "severity_value": 4.117647058823529, + "severity_value": 3.529411764705882, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_smoothing\n Percentage missing: 41%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_smoothing\n Percentage missing: 35%\n" }, { "task_id": "denoising", @@ -332,172 +332,172 @@ { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/dkd' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, - "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" - }, - { - "task_id": "denoising", - "category": "Raw results", - "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", + "name": "Dataset 'cellxgene_census/hcla' %missing", "value": 1.0, "severity": 3, "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hcla' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", - "value": 1.0, + "value": 0.6666666666666667, "severity": 3, - "severity_value": 10.0, + "severity_value": 6.666666666666667, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 67%\n" }, { "task_id": "denoising", "category": "Raw results", "name": "Dataset 'openproblems_v1/cengen' %missing", - "value": 0.33333333333333337, - "severity": 3, - "severity_value": 3.3333333333333335, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 33%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/zebrafish' %missing", + "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tenx_5k_pbmc' %missing", + "name": "Dataset 'openproblems_v1/immune_cells' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_5k_pbmc\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/mouse_hspc_nestorowa2016' %missing", + "name": "Dataset 'cellxgene_census/gtex_v9' %missing", + "value": 0.5, + "severity": 3, + "severity_value": 5.0, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 50%\n" + }, + { + "task_id": "denoising", + "category": "Raw results", + "name": "Dataset 'cellxgene_census/dkd' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_hspc_nestorowa2016\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/gtex_v9' %missing", + "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", "value": 1.0, "severity": 3, "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/immune_cells' %missing", - "value": 0.0, - "severity": 0, - "severity_value": 0.0, + "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", + "value": 0.6666666666666667, + "severity": 3, + "severity_value": 6.666666666666667, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 67%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", + "name": "Dataset 'openproblems_v1/zebrafish' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", + "name": "Dataset 'openproblems_v1/tenx_5k_pbmc' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_5k_pbmc\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/pancreas' %missing", + "name": "Dataset 'openproblems_v1/mouse_hspc_nestorowa2016' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_hspc_nestorowa2016\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", + "name": "Dataset 'cellxgene_census/hypomap' %missing", "value": 1.0, "severity": 3, "severity_value": 10.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 100%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", + "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", + "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" }, { "task_id": "denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hypomap' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "name": "Dataset 'openproblems_v1/pancreas' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" }, { "task_id": "denoising", @@ -513,11 +513,11 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score no_denoising mse", - "value": 0.9621, + "value": 0.9088, "severity": 0, - "severity_value": 0.48105, + "severity_value": 0.4544, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0.9621%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0.9088%\n" }, { "task_id": "denoising", @@ -533,31 +533,31 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score perfect_denoising mse", - "value": 0, + "value": 1, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 0%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 1%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score alra mse", - "value": 0.0, + "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: 0.0%\n" + "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score alra mse", - "value": 1.0, + "value": 1, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 1.0%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 1%\n" }, { "task_id": "denoising", @@ -593,11 +593,11 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score knn_smoothing mse", - "value": 0.9832, + "value": 1.0, "severity": 0, - "severity_value": 0.4916, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.9832%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 1.0%\n" }, { "task_id": "denoising", @@ -613,11 +613,11 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score magic mse", - "value": 0.991, + "value": 1.0, "severity": 0, - "severity_value": 0.4955, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 0.991%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 1.0%\n" }, { "task_id": "denoising", @@ -633,11 +633,11 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score no_denoising poisson", - "value": 0.865, + "value": 0.9455, "severity": 0, - "severity_value": 0.4325, + "severity_value": 0.47275, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 0.865%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 0.9455%\n" }, { "task_id": "denoising", @@ -673,11 +673,11 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score alra poisson", - "value": 0.9125, + "value": 1.0, "severity": 0, - "severity_value": 0.45625, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.9125%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 1.0%\n" }, { "task_id": "denoising", @@ -703,21 +703,21 @@ "task_id": "denoising", "category": "Scaling", "name": "Worst score knn_smoothing poisson", - "value": 0, + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: 0%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score knn_smoothing poisson", - "value": 1, + "value": 1.0, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 1%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 1.0%\n" }, { "task_id": "denoising", @@ -733,10 +733,10 @@ "task_id": "denoising", "category": "Scaling", "name": "Best score magic poisson", - "value": 0.8966, + "value": 1.0, "severity": 0, - "severity_value": 0.4483, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.8966%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 1.0%\n" } ] \ No newline at end of file diff --git a/results/denoising/data/results.json b/results/denoising/data/results.json index 1dd976e7..5e43817b 100644 --- a/results/denoising/data/results.json +++ b/results/denoising/data/results.json @@ -3,22 +3,22 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "alra", "metric_values": { - "mse": 0.2267, - "poisson": 0.2706 + "mse": 0.2283, + "poisson": 0.8484 }, "scaled_scores": { - "mse": 1, - "poisson": 0.155 + "mse": 0, + "poisson": 0.4923 }, - "mean_score": 0.5775, + "mean_score": 0.2461, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3992, - "cpu_pct": 100.5, - "peak_memory_mb": 86528, + "duration_sec": 3369, + "cpu_pct": 98.4, + "peak_memory_mb": 81613, "disk_read_mb": 927, - "disk_write_mb": 1127 + "disk_write_mb": 3380 }, "task_id": "denoising" }, @@ -26,22 +26,22 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "dca", "metric_values": { - "mse": 0.1863, - "poisson": 0.1804 + "mse": 0.1864, + "poisson": 0.1805 }, "scaled_scores": { - "mse": 0.8217, - "poisson": 0.1 + "mse": 0.1837, + "poisson": 0.8998 }, - "mean_score": 0.4609, + "mean_score": 0.5417, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 2186, - "cpu_pct": 1728.9, - "peak_memory_mb": 52532, + "duration_sec": 1213, + "cpu_pct": 3074.9, + "peak_memory_mb": 27136, "disk_read_mb": 963, - "disk_write_mb": 5530 + "disk_write_mb": 4096 }, "task_id": "denoising" }, @@ -50,21 +50,21 @@ "method_id": "knn_smoothing", "metric_values": { "mse": 0.1989, - "poisson": 1.6567 + "poisson": 1.6551 }, "scaled_scores": { - "mse": 0.8774, - "poisson": 1 + "mse": 0.1289, + "poisson": 0 }, - "mean_score": 0.9387, + "mean_score": 0.0645, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1193, - "cpu_pct": 227.2, - "peak_memory_mb": 78132, - "disk_read_mb": 919, - "disk_write_mb": 826 + "duration_sec": 1120, + "cpu_pct": 372.8, + "peak_memory_mb": 80180, + "disk_read_mb": 920, + "disk_write_mb": 539 }, "task_id": "denoising" }, @@ -72,22 +72,22 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "magic", "metric_values": { - "mse": 0.1669, - "poisson": 0.0863 + "mse": 0.187, + "poisson": 0.1823 }, "scaled_scores": { - "mse": 0.7361, - "poisson": 0.0426 + "mse": 0.1808, + "poisson": 0.8988 }, - "mean_score": 0.3894, + "mean_score": 0.5398, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 983, - "cpu_pct": 103.7, - "peak_memory_mb": 39834, + "duration_sec": 1058, + "cpu_pct": 97.3, + "peak_memory_mb": 33076, "disk_read_mb": 930, - "disk_write_mb": 7168 + "disk_write_mb": 6554 }, "task_id": "denoising" }, @@ -99,18 +99,18 @@ "poisson": 0.168 }, "scaled_scores": { - "mse": 0.944, - "poisson": 0.0924 + "mse": 0.0629, + "poisson": 0.9075 }, - "mean_score": 0.5182, + "mean_score": 0.4852, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 38.9, - "cpu_pct": 98.1, - "peak_memory_mb": 2356, + "duration_sec": 46.6, + "cpu_pct": 100.6, + "peak_memory_mb": 6452, "disk_read_mb": 911, - "disk_write_mb": 360 + "disk_write_mb": 359 }, "task_id": "denoising" }, @@ -122,175 +122,175 @@ "poisson": 0.0164 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 22.5, - "cpu_pct": 111.2, - "peak_memory_mb": 2560, + "duration_sec": 29.9, + "cpu_pct": 111.1, + "peak_memory_mb": 6554, "disk_read_mb": 1127, - "disk_write_mb": 215 + "disk_write_mb": 214 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "alra", "metric_values": { - "mse": 0.022, - "poisson": -6.5314 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.7602, - "poisson": 0.9125 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.8364, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 1702, - "cpu_pct": 100.1, - "peak_memory_mb": 41472, - "disk_read_mb": 1434, - "disk_write_mb": 1127 + "exit_code": "NA", + "duration_sec": 26380, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "dca", "metric_values": { - "mse": 0.029, - "poisson": -4.7813 + "mse": 0.1804, + "poisson": 0.0602 }, "scaled_scores": { - "mse": 1, - "poisson": 0.9295 + "mse": 0.1012, + "poisson": 0 }, - "mean_score": 0.9648, + "mean_score": 0.0506, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1927, - "cpu_pct": 2095.7, - "peak_memory_mb": 27956, - "disk_read_mb": 1434, - "disk_write_mb": 2868 + "duration_sec": 4074, + "cpu_pct": 2858.5, + "peak_memory_mb": 65946, + "disk_read_mb": 2048, + "disk_write_mb": 21095 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.0259, - "poisson": -100.661 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.8918, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.4459, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 356, - "cpu_pct": 291.2, - "peak_memory_mb": 30106, - "disk_read_mb": 1434, - "disk_write_mb": 1229 + "exit_code": 137, + "duration_sec": 470, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "magic", "metric_values": { - "mse": 0.0258, - "poisson": -8.1711 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.8904, - "poisson": 0.8966 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.8935, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 500, - "cpu_pct": 425.6, - "peak_memory_mb": 24064, - "disk_read_mb": 1434, - "disk_write_mb": 3892 + "exit_code": "NA", + "duration_sec": 21820, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "no_denoising", "metric_values": { - "mse": 0.003, - "poisson": -13.9182 + "mse": 0.2007, + "poisson": 0.0593 }, "scaled_scores": { - "mse": 0.1046, - "poisson": 0.8409 + "mse": 0, + "poisson": 0.0174 }, - "mean_score": 0.4728, + "mean_score": 0.0087, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 96, - "cpu_pct": 91.5, - "peak_memory_mb": 4301, - "disk_read_mb": 1434, - "disk_write_mb": 776 + "duration_sec": 125, + "cpu_pct": 68.9, + "peak_memory_mb": 7578, + "disk_read_mb": 2048, + "disk_write_mb": 792 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_id": "cellxgene_census/gtex_v9", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 2.4902 + "poisson": 0.0051 }, "scaled_scores": { - "mse": 0, + "mse": 1, "poisson": 1 }, - "mean_score": 0.5, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 140, - "cpu_pct": 56.2, - "peak_memory_mb": 5428, - "disk_read_mb": 2560, - "disk_write_mb": 650 + "duration_sec": 55.5, + "cpu_pct": 95.2, + "peak_memory_mb": 5223, + "disk_read_mb": 2356, + "disk_write_mb": 458 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "alra", "metric_values": { "mse": "NA", "poisson": "NA" }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 10411, + "exit_code": "NA", + "duration_sec": 32191, "cpu_pct": "NA", "peak_memory_mb": "NA", "disk_read_mb": "NA", @@ -299,11 +299,11 @@ "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "dca", "metric_values": { - "mse": 0.1423, - "poisson": 0.0448 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { "mse": 1, @@ -312,31 +312,31 @@ "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 2258, - "cpu_pct": 1428.3, - "peak_memory_mb": 105165, - "disk_read_mb": 566, - "disk_write_mb": 11264 + "exit_code": "NA", + "duration_sec": 26181, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "knn_smoothing", "metric_values": { "mse": "NA", "poisson": "NA" }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 137, - "duration_sec": 120, + "duration_sec": 540, "cpu_pct": "NA", "peak_memory_mb": "NA", "disk_read_mb": "NA", @@ -345,1595 +345,1595 @@ "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "magic", "metric_values": { - "mse": 0.0923, - "poisson": 0.0185 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.6489, - "poisson": 0.3199 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.4844, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 5351, - "cpu_pct": 100.7, - "peak_memory_mb": 56218, - "disk_read_mb": 533, - "disk_write_mb": 9216 + "exit_code": 143, + "duration_sec": 14410, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "no_denoising", "metric_values": { - "mse": 0.1267, - "poisson": 0.0396 + "mse": 0.1439, + "poisson": 0.1322 }, "scaled_scores": { - "mse": 0.8903, - "poisson": 0.865 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.8777, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 142, - "cpu_pct": 19, - "peak_memory_mb": 3277, - "disk_read_mb": 514, - "disk_write_mb": 212 + "duration_sec": 281, + "cpu_pct": 96.2, + "peak_memory_mb": 12391, + "disk_read_mb": 6861, + "disk_write_mb": 2663 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/cengen", + "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0061 + "poisson": 0.0205 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 20.2, - "cpu_pct": 108, - "peak_memory_mb": 6144, - "disk_read_mb": 620, - "disk_write_mb": 129 + "duration_sec": 176, + "cpu_pct": 95.2, + "peak_memory_mb": 13824, + "disk_read_mb": 8295, + "disk_write_mb": 1639 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "alra", "metric_values": { - "mse": 0.3377, - "poisson": -0.1143 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { "mse": 1, - "poisson": 0.8933 + "poisson": 1 }, - "mean_score": 0.9466, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 1166, - "cpu_pct": 101.9, - "peak_memory_mb": 39424, - "disk_read_mb": 582, - "disk_write_mb": 270 + "exit_code": "NA", + "duration_sec": 26420, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "dca", "metric_values": { - "mse": 0.2104, - "poisson": 0.1551 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.623, + "mse": 1, "poisson": 1 }, - "mean_score": 0.8115, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 641, - "cpu_pct": 1180.2, - "peak_memory_mb": 30823, - "disk_read_mb": 619, - "disk_write_mb": 2151 + "exit_code": "NA", + "duration_sec": 18561, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2177, - "poisson": -2.3698 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.6449, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.3224, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 664, - "cpu_pct": 333.4, - "peak_memory_mb": 42189, - "disk_read_mb": 575, - "disk_write_mb": 495 + "exit_code": 137, + "duration_sec": 490, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "magic", "metric_values": { - "mse": 0.1715, - "poisson": -0.3085 + "mse": "NA", + "poisson": "NA" }, "scaled_scores": { - "mse": 0.5079, - "poisson": 0.8164 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.6621, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 527, - "cpu_pct": 108.7, - "peak_memory_mb": 19559, - "disk_read_mb": 586, - "disk_write_mb": 3380 + "exit_code": "NA", + "duration_sec": 14411, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "no_denoising", "metric_values": { - "mse": 0.2581, - "poisson": -0.5963 + "mse": 0.1284, + "poisson": 0.0832 }, "scaled_scores": { - "mse": 0.7643, - "poisson": 0.7024 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.7334, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 22.4, - "cpu_pct": 112.9, - "peak_memory_mb": 2048, - "disk_read_mb": 566, - "disk_write_mb": 233 + "duration_sec": 492, + "cpu_pct": 86.9, + "peak_memory_mb": 14951, + "disk_read_mb": 9319, + "disk_write_mb": 3789 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/immune_cells", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.1369 + "poisson": 0.0431 }, "scaled_scores": { - "mse": 0, - "poisson": 0.9928 + "mse": 1, + "poisson": 1 }, - "mean_score": 0.4964, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 14.9, - "cpu_pct": 118.7, - "peak_memory_mb": 2151, - "disk_read_mb": 711, - "disk_write_mb": 147 + "duration_sec": 293, + "cpu_pct": 98.4, + "peak_memory_mb": 16999, + "disk_read_mb": 11367, + "disk_write_mb": 2253 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "alra", "metric_values": { - "mse": 0.046, - "poisson": 0.4006 + "mse": 0.0333, + "poisson": -4.5388 }, "scaled_scores": { - "mse": 1, - "poisson": 0.1922 + "mse": 0, + "poisson": 0.0682 }, - "mean_score": 0.5961, + "mean_score": 0.0341, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 330, - "cpu_pct": 100.8, - "peak_memory_mb": 10855, - "disk_read_mb": 68, - "disk_write_mb": 55 + "duration_sec": 2336, + "cpu_pct": 102.3, + "peak_memory_mb": 43623, + "disk_read_mb": 1434, + "disk_write_mb": 1434 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "dca", "metric_values": { - "mse": 0.0449, - "poisson": 0.2144 + "mse": 0.0289, + "poisson": -4.7271 }, "scaled_scores": { - "mse": 0.9762, - "poisson": 0.0976 + "mse": 0.1319, + "poisson": 0.07 }, - "mean_score": 0.5369, + "mean_score": 0.1009, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 258, - "cpu_pct": 4227.1, - "peak_memory_mb": 28058, - "disk_read_mb": 104, - "disk_write_mb": 360 + "duration_sec": 1458, + "cpu_pct": 3659.1, + "peak_memory_mb": 24064, + "disk_read_mb": 1434, + "disk_write_mb": 2151 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.0452, - "poisson": 1.992 + "mse": 0.0259, + "poisson": -100.6326 }, "scaled_scores": { - "mse": 0.9832, + "mse": 0.2228, "poisson": 1 }, - "mean_score": 0.9916, + "mean_score": 0.6114, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 26.4, - "cpu_pct": 1774.7, - "peak_memory_mb": 9114, - "disk_read_mb": 61, - "disk_write_mb": 28 + "duration_sec": 289, + "cpu_pct": 560.9, + "peak_memory_mb": 32768, + "disk_read_mb": 1434, + "disk_write_mb": 589 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "magic", "metric_values": { - "mse": 0.0455, - "poisson": 0.1639 + "mse": 0.0263, + "poisson": -5.7382 }, "scaled_scores": { - "mse": 0.991, - "poisson": 0.072 + "mse": 0.2093, + "poisson": 0.0798 }, - "mean_score": 0.5315, + "mean_score": 0.1445, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 20.3, - "cpu_pct": 929.9, - "peak_memory_mb": 7168, - "disk_read_mb": 71, - "disk_write_mb": 82 + "duration_sec": 450, + "cpu_pct": 682.4, + "peak_memory_mb": 20480, + "disk_read_mb": 1434, + "disk_write_mb": 3175 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "no_denoising", "metric_values": { - "mse": 0.0402, - "poisson": 0.1586 + "mse": 0.003, + "poisson": -13.9175 }, "scaled_scores": { - "mse": 0.8742, - "poisson": 0.0693 + "mse": 0.9088, + "poisson": 0.1591 }, - "mean_score": 0.4718, + "mean_score": 0.534, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 17, - "cpu_pct": 56.3, - "peak_memory_mb": 5530, - "disk_read_mb": 52, - "disk_write_mb": 17 + "duration_sec": 93, + "cpu_pct": 98.8, + "peak_memory_mb": 6964, + "disk_read_mb": 1434, + "disk_write_mb": 747 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0221 + "poisson": 2.4902 }, "scaled_scores": { - "mse": 0, + "mse": 1, "poisson": 0 }, - "mean_score": 0, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 10.7, - "cpu_pct": 104.7, - "peak_memory_mb": 5530, - "disk_read_mb": 71, - "disk_write_mb": 13 + "duration_sec": 80, + "cpu_pct": 95.9, + "peak_memory_mb": 8090, + "disk_read_mb": 2560, + "disk_write_mb": 626 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "alra", "metric_values": { - "mse": 0.0422, - "poisson": -4.2661 + "mse": 0.2554, + "poisson": 0.6193 }, "scaled_scores": { - "mse": 0.8869, - "poisson": 0.8952 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.891, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 437, - "cpu_pct": 84.6, - "peak_memory_mb": 12596, - "disk_read_mb": 279, - "disk_write_mb": 174 + "duration_sec": 6858, + "cpu_pct": 102.3, + "peak_memory_mb": 213709, + "disk_read_mb": 531, + "disk_write_mb": 3277 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "dca", "metric_values": { - "mse": 0.0475, - "poisson": -2.5369 + "mse": 0.1428, + "poisson": 0.0443 }, "scaled_scores": { - "mse": 1, - "poisson": 0.9257 + "mse": 0.4409, + "poisson": 0.9377 }, - "mean_score": 0.9629, + "mean_score": 0.6893, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 125, - "cpu_pct": 2484.8, - "peak_memory_mb": 20583, - "disk_read_mb": 316, - "disk_write_mb": 469 + "duration_sec": 1680, + "cpu_pct": 2723.3, + "peak_memory_mb": 35021, + "disk_read_mb": 567, + "disk_write_mb": 8090 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.0452, - "poisson": -54.96 + "mse": 0.157, + "poisson": 0.4719 }, "scaled_scores": { - "mse": 0.9502, - "poisson": 0 + "mse": 0.3854, + "poisson": 0.2404 }, - "mean_score": 0.4751, + "mean_score": 0.3129, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 53.9, - "cpu_pct": 457.6, - "peak_memory_mb": 7066, - "disk_read_mb": 272, - "disk_write_mb": 198 + "duration_sec": 8689, + "cpu_pct": 224.3, + "peak_memory_mb": 273920, + "disk_read_mb": 523, + "disk_write_mb": 519 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "magic", "metric_values": { - "mse": 0.0443, - "poisson": -5.9438 + "mse": 0.1484, + "poisson": 0.0457 }, "scaled_scores": { - "mse": 0.9319, - "poisson": 0.8655 + "mse": 0.4192, + "poisson": 0.9355 }, - "mean_score": 0.8987, + "mean_score": 0.6773, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 79, - "cpu_pct": 320.8, - "peak_memory_mb": 9626, - "disk_read_mb": 283, - "disk_write_mb": 723 + "duration_sec": 5175, + "cpu_pct": 100.7, + "peak_memory_mb": 56116, + "disk_read_mb": 533, + "disk_write_mb": 9114 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "no_denoising", "metric_values": { - "mse": 0.0112, - "poisson": -13.6558 + "mse": 0.1267, + "poisson": 0.0395 }, "scaled_scores": { - "mse": 0.2354, - "poisson": 0.7294 + "mse": 0.5039, + "poisson": 0.9455 }, - "mean_score": 0.4824, + "mean_score": 0.7247, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 23.3, - "cpu_pct": 108.9, - "peak_memory_mb": 5735, - "disk_read_mb": 263, - "disk_write_mb": 122 + "duration_sec": 135, + "cpu_pct": 23.9, + "peak_memory_mb": 6042, + "disk_read_mb": 515, + "disk_write_mb": 210 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_id": "openproblems_v1/cengen", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 1.6705 + "poisson": 0.0061 }, "scaled_scores": { - "mse": 0, + "mse": 1, "poisson": 1 }, - "mean_score": 0.5, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 19.8, - "cpu_pct": 96, - "peak_memory_mb": 5837, - "disk_read_mb": 397, - "disk_write_mb": 93 + "duration_sec": 31.3, + "cpu_pct": 59.1, + "peak_memory_mb": 3482, + "disk_read_mb": 621, + "disk_write_mb": 127 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "alra", "metric_values": { - "mse": 0.2308, - "poisson": -0.8934 + "mse": 0.3501, + "poisson": 3.8754 }, "scaled_scores": { - "mse": 1, - "poisson": 0.8504 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.9252, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 787, - "cpu_pct": 101.3, - "peak_memory_mb": 27648, - "disk_read_mb": 632, - "disk_write_mb": 351 + "duration_sec": 1111, + "cpu_pct": 100.3, + "peak_memory_mb": 37069, + "disk_read_mb": 583, + "disk_write_mb": 1844 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "dca", "metric_values": { - "mse": 0.1859, - "poisson": 1.0028 + "mse": 0.2117, + "poisson": 0.1649 }, "scaled_scores": { - "mse": 0.8052, - "poisson": 1 + "mse": 0.3952, + "poisson": 0.5934 }, - "mean_score": 0.9026, + "mean_score": 0.4943, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 370, - "cpu_pct": 1304.2, - "peak_memory_mb": 20276, - "disk_read_mb": 669, - "disk_write_mb": 1639 + "duration_sec": 318, + "cpu_pct": 1970.3, + "peak_memory_mb": 20788, + "disk_read_mb": 619, + "disk_write_mb": 1536 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1851, - "poisson": -11.6721 + "mse": 0.2179, + "poisson": -2.3776 }, "scaled_scores": { - "mse": 0.8018, - "poisson": 0 + "mse": 0.3777, + "poisson": 1 }, - "mean_score": 0.4009, + "mean_score": 0.6888, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 272, - "cpu_pct": 366.1, - "peak_memory_mb": 21709, - "disk_read_mb": 625, - "disk_write_mb": 491 + "duration_sec": 851, + "cpu_pct": 279.4, + "peak_memory_mb": 42189, + "disk_read_mb": 575, + "disk_write_mb": 296 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "magic", "metric_values": { - "mse": 0.1614, - "poisson": -1.537 + "mse": 0.2071, + "poisson": 0.0456 }, "scaled_scores": { - "mse": 0.6992, - "poisson": 0.7996 + "mse": 0.4083, + "poisson": 0.6125 }, - "mean_score": 0.7494, + "mean_score": 0.5104, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 307, - "cpu_pct": 667, - "peak_memory_mb": 14746, - "disk_read_mb": 636, - "disk_write_mb": 2151 + "duration_sec": 559, + "cpu_pct": 125.3, + "peak_memory_mb": 16589, + "disk_read_mb": 586, + "disk_write_mb": 2868 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "no_denoising", "metric_values": { - "mse": 0.186, - "poisson": -3.081 + "mse": 0.2582, + "poisson": -0.5961 }, "scaled_scores": { - "mse": 0.806, - "poisson": 0.6778 + "mse": 0.2624, + "poisson": 0.7151 }, - "mean_score": 0.7419, + "mean_score": 0.4887, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 39, - "cpu_pct": 86.4, - "peak_memory_mb": 6144, - "disk_read_mb": 616, - "disk_write_mb": 263 + "duration_sec": 112, + "cpu_pct": 30.2, + "peak_memory_mb": 6042, + "disk_read_mb": 567, + "disk_write_mb": 230 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/pancreas", + "dataset_id": "openproblems_v1/immune_cells", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.3788 + "poisson": 0.1369 }, "scaled_scores": { - "mse": 0, - "poisson": 0.9508 + "mse": 1, + "poisson": 0.5979 }, - "mean_score": 0.4754, + "mean_score": 0.7989, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 35.4, - "cpu_pct": 108.9, - "peak_memory_mb": 6349, - "disk_read_mb": 877, - "disk_write_mb": 187 + "duration_sec": 24.9, + "cpu_pct": 99.3, + "peak_memory_mb": 6247, + "disk_read_mb": 712, + "disk_write_mb": 145 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "alra", "metric_values": { - "mse": 0.2842, - "poisson": 0.3653 + "mse": 0.0505, + "poisson": 0.4419 }, "scaled_scores": { - "mse": 1, - "poisson": 0.1202 + "mse": 0, + "poisson": 0.787 }, - "mean_score": 0.5601, + "mean_score": 0.3935, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 65, - "cpu_pct": 127.8, - "peak_memory_mb": 6861, - "disk_read_mb": 54, - "disk_write_mb": 24 + "duration_sec": 422, + "cpu_pct": 104, + "peak_memory_mb": 12186, + "disk_read_mb": 68, + "disk_write_mb": 58 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "dca", "metric_values": { - "mse": 0.2175, - "poisson": 0.3099 + "mse": 0.0448, + "poisson": 0.2126 }, "scaled_scores": { - "mse": 0.7655, - "poisson": 0.0995 + "mse": 0.1135, + "poisson": 0.9033 }, - "mean_score": 0.4325, + "mean_score": 0.5084, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 44.6, - "cpu_pct": 1899.2, - "peak_memory_mb": 17511, - "disk_read_mb": 90, - "disk_write_mb": 86 + "duration_sec": 273, + "cpu_pct": 4651.6, + "peak_memory_mb": 29696, + "disk_read_mb": 104, + "disk_write_mb": 268 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2239, - "poisson": 2.7203 + "mse": 0.0452, + "poisson": 1.9926 }, "scaled_scores": { - "mse": 0.7879, - "poisson": 1 + "mse": 0.1056, + "poisson": 0 }, - "mean_score": 0.8939, + "mean_score": 0.0528, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 12, - "cpu_pct": 1267.3, - "peak_memory_mb": 6452, - "disk_read_mb": 47, - "disk_write_mb": 22 + "duration_sec": 36.7, + "cpu_pct": 1283.9, + "peak_memory_mb": 9114, + "disk_read_mb": 61, + "disk_write_mb": 15 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "magic", "metric_values": { - "mse": 0.1886, - "poisson": 0.1618 + "mse": 0.0448, + "poisson": 0.2625 }, "scaled_scores": { - "mse": 0.6636, - "poisson": 0.0441 + "mse": 0.1139, + "poisson": 0.878 }, - "mean_score": 0.3539, + "mean_score": 0.496, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 23.9, - "cpu_pct": 499.4, - "peak_memory_mb": 6452, - "disk_read_mb": 58, - "disk_write_mb": 133 + "duration_sec": 20.2, + "cpu_pct": 803.4, + "peak_memory_mb": 7680, + "disk_read_mb": 71, + "disk_write_mb": 66 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "no_denoising", "metric_values": { - "mse": 0.2712, - "poisson": 0.3013 + "mse": 0.0402, + "poisson": 0.1585 }, "scaled_scores": { - "mse": 0.9543, - "poisson": 0.0963 + "mse": 0.2049, + "poisson": 0.9308 }, - "mean_score": 0.5253, + "mean_score": 0.5678, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 10.2, - "cpu_pct": 104.9, + "duration_sec": 3.8, + "cpu_pct": 231.4, "peak_memory_mb": 5530, - "disk_read_mb": 38, - "disk_write_mb": 11 + "disk_read_mb": 52, + "disk_write_mb": 17 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0436 + "poisson": 0.0221 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 9.2, - "cpu_pct": 95.6, + "duration_sec": 3.5, + "cpu_pct": 299.7, "peak_memory_mb": 5530, - "disk_read_mb": 44, - "disk_write_mb": 7 + "disk_read_mb": 71, + "disk_write_mb": 13 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "alra", "metric_values": { - "mse": 0.1957, - "poisson": 0.2884 + "mse": 0.0487, + "poisson": -5.0796 }, "scaled_scores": { - "mse": 1, - "poisson": 0.1689 + "mse": 0, + "poisson": 0.1192 }, - "mean_score": 0.5845, + "mean_score": 0.0596, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 321, - "cpu_pct": 103.1, - "peak_memory_mb": 11981, - "disk_read_mb": 128, - "disk_write_mb": 121 + "duration_sec": 285, + "cpu_pct": 106.3, + "peak_memory_mb": 13927, + "disk_read_mb": 280, + "disk_write_mb": 164 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "dca", "metric_values": { - "mse": 0.1443, - "poisson": 0.1788 + "mse": 0.0473, + "poisson": -3.0623 }, "scaled_scores": { - "mse": 0.7375, - "poisson": 0.0983 + "mse": 0.0288, + "poisson": 0.0836 }, - "mean_score": 0.4179, + "mean_score": 0.0562, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 253, - "cpu_pct": 2922.8, - "peak_memory_mb": 20480, - "disk_read_mb": 164, - "disk_write_mb": 548 + "duration_sec": 143, + "cpu_pct": 2124.2, + "peak_memory_mb": 18740, + "disk_read_mb": 316, + "disk_write_mb": 358 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1535, - "poisson": 1.5775 + "mse": 0.0452, + "poisson": -54.9686 }, "scaled_scores": { - "mse": 0.7845, + "mse": 0.0733, "poisson": 1 }, - "mean_score": 0.8923, + "mean_score": 0.5367, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 57.6, - "cpu_pct": 723.9, - "peak_memory_mb": 11060, - "disk_read_mb": 120, - "disk_write_mb": 92 + "duration_sec": 40.1, + "cpu_pct": 1024, + "peak_memory_mb": 9728, + "disk_read_mb": 272, + "disk_write_mb": 100 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "magic", "metric_values": { - "mse": 0.1187, - "poisson": 0.0908 + "mse": 0.0461, + "poisson": -2.6247 }, "scaled_scores": { - "mse": 0.6065, - "poisson": 0.0416 + "mse": 0.0549, + "poisson": 0.0758 }, - "mean_score": 0.324, + "mean_score": 0.0654, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 73, - "cpu_pct": 507.7, - "peak_memory_mb": 9421, - "disk_read_mb": 131, - "disk_write_mb": 706 + "duration_sec": 59.3, + "cpu_pct": 394.8, + "peak_memory_mb": 8295, + "disk_read_mb": 283, + "disk_write_mb": 569 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "no_denoising", "metric_values": { - "mse": 0.181, - "poisson": 0.1744 + "mse": 0.0112, + "poisson": -13.6589 }, "scaled_scores": { - "mse": 0.9253, - "poisson": 0.0955 + "mse": 0.7704, + "poisson": 0.2707 }, - "mean_score": 0.5104, + "mean_score": 0.5205, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 5.4, - "cpu_pct": 214.8, - "peak_memory_mb": 2868, - "disk_read_mb": 112, - "disk_write_mb": 42 + "duration_sec": 27.3, + "cpu_pct": 84.4, + "peak_memory_mb": 5735, + "disk_read_mb": 264, + "disk_write_mb": 118 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0264 + "poisson": 1.6707 }, "scaled_scores": { - "mse": 0, + "mse": 1, "poisson": 0 }, - "mean_score": 0, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 17.7, - "cpu_pct": 56.9, - "peak_memory_mb": 5632, - "disk_read_mb": 133, - "disk_write_mb": 26 + "duration_sec": 56.3, + "cpu_pct": 37.9, + "peak_memory_mb": 5940, + "disk_read_mb": 398, + "disk_write_mb": 90 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "alra", "metric_values": { - "mse": 0.1715, - "poisson": 0.5158 + "mse": 0.2348, + "poisson": 2.6685 }, "scaled_scores": { - "mse": 1, - "poisson": 0.3541 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.677, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3560, - "cpu_pct": 100.2, - "peak_memory_mb": 91546, - "disk_read_mb": 858, - "disk_write_mb": 1844 + "duration_sec": 1093, + "cpu_pct": 101.4, + "peak_memory_mb": 35738, + "disk_read_mb": 633, + "disk_write_mb": 832 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "dca", "metric_values": { - "mse": 0.1277, - "poisson": 0.1641 + "mse": 0.187, + "poisson": 1.196 }, "scaled_scores": { - "mse": 0.7447, - "poisson": 0.1018 + "mse": 0.2038, + "poisson": 0.1024 }, - "mean_score": 0.4233, + "mean_score": 0.1531, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1097, - "cpu_pct": 1229.6, - "peak_memory_mb": 47821, - "disk_read_mb": 894, - "disk_write_mb": 5940 + "duration_sec": 464, + "cpu_pct": 2538.7, + "peak_memory_mb": 20276, + "disk_read_mb": 669, + "disk_write_mb": 1229 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1329, - "poisson": 1.4165 + "mse": 0.185, + "poisson": -11.7064 }, "scaled_scores": { - "mse": 0.7752, + "mse": 0.2123, "poisson": 1 }, - "mean_score": 0.8876, + "mean_score": 0.6062, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1136, - "cpu_pct": 287.7, - "peak_memory_mb": 85914, - "disk_read_mb": 850, - "disk_write_mb": 736 + "duration_sec": 224, + "cpu_pct": 518.8, + "peak_memory_mb": 24372, + "disk_read_mb": 625, + "disk_write_mb": 260 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "magic", "metric_values": { - "mse": 0.1042, - "poisson": 0.0751 + "mse": 0.1828, + "poisson": -0.2833 }, "scaled_scores": { - "mse": 0.6079, - "poisson": 0.038 + "mse": 0.2215, + "poisson": 0.2053 }, - "mean_score": 0.3229, + "mean_score": 0.2134, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1245, - "cpu_pct": 105.9, - "peak_memory_mb": 36250, - "disk_read_mb": 861, - "disk_write_mb": 5837 + "duration_sec": 315, + "cpu_pct": 1251.1, + "peak_memory_mb": 15668, + "disk_read_mb": 636, + "disk_write_mb": 1946 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "no_denoising", "metric_values": { - "mse": 0.146, - "poisson": 0.1314 + "mse": 0.1859, + "poisson": -3.0797 }, "scaled_scores": { - "mse": 0.8515, - "poisson": 0.0784 + "mse": 0.2083, + "poisson": 0.3999 }, - "mean_score": 0.4649, + "mean_score": 0.3041, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 52.7, - "cpu_pct": 105.6, - "peak_memory_mb": 6349, - "disk_read_mb": 842, - "disk_write_mb": 333 + "duration_sec": 28.8, + "cpu_pct": 111.4, + "peak_memory_mb": 3380, + "disk_read_mb": 617, + "disk_write_mb": 257 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_id": "openproblems_v1/pancreas", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0221 + "poisson": 0.3785 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 0.1593 }, - "mean_score": 0, + "mean_score": 0.5797, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 29.8, - "cpu_pct": 92.1, - "peak_memory_mb": 6554, - "disk_read_mb": 1024, - "disk_write_mb": 204 + "duration_sec": 43.3, + "cpu_pct": 71.1, + "peak_memory_mb": 6349, + "disk_read_mb": 877, + "disk_write_mb": 183 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "alra", "metric_values": { - "mse": 0.1954, - "poisson": 0.2319 + "mse": 0.3096, + "poisson": 0.7233 }, "scaled_scores": { - "mse": 1, - "poisson": 0.1259 + "mse": 0, + "poisson": 0.7465 }, - "mean_score": 0.563, + "mean_score": 0.3733, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1878, - "cpu_pct": 100.5, - "peak_memory_mb": 54580, - "disk_read_mb": 561, - "disk_write_mb": 559 + "duration_sec": 52.8, + "cpu_pct": 135.8, + "peak_memory_mb": 7373, + "disk_read_mb": 55, + "disk_write_mb": 49 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "dca", "metric_values": { - "mse": 0.1589, - "poisson": 0.1848 + "mse": 0.2171, + "poisson": 0.3083 }, "scaled_scores": { - "mse": 0.8132, - "poisson": 0.0979 + "mse": 0.299, + "poisson": 0.9013 }, - "mean_score": 0.4556, + "mean_score": 0.6001, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 790, - "cpu_pct": 1469.5, - "peak_memory_mb": 30516, - "disk_read_mb": 597, - "disk_write_mb": 3277 + "duration_sec": 54.1, + "cpu_pct": 2086.8, + "peak_memory_mb": 17101, + "disk_read_mb": 91, + "disk_write_mb": 65 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.165, - "poisson": 1.6996 + "mse": 0.2238, + "poisson": 2.7255 }, "scaled_scores": { - "mse": 0.8448, - "poisson": 1 + "mse": 0.2773, + "poisson": 0 }, - "mean_score": 0.9224, + "mean_score": 0.1387, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 495, - "cpu_pct": 319.3, - "peak_memory_mb": 43930, - "disk_read_mb": 554, - "disk_write_mb": 461 + "duration_sec": 14.2, + "cpu_pct": 1527, + "peak_memory_mb": 6452, + "disk_read_mb": 47, + "disk_write_mb": 13 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "magic", "metric_values": { - "mse": 0.1412, - "poisson": 0.1056 + "mse": 0.2159, + "poisson": 0.3142 }, "scaled_scores": { - "mse": 0.7226, - "poisson": 0.0507 + "mse": 0.3026, + "poisson": 0.8991 }, - "mean_score": 0.3867, + "mean_score": 0.6008, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 565, - "cpu_pct": 108.6, - "peak_memory_mb": 25908, - "disk_read_mb": 564, - "disk_write_mb": 4506 + "duration_sec": 18.3, + "cpu_pct": 674.3, + "peak_memory_mb": 6247, + "disk_read_mb": 58, + "disk_write_mb": 110 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "no_denoising", "metric_values": { - "mse": 0.188, - "poisson": 0.1791 + "mse": 0.2711, + "poisson": 0.3005 }, "scaled_scores": { - "mse": 0.9621, - "poisson": 0.0945 + "mse": 0.1243, + "poisson": 0.9042 }, - "mean_score": 0.5283, + "mean_score": 0.5143, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 21.3, - "cpu_pct": 120.4, - "peak_memory_mb": 3380, - "disk_read_mb": 545, - "disk_write_mb": 215 + "duration_sec": 2.6, + "cpu_pct": 500.7, + "peak_memory_mb": 5530, + "disk_read_mb": 39, + "disk_write_mb": 11 }, "task_id": "denoising" }, { - "dataset_id": "openproblems_v1/zebrafish", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0204 + "poisson": 0.0435 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 13.6, - "cpu_pct": 135.1, - "peak_memory_mb": 3482, - "disk_read_mb": 663, - "disk_write_mb": 131 + "duration_sec": 41.3, + "cpu_pct": 37.5, + "peak_memory_mb": 2765, + "disk_read_mb": 45, + "disk_write_mb": 7 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "no_denoising", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "alra", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.2245, + "poisson": 0.4582 }, "scaled_scores": { "mse": 0, - "poisson": 0 + "poisson": 0.7209 }, - "mean_score": 0, + "mean_score": 0.3605, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 86, - "cpu_pct": 95, - "peak_memory_mb": 3584, - "disk_read_mb": 2048, - "disk_write_mb": 795 + "duration_sec": 342, + "cpu_pct": 105, + "peak_memory_mb": 15668, + "disk_read_mb": 128, + "disk_write_mb": 206 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "perfect_denoising", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "dca", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1439, + "poisson": 0.1783 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.3591, + "poisson": 0.9018 }, - "mean_score": 0, + "mean_score": 0.6305, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 53.6, - "cpu_pct": 96.7, - "peak_memory_mb": 5223, - "disk_read_mb": 2356, - "disk_write_mb": 459 + "duration_sec": 248, + "cpu_pct": 2129.3, + "peak_memory_mb": 17920, + "disk_read_mb": 164, + "disk_write_mb": 407 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", "method_id": "knn_smoothing", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1531, + "poisson": 1.574 }, "scaled_scores": { - "mse": 0, + "mse": 0.3181, "poisson": 0 }, - "mean_score": 0, + "mean_score": 0.1591, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 249, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 80, + "cpu_pct": 588.1, + "peak_memory_mb": 11060, + "disk_read_mb": 121, + "disk_write_mb": 64 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "dca", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "magic", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1443, + "poisson": 0.1806 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.3574, + "poisson": 0.9003 }, - "mean_score": 0, + "mean_score": 0.6289, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 160, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 61, + "cpu_pct": 612.9, + "peak_memory_mb": 8500, + "disk_read_mb": 131, + "disk_write_mb": 612 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "knn_smoothing", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "no_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1806, + "poisson": 0.174 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.1956, + "poisson": 0.9046 }, - "mean_score": 0, + "mean_score": 0.5501, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 179, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 5.8, + "cpu_pct": 249.5, + "peak_memory_mb": 5632, + "disk_read_mb": 112, + "disk_write_mb": 41 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "knn_smoothing", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "perfect_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0, + "poisson": 0.0263 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 240, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 4.8, + "cpu_pct": 211.5, + "peak_memory_mb": 5632, + "disk_read_mb": 134, + "disk_write_mb": 25 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", + "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "alra", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1934, + "poisson": 0.7214 }, "scaled_scores": { "mse": 0, - "poisson": 0 + "poisson": 0.4994 }, - "mean_score": 0, + "mean_score": 0.2497, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 240, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 3949, + "cpu_pct": 100.1, + "peak_memory_mb": 87655, + "disk_read_mb": 858, + "disk_write_mb": 2765 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "knn_smoothing", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "dca", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1282, + "poisson": 0.1703 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.3374, + "poisson": 0.8939 }, - "mean_score": 0, + "mean_score": 0.6156, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 209, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 1296, + "cpu_pct": 2004.5, + "peak_memory_mb": 27648, + "disk_read_mb": 894, + "disk_write_mb": 4301 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/tabula_sapiens", + "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "knn_smoothing", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1329, + "poisson": 1.419 }, "scaled_scores": { - "mse": 0, + "mse": 0.3127, "poisson": 0 }, - "mean_score": 0, + "mean_score": 0.1563, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 219, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 1117, + "cpu_pct": 392.6, + "peak_memory_mb": 88679, + "disk_read_mb": 851, + "disk_write_mb": 504 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "dca", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "magic", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1263, + "poisson": 0.1488 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.3467, + "poisson": 0.9093 }, - "mean_score": 0, + "mean_score": 0.628, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 200, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 938, + "cpu_pct": 104.5, + "peak_memory_mb": 32359, + "disk_read_mb": 861, + "disk_write_mb": 5530 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "alra", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "no_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.146, + "poisson": 0.1313 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.2452, + "poisson": 0.9218 }, - "mean_score": 0, + "mean_score": 0.5835, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 269, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 36.8, + "cpu_pct": 108, + "peak_memory_mb": 6349, + "disk_read_mb": 842, + "disk_write_mb": 330 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "dca", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "perfect_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0, + "poisson": 0.0221 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 210, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 22.8, + "cpu_pct": 103.9, + "peak_memory_mb": 6554, + "disk_read_mb": 1024, + "disk_write_mb": 202 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "dca", + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "alra", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.2186, + "poisson": 0.6591 }, "scaled_scores": { "mse": 0, - "poisson": 0 + "poisson": 0.6197 }, - "mean_score": 0, + "mean_score": 0.3098, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 230, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 2089, + "cpu_pct": 100.4, + "peak_memory_mb": 56013, + "disk_read_mb": 562, + "disk_write_mb": 1844 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "perfect_denoising", + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "dca", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1585, + "poisson": 0.1841 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.2751, + "poisson": 0.9025 }, - "mean_score": 0, + "mean_score": 0.5888, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 180, - "cpu_pct": 92.1, - "peak_memory_mb": 11162, - "disk_read_mb": 8295, - "disk_write_mb": 1639 + "duration_sec": 1629, + "cpu_pct": 2091, + "peak_memory_mb": 23040, + "disk_read_mb": 598, + "disk_write_mb": 2458 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "dataset_id": "openproblems_v1/zebrafish", "method_id": "knn_smoothing", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.165, + "poisson": 1.6999 }, "scaled_scores": { - "mse": 0, + "mse": 0.2453, "poisson": 0 }, - "mean_score": 0, + "mean_score": 0.1226, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 290, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 495, + "cpu_pct": 469.4, + "peak_memory_mb": 46592, + "disk_read_mb": 554, + "disk_write_mb": 340 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "alra", + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "magic", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1584, + "poisson": 0.1857 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.2756, + "poisson": 0.9016 }, - "mean_score": 0, + "mean_score": 0.5886, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 309, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 513, + "cpu_pct": 108.2, + "peak_memory_mb": 19456, + "disk_read_mb": 564, + "disk_write_mb": 4301 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "alra", + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "no_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0.1879, + "poisson": 0.1791 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 0.1404, + "poisson": 0.9055 }, - "mean_score": 0, + "mean_score": 0.523, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 329, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 20.7, + "cpu_pct": 140.4, + "peak_memory_mb": 6042, + "disk_read_mb": 546, + "disk_write_mb": 213 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "alra", + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "perfect_denoising", "metric_values": { - "mse": "NA", - "poisson": "NA" + "mse": 0, + "poisson": 0.0204 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": 1, + "poisson": 1 }, - "mean_score": 0, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 350, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 13.9, + "cpu_pct": 177.5, + "peak_memory_mb": 6144, + "disk_read_mb": 664, + "disk_write_mb": 130 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "perfect_denoising", + "dataset_id": "cellxgene_census/hcla", + "method_id": "alra", "metric_values": { "mse": "NA", "poisson": "NA" @@ -1945,18 +1945,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 235, - "cpu_pct": 89.3, - "peak_memory_mb": 13415, - "disk_read_mb": 10445, - "disk_write_mb": 2048 + "exit_code": 137, + "duration_sec": 460, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "perfect_denoising", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "alra", "metric_values": { "mse": "NA", "poisson": "NA" @@ -1968,18 +1968,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 256, - "cpu_pct": 91.4, - "peak_memory_mb": 14336, - "disk_read_mb": 11367, - "disk_write_mb": 2253 + "exit_code": 1, + "duration_sec": 259, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "no_denoising", + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "alra", "metric_values": { "mse": "NA", "poisson": "NA" @@ -1991,18 +1991,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 390, - "cpu_pct": 70.2, - "peak_memory_mb": 9728, - "disk_read_mb": 6861, - "disk_write_mb": 2663 + "exit_code": 1, + "duration_sec": 280, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "no_denoising", + "dataset_id": "cellxgene_census/hcla", + "method_id": "dca", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2014,18 +2014,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 430, - "cpu_pct": 84.7, - "peak_memory_mb": 11776, - "disk_read_mb": 8909, - "disk_write_mb": 3482 + "exit_code": "NA", + "duration_sec": 26151, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "perfect_denoising", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "dca", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2037,18 +2037,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 330, - "cpu_pct": 91.8, - "peak_memory_mb": 17920, - "disk_read_mb": 14951, - "disk_write_mb": 2970 + "exit_code": "NA", + "duration_sec": 26241, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "perfect_denoising", + "method_id": "dca", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2060,18 +2060,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 440, - "cpu_pct": 97.6, - "peak_memory_mb": 20071, - "disk_read_mb": 17101, - "disk_write_mb": 3482 + "exit_code": "NA", + "duration_sec": 31731, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "no_denoising", + "dataset_id": "cellxgene_census/hcla", + "method_id": "knn_smoothing", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2083,18 +2083,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 434, - "cpu_pct": 86.5, - "peak_memory_mb": 12288, - "disk_read_mb": 9319, - "disk_write_mb": 3789 + "exit_code": 137, + "duration_sec": 1121, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "no_denoising", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "knn_smoothing", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2106,18 +2106,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 525, - "cpu_pct": 93.8, - "peak_memory_mb": 15258, - "disk_read_mb": 12288, - "disk_write_mb": 4916 + "exit_code": 137, + "duration_sec": 880, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "no_denoising", + "method_id": "knn_smoothing", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2129,18 +2129,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 0, - "duration_sec": 620, - "cpu_pct": 95.8, - "peak_memory_mb": 16692, - "disk_read_mb": 13722, - "disk_write_mb": 5530 + "exit_code": 137, + "duration_sec": 970, + "cpu_pct": "NA", + "peak_memory_mb": "NA", + "disk_read_mb": "NA", + "disk_write_mb": "NA" }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "dca", + "dataset_id": "cellxgene_census/hcla", + "method_id": "magic", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2152,8 +2152,8 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 3701, + "exit_code": "NA", + "duration_sec": 21819, "cpu_pct": "NA", "peak_memory_mb": "NA", "disk_read_mb": "NA", @@ -2162,8 +2162,8 @@ "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "alra", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "magic", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2175,8 +2175,8 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 6111, + "exit_code": "NA", + "duration_sec": 21719, "cpu_pct": "NA", "peak_memory_mb": "NA", "disk_read_mb": "NA", @@ -2185,7 +2185,7 @@ "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/immune_cell_atlas", + "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "magic", "metric_values": { "mse": "NA", @@ -2198,8 +2198,8 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 143, - "duration_sec": 14410, + "exit_code": "NA", + "duration_sec": 21729, "cpu_pct": "NA", "peak_memory_mb": "NA", "disk_read_mb": "NA", @@ -2208,8 +2208,8 @@ "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "magic", + "dataset_id": "cellxgene_census/hcla", + "method_id": "no_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2221,18 +2221,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 143, - "duration_sec": 14401, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 555, + "cpu_pct": 88.4, + "peak_memory_mb": 17920, + "disk_read_mb": 12288, + "disk_write_mb": 4916 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "dca", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "no_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2244,18 +2244,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 137, - "duration_sec": 18761, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 362, + "cpu_pct": 96.8, + "peak_memory_mb": 14541, + "disk_read_mb": 8909, + "disk_write_mb": 3482 }, "task_id": "denoising" }, { "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "magic", + "method_id": "no_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2267,18 +2267,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 143, - "duration_sec": 19270, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 595, + "cpu_pct": 93, + "peak_memory_mb": 19354, + "disk_read_mb": 13722, + "disk_write_mb": 5530 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "magic", + "dataset_id": "cellxgene_census/hcla", + "method_id": "perfect_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2290,18 +2290,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": "NA", - "duration_sec": 23160, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 345, + "cpu_pct": 89.7, + "peak_memory_mb": 20583, + "disk_read_mb": 14951, + "disk_write_mb": 2970 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "magic", + "dataset_id": "cellxgene_census/hypomap", + "method_id": "perfect_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2313,18 +2313,18 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": "NA", - "duration_sec": 23101, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 243, + "cpu_pct": 100.8, + "peak_memory_mb": 16077, + "disk_read_mb": 10445, + "disk_write_mb": 2048 }, "task_id": "denoising" }, { - "dataset_id": "cellxgene_census/hcla", - "method_id": "magic", + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "perfect_denoising", "metric_values": { "mse": "NA", "poisson": "NA" @@ -2336,12 +2336,12 @@ "mean_score": 0, "normalization_id": "log_cp10k", "resources": { - "exit_code": 143, - "duration_sec": 30361, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" + "exit_code": 0, + "duration_sec": 374, + "cpu_pct": 94.4, + "peak_memory_mb": 22733, + "disk_read_mb": 17101, + "disk_write_mb": 3482 }, "task_id": "denoising" } diff --git a/results/denoising/data/state.yaml b/results/denoising/data/state.yaml index 9cc4fc6d..abbb0fc1 100644 --- a/results/denoising/data/state.yaml +++ b/results/denoising/data/state.yaml @@ -5,4 +5,5 @@ output_metric_info: !file metric_info.json output_dataset_info: !file dataset_info.json output_task_info: !file task_info.json output_qc: !file quality_control.json +output_metric_execution_info: !file metric_execution_info.json From 58f0e5af6505a5b6539fd9ae05b49e7ba717b377 Mon Sep 17 00:00:00 2001 From: Robrecht Cannoodt Date: Mon, 18 Mar 2024 18:59:35 +0100 Subject: [PATCH 05/12] update results --- results/denoising/data/quality_control.json | 138 +++---- results/denoising/data/results.json | 404 ++++++++++---------- 2 files changed, 271 insertions(+), 271 deletions(-) diff --git a/results/denoising/data/quality_control.json b/results/denoising/data/quality_control.json index e2399978..2a494a4e 100644 --- a/results/denoising/data/quality_control.json +++ b/results/denoising/data/quality_control.json @@ -503,21 +503,21 @@ "task_id": "denoising", "category": "Scaling", "name": "Worst score no_denoising mse", - "value": 0.0, + "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Worst score: 0.0%\n" + "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score no_denoising mse", - "value": 0.9088, + "value": 0, "severity": 0, - "severity_value": 0.4544, + "severity_value": 0.0, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0.9088%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0%\n" }, { "task_id": "denoising", @@ -543,200 +543,200 @@ "task_id": "denoising", "category": "Scaling", "name": "Worst score alra mse", - "value": 0, - "severity": 0, - "severity_value": -0.0, + "value": -9.9708, + "severity": 3, + "severity_value": 9.9708, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: 0%\n" + "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: -9.9708%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score alra mse", - "value": 1, + "value": 0.0, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.0, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 1%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 0.0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score dca mse", - "value": 0.0, - "severity": 0, - "severity_value": -0.0, + "value": -8.5238, + "severity": 3, + "severity_value": 8.5238, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Worst score: 0.0%\n" + "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Worst score: -8.5238%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score dca mse", - "value": 1.0, + "value": 0.2033, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.10165, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Best score: 1.0%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Best score: 0.2033%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score knn_smoothing mse", - "value": 0.0, - "severity": 0, - "severity_value": -0.0, + "value": -7.5261, + "severity": 3, + "severity_value": 7.5261, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: 0.0%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: -7.5261%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score knn_smoothing mse", - "value": 1.0, + "value": 0.1747, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.08735, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 1.0%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.1747%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score magic mse", - "value": 0.0, - "severity": 0, - "severity_value": -0.0, + "value": -7.6749, + "severity": 3, + "severity_value": 7.6749, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Worst score: 0.0%\n" + "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Worst score: -7.6749%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score magic mse", - "value": 1.0, + "value": 0.2036, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.1018, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 1.0%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 0.2036%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score no_denoising poisson", - "value": 0.0, + "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score no_denoising poisson", - "value": 0.9455, + "value": 1, "severity": 0, - "severity_value": 0.47275, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 0.9455%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 1%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score perfect_denoising poisson", - "value": 0.0, + "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 0%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score perfect_denoising poisson", - "value": 1.0, + "value": 1, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score alra poisson", - "value": 0.0, - "severity": 0, - "severity_value": -0.0, + "value": -17.3505, + "severity": 3, + "severity_value": 17.3505, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Worst score: -17.3505%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score alra poisson", - "value": 1.0, + "value": 0.4403, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.22015, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.4403%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score dca poisson", - "value": 0.0, + "value": -0.3965, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.3965, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Worst score: -0.3965%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score dca poisson", - "value": 1.0, + "value": 0.4399, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.21995, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Best score: 0.4399%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score knn_smoothing poisson", - "value": 0.0, - "severity": 0, - "severity_value": -0.0, + "value": -13.442, + "severity": 3, + "severity_value": 13.442, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -13.442%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score knn_smoothing poisson", - "value": 1.0, - "severity": 0, - "severity_value": 0.5, + "value": 6.285, + "severity": 3, + "severity_value": 3.1425, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 6.285%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Worst score magic poisson", - "value": 0.0, + "value": -0.762, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.762, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Worst score: 0.0%\n" + "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Worst score: -0.762%\n" }, { "task_id": "denoising", "category": "Scaling", "name": "Best score magic poisson", - "value": 1.0, + "value": 0.5015, "severity": 0, - "severity_value": 0.5, + "severity_value": 0.25075, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 1.0%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5015%\n" } ] \ No newline at end of file diff --git a/results/denoising/data/results.json b/results/denoising/data/results.json index 5e43817b..f5b0a34e 100644 --- a/results/denoising/data/results.json +++ b/results/denoising/data/results.json @@ -7,10 +7,10 @@ "poisson": 0.8484 }, "scaled_scores": { - "mse": 0, - "poisson": 0.4923 + "mse": -0.0671, + "poisson": -4.4865 }, - "mean_score": 0.2461, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -30,10 +30,10 @@ "poisson": 0.1805 }, "scaled_scores": { - "mse": 0.1837, - "poisson": 0.8998 + "mse": 0.1289, + "poisson": -0.0824 }, - "mean_score": 0.5417, + "mean_score": 0.0644, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -53,10 +53,10 @@ "poisson": 1.6551 }, "scaled_scores": { - "mse": 0.1289, - "poisson": 0 + "mse": 0.0705, + "poisson": -9.8065 }, - "mean_score": 0.0645, + "mean_score": 0.0352, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -76,10 +76,10 @@ "poisson": 0.1823 }, "scaled_scores": { - "mse": 0.1808, - "poisson": 0.8988 + "mse": 0.1258, + "poisson": -0.094 }, - "mean_score": 0.5398, + "mean_score": 0.0629, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -99,10 +99,10 @@ "poisson": 0.168 }, "scaled_scores": { - "mse": 0.0629, - "poisson": 0.9075 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.4852, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -145,10 +145,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -169,7 +169,7 @@ }, "scaled_scores": { "mse": 0.1012, - "poisson": 0 + "poisson": -0.0177 }, "mean_score": 0.0506, "normalization_id": "log_cp10k", @@ -191,10 +191,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 137, @@ -214,10 +214,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -238,9 +238,9 @@ }, "scaled_scores": { "mse": 0, - "poisson": 0.0174 + "poisson": 0 }, - "mean_score": 0.0087, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -283,10 +283,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -306,10 +306,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -329,10 +329,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 137, @@ -352,10 +352,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 143, @@ -421,10 +421,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -444,10 +444,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -467,10 +467,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 137, @@ -490,10 +490,10 @@ "poisson": "NA" }, "scaled_scores": { - "mse": 1, - "poisson": 1 + "mse": 0, + "poisson": 0 }, - "mean_score": 1, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": "NA", @@ -559,10 +559,10 @@ "poisson": -4.5388 }, "scaled_scores": { - "mse": 0, - "poisson": 0.0682 + "mse": -9.9708, + "poisson": 0.4284 }, - "mean_score": 0.0341, + "mean_score": 0.2142, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -582,10 +582,10 @@ "poisson": -4.7271 }, "scaled_scores": { - "mse": 0.1319, - "poisson": 0.07 + "mse": -8.5238, + "poisson": 0.4399 }, - "mean_score": 0.1009, + "mean_score": 0.2199, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -605,10 +605,10 @@ "poisson": -100.6326 }, "scaled_scores": { - "mse": 0.2228, - "poisson": 1 + "mse": -7.5261, + "poisson": 6.285 }, - "mean_score": 0.6114, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -628,10 +628,10 @@ "poisson": -5.7382 }, "scaled_scores": { - "mse": 0.2093, - "poisson": 0.0798 + "mse": -7.6749, + "poisson": 0.5015 }, - "mean_score": 0.1445, + "mean_score": 0.2507, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -651,10 +651,10 @@ "poisson": -13.9175 }, "scaled_scores": { - "mse": 0.9088, - "poisson": 0.1591 + "mse": 0, + "poisson": 1 }, - "mean_score": 0.534, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -697,8 +697,8 @@ "poisson": 0.6193 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": -1.0157, + "poisson": -17.3505 }, "mean_score": 0, "normalization_id": "log_cp10k", @@ -720,10 +720,10 @@ "poisson": 0.0443 }, "scaled_scores": { - "mse": 0.4409, - "poisson": 0.9377 + "mse": -0.1269, + "poisson": -0.1428 }, - "mean_score": 0.6893, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -743,10 +743,10 @@ "poisson": 0.4719 }, "scaled_scores": { - "mse": 0.3854, - "poisson": 0.2404 + "mse": -0.2389, + "poisson": -12.9393 }, - "mean_score": 0.3129, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -766,10 +766,10 @@ "poisson": 0.0457 }, "scaled_scores": { - "mse": 0.4192, - "poisson": 0.9355 + "mse": -0.1707, + "poisson": -0.1842 }, - "mean_score": 0.6773, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -789,10 +789,10 @@ "poisson": 0.0395 }, "scaled_scores": { - "mse": 0.5039, - "poisson": 0.9455 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.7247, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -835,8 +835,8 @@ "poisson": 3.8754 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": -0.3557, + "poisson": -5.1006 }, "mean_score": 0, "normalization_id": "log_cp10k", @@ -858,10 +858,10 @@ "poisson": 0.1649 }, "scaled_scores": { - "mse": 0.3952, - "poisson": 0.5934 + "mse": 0.1801, + "poisson": -0.0382 }, - "mean_score": 0.4943, + "mean_score": 0.09, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -881,10 +881,10 @@ "poisson": -2.3776 }, "scaled_scores": { - "mse": 0.3777, - "poisson": 1 + "mse": 0.1563, + "poisson": 3.4306 }, - "mean_score": 0.6888, + "mean_score": 0.5782, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -904,10 +904,10 @@ "poisson": 0.0456 }, "scaled_scores": { - "mse": 0.4083, - "poisson": 0.6125 + "mse": 0.1979, + "poisson": 0.1246 }, - "mean_score": 0.5104, + "mean_score": 0.1613, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -927,10 +927,10 @@ "poisson": -0.5961 }, "scaled_scores": { - "mse": 0.2624, - "poisson": 0.7151 + "mse": 0, + "poisson": 1 }, - "mean_score": 0.4887, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -951,9 +951,9 @@ }, "scaled_scores": { "mse": 1, - "poisson": 0.5979 + "poisson": 0 }, - "mean_score": 0.7989, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -973,10 +973,10 @@ "poisson": 0.4419 }, "scaled_scores": { - "mse": 0, - "poisson": 0.787 + "mse": -0.2577, + "poisson": -2.0767 }, - "mean_score": 0.3935, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -996,10 +996,10 @@ "poisson": 0.2126 }, "scaled_scores": { - "mse": 0.1135, - "poisson": 0.9033 + "mse": -0.1149, + "poisson": -0.3965 }, - "mean_score": 0.5084, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1019,10 +1019,10 @@ "poisson": 1.9926 }, "scaled_scores": { - "mse": 0.1056, - "poisson": 0 + "mse": -0.1248, + "poisson": -13.442 }, - "mean_score": 0.0528, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1042,10 +1042,10 @@ "poisson": 0.2625 }, "scaled_scores": { - "mse": 0.1139, - "poisson": 0.878 + "mse": -0.1144, + "poisson": -0.762 }, - "mean_score": 0.496, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1065,10 +1065,10 @@ "poisson": 0.1585 }, "scaled_scores": { - "mse": 0.2049, - "poisson": 0.9308 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.5678, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1111,10 +1111,10 @@ "poisson": -5.0796 }, "scaled_scores": { - "mse": 0, - "poisson": 0.1192 + "mse": -3.3553, + "poisson": 0.4403 }, - "mean_score": 0.0596, + "mean_score": 0.2202, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1134,10 +1134,10 @@ "poisson": -3.0623 }, "scaled_scores": { - "mse": 0.0288, - "poisson": 0.0836 + "mse": -3.2297, + "poisson": 0.3087 }, - "mean_score": 0.0562, + "mean_score": 0.1544, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1157,10 +1157,10 @@ "poisson": -54.9686 }, "scaled_scores": { - "mse": 0.0733, - "poisson": 1 + "mse": -3.036, + "poisson": 3.6948 }, - "mean_score": 0.5367, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1180,10 +1180,10 @@ "poisson": -2.6247 }, "scaled_scores": { - "mse": 0.0549, - "poisson": 0.0758 + "mse": -3.1162, + "poisson": 0.2802 }, - "mean_score": 0.0654, + "mean_score": 0.1401, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1203,10 +1203,10 @@ "poisson": -13.6589 }, "scaled_scores": { - "mse": 0.7704, - "poisson": 0.2707 + "mse": 0, + "poisson": 1 }, - "mean_score": 0.5205, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1249,8 +1249,8 @@ "poisson": 2.6685 }, "scaled_scores": { - "mse": 0, - "poisson": 0 + "mse": -0.2631, + "poisson": -0.6622 }, "mean_score": 0, "normalization_id": "log_cp10k", @@ -1272,10 +1272,10 @@ "poisson": 1.196 }, "scaled_scores": { - "mse": 0.2038, - "poisson": 0.1024 + "mse": -0.0057, + "poisson": -0.2364 }, - "mean_score": 0.1531, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1295,10 +1295,10 @@ "poisson": -11.7064 }, "scaled_scores": { - "mse": 0.2123, - "poisson": 1 + "mse": 0.0051, + "poisson": 3.4945 }, - "mean_score": 0.6062, + "mean_score": 0.5025, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1318,10 +1318,10 @@ "poisson": -0.2833 }, "scaled_scores": { - "mse": 0.2215, - "poisson": 0.2053 + "mse": 0.0167, + "poisson": 0.1914 }, - "mean_score": 0.2134, + "mean_score": 0.104, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1341,10 +1341,10 @@ "poisson": -3.0797 }, "scaled_scores": { - "mse": 0.2083, - "poisson": 0.3999 + "mse": 0, + "poisson": 1 }, - "mean_score": 0.3041, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1365,9 +1365,9 @@ }, "scaled_scores": { "mse": 1, - "poisson": 0.1593 + "poisson": 0 }, - "mean_score": 0.5797, + "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1387,10 +1387,10 @@ "poisson": 0.7233 }, "scaled_scores": { - "mse": 0, - "poisson": 0.7465 + "mse": -0.142, + "poisson": -1.6454 }, - "mean_score": 0.3733, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1410,10 +1410,10 @@ "poisson": 0.3083 }, "scaled_scores": { - "mse": 0.299, - "poisson": 0.9013 + "mse": 0.1994, + "poisson": -0.0303 }, - "mean_score": 0.6001, + "mean_score": 0.0997, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1433,10 +1433,10 @@ "poisson": 2.7255 }, "scaled_scores": { - "mse": 0.2773, - "poisson": 0 + "mse": 0.1747, + "poisson": -9.4374 }, - "mean_score": 0.1387, + "mean_score": 0.0874, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1456,10 +1456,10 @@ "poisson": 0.3142 }, "scaled_scores": { - "mse": 0.3026, - "poisson": 0.8991 + "mse": 0.2036, + "poisson": -0.0532 }, - "mean_score": 0.6008, + "mean_score": 0.1018, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1479,10 +1479,10 @@ "poisson": 0.3005 }, "scaled_scores": { - "mse": 0.1243, - "poisson": 0.9042 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.5143, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1525,10 +1525,10 @@ "poisson": 0.4582 }, "scaled_scores": { - "mse": 0, - "poisson": 0.7209 + "mse": -0.2431, + "poisson": -1.9251 }, - "mean_score": 0.3605, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1548,10 +1548,10 @@ "poisson": 0.1783 }, "scaled_scores": { - "mse": 0.3591, - "poisson": 0.9018 + "mse": 0.2033, + "poisson": -0.0293 }, - "mean_score": 0.6305, + "mean_score": 0.1017, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1571,10 +1571,10 @@ "poisson": 1.574 }, "scaled_scores": { - "mse": 0.3181, - "poisson": 0 + "mse": 0.1523, + "poisson": -9.4825 }, - "mean_score": 0.1591, + "mean_score": 0.0762, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1594,10 +1594,10 @@ "poisson": 0.1806 }, "scaled_scores": { - "mse": 0.3574, - "poisson": 0.9003 + "mse": 0.2012, + "poisson": -0.0451 }, - "mean_score": 0.6289, + "mean_score": 0.1006, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1617,10 +1617,10 @@ "poisson": 0.174 }, "scaled_scores": { - "mse": 0.1956, - "poisson": 0.9046 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.5501, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1663,10 +1663,10 @@ "poisson": 0.7214 }, "scaled_scores": { - "mse": 0, - "poisson": 0.4994 + "mse": -0.3249, + "poisson": -5.402 }, - "mean_score": 0.2497, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1686,10 +1686,10 @@ "poisson": 0.1703 }, "scaled_scores": { - "mse": 0.3374, - "poisson": 0.8939 + "mse": 0.1221, + "poisson": -0.3563 }, - "mean_score": 0.6156, + "mean_score": 0.061, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1709,10 +1709,10 @@ "poisson": 1.419 }, "scaled_scores": { - "mse": 0.3127, - "poisson": 0 + "mse": 0.0894, + "poisson": -11.7878 }, - "mean_score": 0.1563, + "mean_score": 0.0447, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1732,10 +1732,10 @@ "poisson": 0.1488 }, "scaled_scores": { - "mse": 0.3467, - "poisson": 0.9093 + "mse": 0.1345, + "poisson": -0.1602 }, - "mean_score": 0.628, + "mean_score": 0.0672, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1755,10 +1755,10 @@ "poisson": 0.1313 }, "scaled_scores": { - "mse": 0.2452, - "poisson": 0.9218 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.5835, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1801,10 +1801,10 @@ "poisson": 0.6591 }, "scaled_scores": { - "mse": 0, - "poisson": 0.6197 + "mse": -0.1634, + "poisson": -3.0248 }, - "mean_score": 0.3098, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1824,10 +1824,10 @@ "poisson": 0.1841 }, "scaled_scores": { - "mse": 0.2751, - "poisson": 0.9025 + "mse": 0.1566, + "poisson": -0.0317 }, - "mean_score": 0.5888, + "mean_score": 0.0783, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1847,10 +1847,10 @@ "poisson": 1.6999 }, "scaled_scores": { - "mse": 0.2453, - "poisson": 0 + "mse": 0.122, + "poisson": -9.583 }, - "mean_score": 0.1226, + "mean_score": 0.061, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1870,10 +1870,10 @@ "poisson": 0.1857 }, "scaled_scores": { - "mse": 0.2756, - "poisson": 0.9016 + "mse": 0.1573, + "poisson": -0.0416 }, - "mean_score": 0.5886, + "mean_score": 0.0786, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, @@ -1893,10 +1893,10 @@ "poisson": 0.1791 }, "scaled_scores": { - "mse": 0.1404, - "poisson": 0.9055 + "mse": 0, + "poisson": 0 }, - "mean_score": 0.523, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, From 0130148fd94c78e92cb1848996dbe76201f9a37f Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Fri, 20 Sep 2024 20:25:45 +0200 Subject: [PATCH 06/12] update submodules --- _core | 2 +- _task_template | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/_core b/_core index 133019ed..3ada7662 160000 --- a/_core +++ b/_core @@ -1 +1 @@ -Subproject commit 133019ed25bdb821961182176f2e3f9ee1fea889 +Subproject commit 3ada76624ec63cd1e751041f186605e9de600456 diff --git a/_task_template b/_task_template index 7649f6c6..8461f1fb 160000 --- a/_task_template +++ b/_task_template @@ -1 +1 @@ -Subproject commit 7649f6c691b3bfa33b58df84ed8c9bad005ae295 +Subproject commit 8461f1fb05336fd1f9f93f883679193a7a260ecc From 9745abb70da318148025e860a329776d2fea268d Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Mon, 23 Sep 2024 09:29:56 +0200 Subject: [PATCH 07/12] update submodule --- _core | 2 +- _task_template | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/_core b/_core index 3ada7662..5e2d2717 160000 --- a/_core +++ b/_core @@ -1 +1 @@ -Subproject commit 3ada76624ec63cd1e751041f186605e9de600456 +Subproject commit 5e2d27178b2590ef028dac199b16bd49035972c8 diff --git a/_task_template b/_task_template index 8461f1fb..29d5e529 160000 --- a/_task_template +++ b/_task_template @@ -1 +1 @@ -Subproject commit 8461f1fb05336fd1f9f93f883679193a7a260ecc +Subproject commit 29d5e529c83dcd23ab211be4b3c8c534462d0066 From 254cd44ccd77ea60be58594315cfec793aa56242 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Mon, 23 Sep 2024 09:30:25 +0200 Subject: [PATCH 08/12] update test_resources path --- .../create_component/add_a_control.qmd | 6 +++--- .../create_component/add_a_method.qmd | 4 ++-- .../create_component/add_a_metric.qmd | 4 ++-- .../create_component/getting_started.qmd | 8 ++++---- .../create_task/dataset_processor.qmd | 18 +++++++++--------- documentation/create_task/design_api.qmd | 6 +++--- documentation/create_task/getting_started.qmd | 8 ++++---- 7 files changed, 27 insertions(+), 27 deletions(-) diff --git a/documentation/create_component/add_a_control.qmd b/documentation/create_component/add_a_control.qmd index 9657ef30..7b2ebf44 100644 --- a/documentation/create_component/add_a_control.qmd +++ b/documentation/create_component/add_a_control.qmd @@ -244,9 +244,9 @@ You can also run your component on local files using the `viash run` command. Fo ```bash viash run src/tasks/label_projection/control_methods/my_python_method/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ - --input_solution resources_test/task_template/pancreas/solution.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ + --input_solution resources_test/task_template/cxg_mouse_pancreas_atlas/solution.h5ad \ --output output.h5ad ``` diff --git a/documentation/create_component/add_a_method.qmd b/documentation/create_component/add_a_method.qmd index d84af71c..30d3c0f5 100644 --- a/documentation/create_component/add_a_method.qmd +++ b/documentation/create_component/add_a_method.qmd @@ -243,8 +243,8 @@ You can also run your component on local files using the `viash run` command. Fo ```bash viash run src/methods/my_python_method/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ --output output.h5ad ``` diff --git a/documentation/create_component/add_a_metric.qmd b/documentation/create_component/add_a_metric.qmd index 21128752..b91f4272 100644 --- a/documentation/create_component/add_a_metric.qmd +++ b/documentation/create_component/add_a_metric.qmd @@ -238,8 +238,8 @@ You can also run your component on local files using the `viash run` command. Fo ```bash viash run src/metrics/my_python_metric/config.vsh.yaml -- \ - --input_prediction resources_test/task_template/pancreas/prediction.h5ad \ - --input_solution resources_test/task_template/pancreas/solution.h5ad \ + --input_prediction resources_test/task_template/cxg_mouse_pancreas_atlas/prediction.h5ad \ + --input_solution resources_test/task_template/cxg_mouse_pancreas_atlas/solution.h5ad \ --output output.h5ad ``` diff --git a/documentation/create_component/getting_started.qmd b/documentation/create_component/getting_started.qmd index 359991cb..1200c35b 100644 --- a/documentation/create_component/getting_started.qmd +++ b/documentation/create_component/getting_started.qmd @@ -76,8 +76,8 @@ Use the `viash run` command to run a Viash component. Everything after the `--` ```bash viash run src/methods/logistic_regression/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ --output output.h5ad ```
@@ -85,8 +85,8 @@ viash run src/methods/logistic_regression/config.vsh.yaml -- \ ```{bash} #| echo: false viash run src/methods/logistic_regression/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ --output output.h5ad ```
diff --git a/documentation/create_task/dataset_processor.qmd b/documentation/create_task/dataset_processor.qmd index be11e455..596619e6 100644 --- a/documentation/create_task/dataset_processor.qmd +++ b/documentation/create_task/dataset_processor.qmd @@ -125,7 +125,7 @@ import anndata as ad ## VIASH START par = { - "input": "resources_test/common/pancreas/dataset.h5ad", + "input": "resources_test/common/cxg_mouse_pancreas_atlas/dataset.h5ad", "output_dataset": "dataset.h5ad", "output_solution": "solution.h5ad", } @@ -159,7 +159,7 @@ library(anndata) ## VIASH START par <- list( - input = "resources_test/common/pancreas/dataset.h5ad", + input = "resources_test/common/cxg_mouse_pancreas_atlas/dataset.h5ad", output_dataset = "dataset.h5ad", output_solution = "solution.h5ad", ) @@ -225,7 +225,7 @@ nextflow run . \ -profile docker \ --publish_dir "$DATASET_DIR" \ --id "pancreas" \ - --input "$RAW_DATA/pancreas/dataset.h5ad" \ + --input "$RAW_DATA/cxg_mouse_pancreas_atlas/dataset.h5ad" \ --output_train '$id/train.h5ad' \ --output_test '$id/test.h5ad' \ --output_solution '$id/solution.h5ad' \ @@ -233,15 +233,15 @@ nextflow run . \ # run one method viash run src/methods/knn/config.vsh.yaml -- \ - --input_train $DATASET_DIR/pancreas/train.h5ad \ - --input_test $DATASET_DIR/pancreas/test.h5ad \ - --output $DATASET_DIR/pancreas/prediction.h5ad + --input_train $DATASET_DIR/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test $DATASET_DIR/cxg_mouse_pancreas_atlas/test.h5ad \ + --output $DATASET_DIR/cxg_mouse_pancreas_atlas/prediction.h5ad # run one metric viash run src/metrics/accuracy/config.vsh.yaml -- \ - --input_prediction $DATASET_DIR/pancreas/prediction.h5ad \ - --input_solution $DATASET_DIR/pancreas/solution.h5ad \ - --output $DATASET_DIR/pancreas/score.h5ad + --input_prediction $DATASET_DIR/cxg_mouse_pancreas_atlas/prediction.h5ad \ + --input_solution $DATASET_DIR/cxg_mouse_pancreas_atlas/solution.h5ad \ + --output $DATASET_DIR/cxg_mouse_pancreas_atlas/score.h5ad # only run this if you have access to the openproblems-data bucket #<2> # aws s3 sync --profile op \ diff --git a/documentation/create_task/design_api.qmd b/documentation/create_task/design_api.qmd index 596c00c1..3d889365 100644 --- a/documentation/create_task/design_api.qmd +++ b/documentation/create_task/design_api.qmd @@ -113,7 +113,7 @@ Let's start by creating one for the solution object: ```{.yaml filename="src/api/file_solution.yaml"} type: file # <1> -example: "resources_test//pancreas/solution.h5ad" # <2> +example: "resources_test//cxg_mouse_pancreas_atlas/solution.h5ad" # <2> label: Solution # <3> summary: "FILL IN: what this file represents" # <4> info: @@ -181,7 +181,7 @@ Below is the slot information of the solution AnnData object: ```{.yaml filename="src/api/file_solution.yaml"} type: file description: "FILL IN: what this file represents" -example: "resources_test//pancreas/solution.h5ad" +example: "resources_test//cxg_mouse_pancreas_atlas/solution.h5ad" info: label: Solution format: # <1> @@ -248,5 +248,5 @@ Each required or optional slot in the file format should have the following fiel Go through each file format specification file and add the expected slots accordingly. :::{.callout-tip} -Look at the [Common dataset](/documentation/reference/openproblems/src-datasets.qmd#file-format-common-dataset) reference docs to see which slots the common datasets have. The AnnData file at `resources_test/common/pancreas/dataset.h5ad` is also an example of a Common dataset, though note that this object contains _more_ slots than what is defined by the spec. +Look at the [Common dataset](/documentation/reference/openproblems/src-datasets.qmd#file-format-common-dataset) reference docs to see which slots the common datasets have. The AnnData file at `resources_test/common/cxg_mouse_pancreas_atlas/dataset.h5ad` is also an example of a Common dataset, though note that this object contains _more_ slots than what is defined by the spec. ::: \ No newline at end of file diff --git a/documentation/create_task/getting_started.qmd b/documentation/create_task/getting_started.qmd index 5b474b53..d6974cc6 100644 --- a/documentation/create_task/getting_started.qmd +++ b/documentation/create_task/getting_started.qmd @@ -105,8 +105,8 @@ Use the `viash run` command to run a Viash component. Everything after the `--` ```bash viash run src/methods/logistic_regression/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ --output output.h5ad ```
@@ -114,8 +114,8 @@ viash run src/methods/logistic_regression/config.vsh.yaml -- \ ```{bash} #| echo: false viash run src/methods/logistic_regression/config.vsh.yaml -- \ - --input_train resources_test/task_template/pancreas/train.h5ad \ - --input_test resources_test/task_template/pancreas/test.h5ad \ + --input_train resources_test/task_template/cxg_mouse_pancreas_atlas/train.h5ad \ + --input_test resources_test/task_template/cxg_mouse_pancreas_atlas/test.h5ad \ --output output.h5ad ```
From 8ddb3bcf6f9d953386dcf3cfc856db3be6500643 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Mon, 23 Sep 2024 09:30:45 +0200 Subject: [PATCH 09/12] Update denoising results --- results/denoising/data/dataset_info.json | 138 - results/denoising/data/method_info.json | 74 - .../denoising/data/metric_execution_info.json | 2214 --------- results/denoising/data/metric_info.json | 24 - results/denoising/data/results.json | 2348 ---------- results/denoising/data/task_info.json | 8 - .../figure-markdown_strict/raw_results-1.png | Bin 113347 -> 0 bytes .../figure-markdown_strict/summary-1.png | Bin 136192 -> 0 bytes results/perturbation_prediction/index.qmd | 2 +- results/spatially_variable_genes/index.qmd | 2 +- results/task_denoising/data/dataset_info.json | 189 + results/task_denoising/data/method_info.json | 80 + .../data/metric_execution_info.json | 2858 ++++++++++++ results/task_denoising/data/metric_info.json | 30 + .../data/quality_control.json | 480 +- results/task_denoising/data/results.json | 3980 +++++++++++++++++ .../data/state.yaml | 0 results/task_denoising/data/task_info.json | 41 + .../{denoising => task_denoising}/index.qmd | 2 +- .../thumbnail.svg | 0 20 files changed, 7421 insertions(+), 5049 deletions(-) delete mode 100644 results/denoising/data/dataset_info.json delete mode 100644 results/denoising/data/method_info.json delete mode 100644 results/denoising/data/metric_execution_info.json delete mode 100644 results/denoising/data/metric_info.json delete mode 100644 results/denoising/data/results.json delete mode 100644 results/denoising/data/task_info.json delete mode 100644 results/denoising/index.markdown_strict_files/figure-markdown_strict/raw_results-1.png delete mode 100644 results/denoising/index.markdown_strict_files/figure-markdown_strict/summary-1.png create mode 100644 results/task_denoising/data/dataset_info.json create mode 100644 results/task_denoising/data/method_info.json create mode 100644 results/task_denoising/data/metric_execution_info.json create mode 100644 results/task_denoising/data/metric_info.json rename results/{denoising => task_denoising}/data/quality_control.json (62%) create mode 100644 results/task_denoising/data/results.json rename results/{denoising => task_denoising}/data/state.yaml (100%) create mode 100644 results/task_denoising/data/task_info.json rename results/{denoising => task_denoising}/index.qmd (86%) rename results/{denoising => task_denoising}/thumbnail.svg (100%) diff --git a/results/denoising/data/dataset_info.json b/results/denoising/data/dataset_info.json deleted file mode 100644 index 5e166a91..00000000 --- a/results/denoising/data/dataset_info.json +++ /dev/null @@ -1,138 +0,0 @@ -[ - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/hcla", - "dataset_name": "Human Lung Cell Atlas", - "dataset_summary": "An integrated cell atlas of the human lung in health and disease (core)", - "data_reference": "sikkema2023integrated", - "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/allen_brain_atlas", - "dataset_name": "Mouse Brain Atlas", - "dataset_summary": "Adult mouse primary visual cortex", - "data_reference": "tasic2016adult", - "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "dataset_name": "Mouse Pancreatic Islet Atlas", - "dataset_summary": "Mouse pancreatic islet scRNA-seq atlas across sexes, ages, and stress conditions including diabetes", - "data_reference": "hrovatin2023delineating", - "data_url": "https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/cengen", - "dataset_name": "CeNGEN", - "dataset_summary": "Complete Gene Expression Map of an Entire Nervous System", - "data_reference": "hammarlund2018cengen", - "data_url": "https://www.cengen.org" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/tnbc_wu2021", - "dataset_name": "Triple-Negative Breast Cancer", - "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", - "data_reference": "wu2021single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/immune_cells", - "dataset_name": "Human immune", - "dataset_summary": "Human immune cells dataset from the scIB benchmarks", - "data_reference": "luecken2022benchmarking", - "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/gtex_v9", - "dataset_name": "GTEX v9", - "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", - "data_reference": "eraslan2022singlenucleus", - "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/dkd", - "dataset_name": "Diabetic Kidney Disease", - "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", - "data_reference": "wilson2022multimodal", - "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/tabula_sapiens", - "dataset_name": "Tabula Sapiens", - "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", - "data_reference": "consortium2022tabula", - "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/immune_cell_atlas", - "dataset_name": "Immune Cell Atlas", - "dataset_summary": "Cross-tissue immune cell analysis reveals tissue-specific features in humans", - "data_reference": "dominguez2022crosstissue", - "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/zebrafish", - "dataset_name": "Zebrafish embryonic cells", - "dataset_summary": "Single-cell mRNA sequencing of zebrafish embryonic cells.", - "data_reference": "wagner2018single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "dataset_name": "5k PBMCs", - "dataset_summary": "5k peripheral blood mononuclear cells from a healthy donor", - "data_reference": "10x2019pbmc", - "data_url": "https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-v-3-chemistry-3-1-standard-3-1-0" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "dataset_name": "Mouse HSPC", - "dataset_summary": "Haematopoeitic stem and progenitor cells from mouse bone marrow", - "data_reference": "nestorowa2016single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81682" - }, - { - "task_id": "denoising", - "dataset_id": "cellxgene_census/hypomap", - "dataset_name": "HypoMap", - "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", - "data_reference": "steuernagel2022hypomap", - "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "dataset_name": "1k PBMCs", - "dataset_summary": "1k peripheral blood mononuclear cells from a healthy donor", - "data_reference": "10x2018pbmc", - "data_url": "https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "dataset_name": "Mouse myeloid", - "dataset_summary": "Myeloid lineage differentiation from mouse blood", - "data_reference": "olsson2016single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70245" - }, - { - "task_id": "denoising", - "dataset_id": "openproblems_v1/pancreas", - "dataset_name": "Human pancreas", - "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", - "data_reference": "luecken2022benchmarking", - "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html" - } -] diff --git a/results/denoising/data/method_info.json b/results/denoising/data/method_info.json deleted file mode 100644 index bc630d36..00000000 --- a/results/denoising/data/method_info.json +++ /dev/null @@ -1,74 +0,0 @@ -[ - { - "task_id": "denoising", - "method_id": "no_denoising", - "method_name": "No Denoising", - "method_summary": "negative control by copying train counts", - "is_baseline": true, - "paper_reference": null, - "code_url": null, - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/control_methods/no_denoising/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - }, - { - "task_id": "denoising", - "method_id": "perfect_denoising", - "method_name": "Perfect Denoising", - "method_summary": "Positive control by copying the test counts", - "is_baseline": true, - "paper_reference": null, - "code_url": null, - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/control_methods/perfect_denoising/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - }, - { - "task_id": "denoising", - "method_id": "alra", - "method_name": "ALRA", - "method_summary": "ALRA imputes missing values in scRNA-seq data by computing rank-k approximation, thresholding by gene, and rescaling the matrix.", - "is_baseline": false, - "paper_reference": "linderman2018zero", - "code_url": "https://github.com/KlugerLab/ALRA", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/alra/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - }, - { - "task_id": "denoising", - "method_id": "dca", - "method_name": "DCA", - "method_summary": "A deep autoencoder with ZINB loss function to address the dropout effect in count data", - "is_baseline": false, - "paper_reference": "eraslan2019single", - "code_url": "https://github.com/theislab/dca", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/dca/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - }, - { - "task_id": "denoising", - "method_id": "knn_smoothing", - "method_name": "KNN Smoothing", - "method_summary": "Iterative kNN-smoothing denoises scRNA-seq data by iteratively increasing the size of neighbourhoods for smoothing until a maximum k value is reached.", - "is_baseline": false, - "paper_reference": "wagner2018knearest", - "code_url": "https://github.com/yanailab/knn-smoothing", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/knn_smoothing/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - }, - { - "task_id": "denoising", - "method_id": "magic", - "method_name": "MAGIC", - "method_summary": "MAGIC imputes and denoises scRNA-seq data that is noisy or dropout-prone.", - "is_baseline": false, - "paper_reference": "van2018recovering", - "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/methods/magic/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c" - } -] diff --git a/results/denoising/data/metric_execution_info.json b/results/denoising/data/metric_execution_info.json deleted file mode 100644 index 149363ea..00000000 --- a/results/denoising/data/metric_execution_info.json +++ /dev/null @@ -1,2214 +0,0 @@ -[ - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 123, - "cpu_pct": 102.7, - "peak_memory_mb": 31335, - "disk_read_mb": 3584, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 76, - "cpu_pct": 96.8, - "peak_memory_mb": 35431, - "disk_read_mb": 4096, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 65, - "cpu_pct": 103, - "peak_memory_mb": 31335, - "disk_read_mb": 742, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 93, - "cpu_pct": 98.7, - "peak_memory_mb": 31335, - "disk_read_mb": 6759, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 54, - "cpu_pct": 83.5, - "peak_memory_mb": 33997, - "disk_read_mb": 562, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 32.6, - "cpu_pct": 116.9, - "peak_memory_mb": 32461, - "disk_read_mb": 417, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 344, - "cpu_pct": 101.7, - "peak_memory_mb": 163431, - "disk_read_mb": 20992, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 158, - "cpu_pct": 104.6, - "peak_memory_mb": 147047, - "disk_read_mb": 1127, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 129, - "cpu_pct": 100.9, - "peak_memory_mb": 143565, - "disk_read_mb": 797, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/hcla", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 137, - "duration_sec": 510, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hcla", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 137, - "duration_sec": 400, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hypomap", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 137, - "duration_sec": 430, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hypomap", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 137, - "duration_sec": 360, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 283, - "cpu_pct": 101.2, - "peak_memory_mb": 250676, - "disk_read_mb": 4199, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 298, - "cpu_pct": 102.2, - "peak_memory_mb": 239924, - "disk_read_mb": 3072, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 303, - "cpu_pct": 96.6, - "peak_memory_mb": 210125, - "disk_read_mb": 5837, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 234, - "cpu_pct": 103.5, - "peak_memory_mb": 195584, - "disk_read_mb": 4404, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 1, - "duration_sec": 240, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 1, - "duration_sec": 270, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 43.4, - "cpu_pct": 110, - "peak_memory_mb": 19456, - "disk_read_mb": 2560, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 43.7, - "cpu_pct": 96.7, - "peak_memory_mb": 21300, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 41.6, - "cpu_pct": 102.6, - "peak_memory_mb": 19456, - "disk_read_mb": 1741, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 53.7, - "cpu_pct": 97.6, - "peak_memory_mb": 19456, - "disk_read_mb": 4301, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 40.7, - "cpu_pct": 102.2, - "peak_memory_mb": 23655, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 58, - "cpu_pct": 111.1, - "peak_memory_mb": 23143, - "disk_read_mb": 1844, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 128, - "cpu_pct": 101.8, - "peak_memory_mb": 57856, - "disk_read_mb": 3380, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 133, - "cpu_pct": 100.1, - "peak_memory_mb": 66356, - "disk_read_mb": 8192, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 106, - "cpu_pct": 105.6, - "peak_memory_mb": 57754, - "disk_read_mb": 659, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 159, - "cpu_pct": 97.2, - "peak_memory_mb": 55092, - "disk_read_mb": 9216, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 57.2, - "cpu_pct": 117.1, - "peak_memory_mb": 59188, - "disk_read_mb": 349, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 59.7, - "cpu_pct": 108.2, - "peak_memory_mb": 58471, - "disk_read_mb": 267, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 40.9, - "cpu_pct": 101.9, - "peak_memory_mb": 15565, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 34.6, - "cpu_pct": 105.7, - "peak_memory_mb": 17101, - "disk_read_mb": 1639, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 28.4, - "cpu_pct": 136.9, - "peak_memory_mb": 15565, - "disk_read_mb": 474, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 42.8, - "cpu_pct": 98.6, - "peak_memory_mb": 12391, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 21.1, - "cpu_pct": 128.2, - "peak_memory_mb": 17204, - "disk_read_mb": 408, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 18.2, - "cpu_pct": 132.3, - "peak_memory_mb": 16384, - "disk_read_mb": 323, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 8.7, - "cpu_pct": 157.4, - "peak_memory_mb": 7578, - "disk_read_mb": 110, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 33.7, - "cpu_pct": 43.1, - "peak_memory_mb": 7885, - "disk_read_mb": 314, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 8.5, - "cpu_pct": 175.9, - "peak_memory_mb": 7578, - "disk_read_mb": 67, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 8.6, - "cpu_pct": 184.4, - "peak_memory_mb": 7578, - "disk_read_mb": 118, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 7, - "cpu_pct": 162.6, - "peak_memory_mb": 7168, - "disk_read_mb": 69, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 6, - "cpu_pct": 226.1, - "peak_memory_mb": 7066, - "disk_read_mb": 65, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 10.3, - "cpu_pct": 164.3, - "peak_memory_mb": 7373, - "disk_read_mb": 331, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 13, - "cpu_pct": 152.7, - "peak_memory_mb": 7168, - "disk_read_mb": 468, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 10.3, - "cpu_pct": 156.7, - "peak_memory_mb": 7373, - "disk_read_mb": 267, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 16.5, - "cpu_pct": 83.1, - "peak_memory_mb": 6452, - "disk_read_mb": 736, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 9.9, - "cpu_pct": 190.9, - "peak_memory_mb": 8704, - "disk_read_mb": 285, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 9.3, - "cpu_pct": 157.1, - "peak_memory_mb": 7885, - "disk_read_mb": 257, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 29, - "cpu_pct": 105.1, - "peak_memory_mb": 13415, - "disk_read_mb": 1127, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 28, - "cpu_pct": 106.7, - "peak_memory_mb": 12186, - "disk_read_mb": 1434, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 23.9, - "cpu_pct": 121.5, - "peak_memory_mb": 11060, - "disk_read_mb": 554, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 35.4, - "cpu_pct": 96.7, - "peak_memory_mb": 13415, - "disk_read_mb": 2151, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 33.8, - "cpu_pct": 76.1, - "peak_memory_mb": 15156, - "disk_read_mb": 551, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 19.4, - "cpu_pct": 134.8, - "peak_memory_mb": 12084, - "disk_read_mb": 477, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 6.1, - "cpu_pct": 187, - "peak_memory_mb": 5940, - "disk_read_mb": 88, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 5.7, - "cpu_pct": 254.7, - "peak_memory_mb": 6144, - "disk_read_mb": 99, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 5.9, - "cpu_pct": 266.4, - "peak_memory_mb": 5940, - "disk_read_mb": 52, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 5.8, - "cpu_pct": 225.5, - "peak_memory_mb": 5940, - "disk_read_mb": 149, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 5.9, - "cpu_pct": 261.5, - "peak_memory_mb": 6042, - "disk_read_mb": 50, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 6, - "cpu_pct": 252.5, - "peak_memory_mb": 5837, - "disk_read_mb": 46, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 11, - "cpu_pct": 153.1, - "peak_memory_mb": 8295, - "disk_read_mb": 260, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 11.2, - "cpu_pct": 148.1, - "peak_memory_mb": 8704, - "disk_read_mb": 443, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 10.8, - "cpu_pct": 185.8, - "peak_memory_mb": 8295, - "disk_read_mb": 118, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 13.3, - "cpu_pct": 138.8, - "peak_memory_mb": 6656, - "disk_read_mb": 667, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 8.6, - "cpu_pct": 216.6, - "peak_memory_mb": 8602, - "disk_read_mb": 96, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 8, - "cpu_pct": 132.6, - "peak_memory_mb": 8500, - "disk_read_mb": 80, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 79, - "cpu_pct": 99.1, - "peak_memory_mb": 33485, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 79, - "cpu_pct": 97.9, - "peak_memory_mb": 38093, - "disk_read_mb": 4404, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 65, - "cpu_pct": 108, - "peak_memory_mb": 33485, - "disk_read_mb": 723, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 92, - "cpu_pct": 98.4, - "peak_memory_mb": 33485, - "disk_read_mb": 5735, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 37.9, - "cpu_pct": 115.2, - "peak_memory_mb": 35943, - "disk_read_mb": 549, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 34.9, - "cpu_pct": 128.4, - "peak_memory_mb": 34714, - "disk_read_mb": 421, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 53.2, - "cpu_pct": 98.9, - "peak_memory_mb": 21095, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 49.2, - "cpu_pct": 98.5, - "peak_memory_mb": 23655, - "disk_read_mb": 2458, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 38.5, - "cpu_pct": 113.1, - "peak_memory_mb": 21095, - "disk_read_mb": 491, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 61, - "cpu_pct": 101.3, - "peak_memory_mb": 21197, - "disk_read_mb": 4506, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 27.8, - "cpu_pct": 119, - "peak_memory_mb": 22733, - "disk_read_mb": 364, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "mse", - "resources": { - "exit_code": 0, - "duration_sec": 22.9, - "cpu_pct": 129.7, - "peak_memory_mb": 21914, - "disk_read_mb": 281, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 127, - "cpu_pct": 104.2, - "peak_memory_mb": 47719, - "disk_read_mb": 3584, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 69, - "cpu_pct": 102.5, - "peak_memory_mb": 43418, - "disk_read_mb": 4096, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 64, - "cpu_pct": 109.5, - "peak_memory_mb": 47616, - "disk_read_mb": 730, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 95, - "cpu_pct": 98.9, - "peak_memory_mb": 47719, - "disk_read_mb": 6759, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 51.3, - "cpu_pct": 113.7, - "peak_memory_mb": 41063, - "disk_read_mb": 550, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/dkd", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 48.8, - "cpu_pct": 109.6, - "peak_memory_mb": 40244, - "disk_read_mb": 405, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 344, - "cpu_pct": 100.9, - "peak_memory_mb": 207770, - "disk_read_mb": 20992, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 236, - "cpu_pct": 100.8, - "peak_memory_mb": 189236, - "disk_read_mb": 1127, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 214, - "cpu_pct": 101.2, - "peak_memory_mb": 184832, - "disk_read_mb": 786, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/hcla", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 137, - "duration_sec": 350, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hcla", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 137, - "duration_sec": 300, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hypomap", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 137, - "duration_sec": 500, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/hypomap", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 1, - "duration_sec": 200, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 428, - "cpu_pct": 100.1, - "peak_memory_mb": 316007, - "disk_read_mb": 4096, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 394, - "cpu_pct": 102.3, - "peak_memory_mb": 310580, - "disk_read_mb": 3072, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 360, - "cpu_pct": 101.1, - "peak_memory_mb": 255898, - "disk_read_mb": 5837, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 345, - "cpu_pct": 101.4, - "peak_memory_mb": 248628, - "disk_read_mb": 4301, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 1, - "duration_sec": 190, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 1, - "duration_sec": 140, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 44.6, - "cpu_pct": 100.5, - "peak_memory_mb": 25600, - "disk_read_mb": 2560, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 37.8, - "cpu_pct": 100.7, - "peak_memory_mb": 23757, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 39.8, - "cpu_pct": 100.7, - "peak_memory_mb": 25600, - "disk_read_mb": 1741, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 45.8, - "cpu_pct": 109.9, - "peak_memory_mb": 25600, - "disk_read_mb": 4301, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 42.4, - "cpu_pct": 105.1, - "peak_memory_mb": 24679, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 36.1, - "cpu_pct": 116.5, - "peak_memory_mb": 24372, - "disk_read_mb": 1844, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 139, - "cpu_pct": 100.9, - "peak_memory_mb": 91956, - "disk_read_mb": 3380, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 223, - "cpu_pct": 105.8, - "peak_memory_mb": 83252, - "disk_read_mb": 8090, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 197, - "cpu_pct": 110.5, - "peak_memory_mb": 91956, - "disk_read_mb": 647, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 163, - "cpu_pct": 97.4, - "peak_memory_mb": 89293, - "disk_read_mb": 9216, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 86, - "cpu_pct": 107.3, - "peak_memory_mb": 75674, - "disk_read_mb": 337, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/cengen", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 83, - "cpu_pct": 113.8, - "peak_memory_mb": 75264, - "disk_read_mb": 255, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 40.2, - "cpu_pct": 101.3, - "peak_memory_mb": 21504, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 32.5, - "cpu_pct": 106.8, - "peak_memory_mb": 19866, - "disk_read_mb": 1639, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 82, - "cpu_pct": 44.1, - "peak_memory_mb": 21504, - "disk_read_mb": 463, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 39.2, - "cpu_pct": 108, - "peak_memory_mb": 21504, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 23.5, - "cpu_pct": 147.2, - "peak_memory_mb": 19456, - "disk_read_mb": 396, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 90.2, - "peak_memory_mb": 19047, - "disk_read_mb": 312, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 7.4, - "cpu_pct": 183.1, - "peak_memory_mb": 8500, - "disk_read_mb": 98, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 7.5, - "cpu_pct": 178.3, - "peak_memory_mb": 8192, - "disk_read_mb": 302, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 10.9, - "cpu_pct": 110.6, - "peak_memory_mb": 8500, - "disk_read_mb": 56, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 13.2, - "cpu_pct": 101, - "peak_memory_mb": 8500, - "disk_read_mb": 106, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 5.8, - "cpu_pct": 208.3, - "peak_memory_mb": 7988, - "disk_read_mb": 57, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 5.8, - "cpu_pct": 188.2, - "peak_memory_mb": 7988, - "disk_read_mb": 53, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 8.4, - "cpu_pct": 227.4, - "peak_memory_mb": 8909, - "disk_read_mb": 320, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 8, - "cpu_pct": 225.8, - "peak_memory_mb": 8602, - "disk_read_mb": 456, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 8.7, - "cpu_pct": 158.1, - "peak_memory_mb": 8909, - "disk_read_mb": 255, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 12.4, - "cpu_pct": 154.5, - "peak_memory_mb": 8909, - "disk_read_mb": 724, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 8.5, - "cpu_pct": 172, - "peak_memory_mb": 8704, - "disk_read_mb": 273, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 18.3, - "cpu_pct": 74.5, - "peak_memory_mb": 8602, - "disk_read_mb": 245, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 23.5, - "cpu_pct": 123.5, - "peak_memory_mb": 17613, - "disk_read_mb": 1127, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 25.3, - "cpu_pct": 98.6, - "peak_memory_mb": 16384, - "disk_read_mb": 1332, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 21.4, - "cpu_pct": 130, - "peak_memory_mb": 17613, - "disk_read_mb": 542, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 35.4, - "cpu_pct": 106.6, - "peak_memory_mb": 17613, - "disk_read_mb": 2151, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 26.8, - "cpu_pct": 88.2, - "peak_memory_mb": 16384, - "disk_read_mb": 539, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/pancreas", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 18.9, - "cpu_pct": 154.1, - "peak_memory_mb": 16077, - "disk_read_mb": 465, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 4.3, - "cpu_pct": 261.5, - "peak_memory_mb": 6247, - "disk_read_mb": 77, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 9, - "cpu_pct": 172.4, - "peak_memory_mb": 5940, - "disk_read_mb": 87, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 4.1, - "cpu_pct": 297.3, - "peak_memory_mb": 5735, - "disk_read_mb": 41, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 4.4, - "cpu_pct": 340.7, - "peak_memory_mb": 6247, - "disk_read_mb": 137, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 3.9, - "cpu_pct": 258.7, - "peak_memory_mb": 5735, - "disk_read_mb": 38, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 18.1, - "cpu_pct": 84.7, - "peak_memory_mb": 2765, - "disk_read_mb": 34, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 9.6, - "cpu_pct": 161.7, - "peak_memory_mb": 9728, - "disk_read_mb": 249, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 9.4, - "cpu_pct": 205.9, - "peak_memory_mb": 9319, - "disk_read_mb": 431, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 27.2, - "cpu_pct": 68.6, - "peak_memory_mb": 9728, - "disk_read_mb": 107, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 15.3, - "cpu_pct": 93.7, - "peak_memory_mb": 8909, - "disk_read_mb": 655, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 8, - "cpu_pct": 173.5, - "peak_memory_mb": 9114, - "disk_read_mb": 84, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 7.7, - "cpu_pct": 169.7, - "peak_memory_mb": 9012, - "disk_read_mb": 68, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 88, - "cpu_pct": 93.3, - "peak_memory_mb": 51303, - "disk_read_mb": 2970, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 77, - "cpu_pct": 99.9, - "peak_memory_mb": 46797, - "disk_read_mb": 4404, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 69, - "cpu_pct": 108.9, - "peak_memory_mb": 51303, - "disk_read_mb": 711, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 94, - "cpu_pct": 100.4, - "peak_memory_mb": 51303, - "disk_read_mb": 5735, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 53.1, - "cpu_pct": 121.3, - "peak_memory_mb": 43828, - "disk_read_mb": 537, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 49.4, - "cpu_pct": 111.3, - "peak_memory_mb": 43213, - "disk_read_mb": 409, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "alra", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 50.7, - "cpu_pct": 103, - "peak_memory_mb": 30823, - "disk_read_mb": 1946, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "dca", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 62, - "cpu_pct": 111.6, - "peak_memory_mb": 28365, - "disk_read_mb": 2458, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "knn_smoothing", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 40.2, - "cpu_pct": 121.2, - "peak_memory_mb": 30823, - "disk_read_mb": 479, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "magic", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 62, - "cpu_pct": 101.2, - "peak_memory_mb": 30823, - "disk_read_mb": 4404, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "no_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 31.5, - "cpu_pct": 119.8, - "peak_memory_mb": 26829, - "disk_read_mb": 353, - "disk_write_mb": 1 - } - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "normalization_id": "log_cp10k", - "method_id": "perfect_denoising", - "metric_id": "poisson", - "resources": { - "exit_code": 0, - "duration_sec": 30.3, - "cpu_pct": 120, - "peak_memory_mb": 26420, - "disk_read_mb": 269, - "disk_write_mb": 1 - } - } -] diff --git a/results/denoising/data/metric_info.json b/results/denoising/data/metric_info.json deleted file mode 100644 index 334d512e..00000000 --- a/results/denoising/data/metric_info.json +++ /dev/null @@ -1,24 +0,0 @@ -[ - { - "task_id": "denoising", - "metric_id": "mse", - "metric_name": "Mean-squared error", - "metric_summary": "The mean squared error between the denoised counts of the training dataset and the true counts of the test dataset after reweighing by the train/test ratio", - "paper_reference": "batson2019molecular", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/metrics/mse/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c", - "maximize": false - }, - { - "task_id": "denoising", - "metric_id": "poisson", - "metric_name": "Poisson Loss", - "metric_summary": "The Poisson log likelihood of observing the true counts of the test dataset given the distribution given in the denoised dataset.", - "paper_reference": "batson2019molecular", - "implementation_url": "https://github.com/openproblems-bio/openproblems-v2/tree/f85ba6808cf8b35e24f579f0d86cb7487b50b57c/src/tasks/denoising/metrics/poisson/config.vsh.yaml", - "code_version": null, - "commit_sha": "f85ba6808cf8b35e24f579f0d86cb7487b50b57c", - "maximize": false - } -] diff --git a/results/denoising/data/results.json b/results/denoising/data/results.json deleted file mode 100644 index f5b0a34e..00000000 --- a/results/denoising/data/results.json +++ /dev/null @@ -1,2348 +0,0 @@ -[ - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "alra", - "metric_values": { - "mse": 0.2283, - "poisson": 0.8484 - }, - "scaled_scores": { - "mse": -0.0671, - "poisson": -4.4865 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 3369, - "cpu_pct": 98.4, - "peak_memory_mb": 81613, - "disk_read_mb": 927, - "disk_write_mb": 3380 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "dca", - "metric_values": { - "mse": 0.1864, - "poisson": 0.1805 - }, - "scaled_scores": { - "mse": 0.1289, - "poisson": -0.0824 - }, - "mean_score": 0.0644, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1213, - "cpu_pct": 3074.9, - "peak_memory_mb": 27136, - "disk_read_mb": 963, - "disk_write_mb": 4096 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.1989, - "poisson": 1.6551 - }, - "scaled_scores": { - "mse": 0.0705, - "poisson": -9.8065 - }, - "mean_score": 0.0352, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1120, - "cpu_pct": 372.8, - "peak_memory_mb": 80180, - "disk_read_mb": 920, - "disk_write_mb": 539 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "magic", - "metric_values": { - "mse": 0.187, - "poisson": 0.1823 - }, - "scaled_scores": { - "mse": 0.1258, - "poisson": -0.094 - }, - "mean_score": 0.0629, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1058, - "cpu_pct": 97.3, - "peak_memory_mb": 33076, - "disk_read_mb": 930, - "disk_write_mb": 6554 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.214, - "poisson": 0.168 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 46.6, - "cpu_pct": 100.6, - "peak_memory_mb": 6452, - "disk_read_mb": 911, - "disk_write_mb": 359 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/dkd", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0164 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 29.9, - "cpu_pct": 111.1, - "peak_memory_mb": 6554, - "disk_read_mb": 1127, - "disk_write_mb": 214 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 26380, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "dca", - "metric_values": { - "mse": 0.1804, - "poisson": 0.0602 - }, - "scaled_scores": { - "mse": 0.1012, - "poisson": -0.0177 - }, - "mean_score": 0.0506, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 4074, - "cpu_pct": 2858.5, - "peak_memory_mb": 65946, - "disk_read_mb": 2048, - "disk_write_mb": 21095 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 470, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 21820, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.2007, - "poisson": 0.0593 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 125, - "cpu_pct": 68.9, - "peak_memory_mb": 7578, - "disk_read_mb": 2048, - "disk_write_mb": 792 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0051 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 55.5, - "cpu_pct": 95.2, - "peak_memory_mb": 5223, - "disk_read_mb": 2356, - "disk_write_mb": 458 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 32191, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "dca", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 26181, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 540, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 143, - "duration_sec": 14410, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1439, - "poisson": 0.1322 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 281, - "cpu_pct": 96.2, - "peak_memory_mb": 12391, - "disk_read_mb": 6861, - "disk_write_mb": 2663 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0205 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 176, - "cpu_pct": 95.2, - "peak_memory_mb": 13824, - "disk_read_mb": 8295, - "disk_write_mb": 1639 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 26420, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "dca", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 18561, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 490, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 14411, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1284, - "poisson": 0.0832 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 492, - "cpu_pct": 86.9, - "peak_memory_mb": 14951, - "disk_read_mb": 9319, - "disk_write_mb": 3789 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0431 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 293, - "cpu_pct": 98.4, - "peak_memory_mb": 16999, - "disk_read_mb": 11367, - "disk_write_mb": 2253 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "alra", - "metric_values": { - "mse": 0.0333, - "poisson": -4.5388 - }, - "scaled_scores": { - "mse": -9.9708, - "poisson": 0.4284 - }, - "mean_score": 0.2142, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 2336, - "cpu_pct": 102.3, - "peak_memory_mb": 43623, - "disk_read_mb": 1434, - "disk_write_mb": 1434 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "dca", - "metric_values": { - "mse": 0.0289, - "poisson": -4.7271 - }, - "scaled_scores": { - "mse": -8.5238, - "poisson": 0.4399 - }, - "mean_score": 0.2199, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1458, - "cpu_pct": 3659.1, - "peak_memory_mb": 24064, - "disk_read_mb": 1434, - "disk_write_mb": 2151 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.0259, - "poisson": -100.6326 - }, - "scaled_scores": { - "mse": -7.5261, - "poisson": 6.285 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 289, - "cpu_pct": 560.9, - "peak_memory_mb": 32768, - "disk_read_mb": 1434, - "disk_write_mb": 589 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "magic", - "metric_values": { - "mse": 0.0263, - "poisson": -5.7382 - }, - "scaled_scores": { - "mse": -7.6749, - "poisson": 0.5015 - }, - "mean_score": 0.2507, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 450, - "cpu_pct": 682.4, - "peak_memory_mb": 20480, - "disk_read_mb": 1434, - "disk_write_mb": 3175 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.003, - "poisson": -13.9175 - }, - "scaled_scores": { - "mse": 0, - "poisson": 1 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 93, - "cpu_pct": 98.8, - "peak_memory_mb": 6964, - "disk_read_mb": 1434, - "disk_write_mb": 747 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 2.4902 - }, - "scaled_scores": { - "mse": 1, - "poisson": 0 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 80, - "cpu_pct": 95.9, - "peak_memory_mb": 8090, - "disk_read_mb": 2560, - "disk_write_mb": 626 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "alra", - "metric_values": { - "mse": 0.2554, - "poisson": 0.6193 - }, - "scaled_scores": { - "mse": -1.0157, - "poisson": -17.3505 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 6858, - "cpu_pct": 102.3, - "peak_memory_mb": 213709, - "disk_read_mb": 531, - "disk_write_mb": 3277 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "dca", - "metric_values": { - "mse": 0.1428, - "poisson": 0.0443 - }, - "scaled_scores": { - "mse": -0.1269, - "poisson": -0.1428 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1680, - "cpu_pct": 2723.3, - "peak_memory_mb": 35021, - "disk_read_mb": 567, - "disk_write_mb": 8090 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.157, - "poisson": 0.4719 - }, - "scaled_scores": { - "mse": -0.2389, - "poisson": -12.9393 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 8689, - "cpu_pct": 224.3, - "peak_memory_mb": 273920, - "disk_read_mb": 523, - "disk_write_mb": 519 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "magic", - "metric_values": { - "mse": 0.1484, - "poisson": 0.0457 - }, - "scaled_scores": { - "mse": -0.1707, - "poisson": -0.1842 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 5175, - "cpu_pct": 100.7, - "peak_memory_mb": 56116, - "disk_read_mb": 533, - "disk_write_mb": 9114 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1267, - "poisson": 0.0395 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 135, - "cpu_pct": 23.9, - "peak_memory_mb": 6042, - "disk_read_mb": 515, - "disk_write_mb": 210 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/cengen", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0061 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 31.3, - "cpu_pct": 59.1, - "peak_memory_mb": 3482, - "disk_read_mb": 621, - "disk_write_mb": 127 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "alra", - "metric_values": { - "mse": 0.3501, - "poisson": 3.8754 - }, - "scaled_scores": { - "mse": -0.3557, - "poisson": -5.1006 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1111, - "cpu_pct": 100.3, - "peak_memory_mb": 37069, - "disk_read_mb": 583, - "disk_write_mb": 1844 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "dca", - "metric_values": { - "mse": 0.2117, - "poisson": 0.1649 - }, - "scaled_scores": { - "mse": 0.1801, - "poisson": -0.0382 - }, - "mean_score": 0.09, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 318, - "cpu_pct": 1970.3, - "peak_memory_mb": 20788, - "disk_read_mb": 619, - "disk_write_mb": 1536 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.2179, - "poisson": -2.3776 - }, - "scaled_scores": { - "mse": 0.1563, - "poisson": 3.4306 - }, - "mean_score": 0.5782, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 851, - "cpu_pct": 279.4, - "peak_memory_mb": 42189, - "disk_read_mb": 575, - "disk_write_mb": 296 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "magic", - "metric_values": { - "mse": 0.2071, - "poisson": 0.0456 - }, - "scaled_scores": { - "mse": 0.1979, - "poisson": 0.1246 - }, - "mean_score": 0.1613, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 559, - "cpu_pct": 125.3, - "peak_memory_mb": 16589, - "disk_read_mb": 586, - "disk_write_mb": 2868 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.2582, - "poisson": -0.5961 - }, - "scaled_scores": { - "mse": 0, - "poisson": 1 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 112, - "cpu_pct": 30.2, - "peak_memory_mb": 6042, - "disk_read_mb": 567, - "disk_write_mb": 230 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.1369 - }, - "scaled_scores": { - "mse": 1, - "poisson": 0 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 24.9, - "cpu_pct": 99.3, - "peak_memory_mb": 6247, - "disk_read_mb": 712, - "disk_write_mb": 145 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "alra", - "metric_values": { - "mse": 0.0505, - "poisson": 0.4419 - }, - "scaled_scores": { - "mse": -0.2577, - "poisson": -2.0767 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 422, - "cpu_pct": 104, - "peak_memory_mb": 12186, - "disk_read_mb": 68, - "disk_write_mb": 58 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "dca", - "metric_values": { - "mse": 0.0448, - "poisson": 0.2126 - }, - "scaled_scores": { - "mse": -0.1149, - "poisson": -0.3965 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 273, - "cpu_pct": 4651.6, - "peak_memory_mb": 29696, - "disk_read_mb": 104, - "disk_write_mb": 268 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.0452, - "poisson": 1.9926 - }, - "scaled_scores": { - "mse": -0.1248, - "poisson": -13.442 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 36.7, - "cpu_pct": 1283.9, - "peak_memory_mb": 9114, - "disk_read_mb": 61, - "disk_write_mb": 15 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "magic", - "metric_values": { - "mse": 0.0448, - "poisson": 0.2625 - }, - "scaled_scores": { - "mse": -0.1144, - "poisson": -0.762 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 20.2, - "cpu_pct": 803.4, - "peak_memory_mb": 7680, - "disk_read_mb": 71, - "disk_write_mb": 66 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.0402, - "poisson": 0.1585 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 3.8, - "cpu_pct": 231.4, - "peak_memory_mb": 5530, - "disk_read_mb": 52, - "disk_write_mb": 17 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0221 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 3.5, - "cpu_pct": 299.7, - "peak_memory_mb": 5530, - "disk_read_mb": 71, - "disk_write_mb": 13 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "alra", - "metric_values": { - "mse": 0.0487, - "poisson": -5.0796 - }, - "scaled_scores": { - "mse": -3.3553, - "poisson": 0.4403 - }, - "mean_score": 0.2202, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 285, - "cpu_pct": 106.3, - "peak_memory_mb": 13927, - "disk_read_mb": 280, - "disk_write_mb": 164 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "dca", - "metric_values": { - "mse": 0.0473, - "poisson": -3.0623 - }, - "scaled_scores": { - "mse": -3.2297, - "poisson": 0.3087 - }, - "mean_score": 0.1544, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 143, - "cpu_pct": 2124.2, - "peak_memory_mb": 18740, - "disk_read_mb": 316, - "disk_write_mb": 358 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.0452, - "poisson": -54.9686 - }, - "scaled_scores": { - "mse": -3.036, - "poisson": 3.6948 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 40.1, - "cpu_pct": 1024, - "peak_memory_mb": 9728, - "disk_read_mb": 272, - "disk_write_mb": 100 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "magic", - "metric_values": { - "mse": 0.0461, - "poisson": -2.6247 - }, - "scaled_scores": { - "mse": -3.1162, - "poisson": 0.2802 - }, - "mean_score": 0.1401, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 59.3, - "cpu_pct": 394.8, - "peak_memory_mb": 8295, - "disk_read_mb": 283, - "disk_write_mb": 569 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.0112, - "poisson": -13.6589 - }, - "scaled_scores": { - "mse": 0, - "poisson": 1 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 27.3, - "cpu_pct": 84.4, - "peak_memory_mb": 5735, - "disk_read_mb": 264, - "disk_write_mb": 118 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 1.6707 - }, - "scaled_scores": { - "mse": 1, - "poisson": 0 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 56.3, - "cpu_pct": 37.9, - "peak_memory_mb": 5940, - "disk_read_mb": 398, - "disk_write_mb": 90 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "alra", - "metric_values": { - "mse": 0.2348, - "poisson": 2.6685 - }, - "scaled_scores": { - "mse": -0.2631, - "poisson": -0.6622 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1093, - "cpu_pct": 101.4, - "peak_memory_mb": 35738, - "disk_read_mb": 633, - "disk_write_mb": 832 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "dca", - "metric_values": { - "mse": 0.187, - "poisson": 1.196 - }, - "scaled_scores": { - "mse": -0.0057, - "poisson": -0.2364 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 464, - "cpu_pct": 2538.7, - "peak_memory_mb": 20276, - "disk_read_mb": 669, - "disk_write_mb": 1229 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.185, - "poisson": -11.7064 - }, - "scaled_scores": { - "mse": 0.0051, - "poisson": 3.4945 - }, - "mean_score": 0.5025, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 224, - "cpu_pct": 518.8, - "peak_memory_mb": 24372, - "disk_read_mb": 625, - "disk_write_mb": 260 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "magic", - "metric_values": { - "mse": 0.1828, - "poisson": -0.2833 - }, - "scaled_scores": { - "mse": 0.0167, - "poisson": 0.1914 - }, - "mean_score": 0.104, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 315, - "cpu_pct": 1251.1, - "peak_memory_mb": 15668, - "disk_read_mb": 636, - "disk_write_mb": 1946 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1859, - "poisson": -3.0797 - }, - "scaled_scores": { - "mse": 0, - "poisson": 1 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 28.8, - "cpu_pct": 111.4, - "peak_memory_mb": 3380, - "disk_read_mb": 617, - "disk_write_mb": 257 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.3785 - }, - "scaled_scores": { - "mse": 1, - "poisson": 0 - }, - "mean_score": 0.5, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 43.3, - "cpu_pct": 71.1, - "peak_memory_mb": 6349, - "disk_read_mb": 877, - "disk_write_mb": 183 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "alra", - "metric_values": { - "mse": 0.3096, - "poisson": 0.7233 - }, - "scaled_scores": { - "mse": -0.142, - "poisson": -1.6454 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 52.8, - "cpu_pct": 135.8, - "peak_memory_mb": 7373, - "disk_read_mb": 55, - "disk_write_mb": 49 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "dca", - "metric_values": { - "mse": 0.2171, - "poisson": 0.3083 - }, - "scaled_scores": { - "mse": 0.1994, - "poisson": -0.0303 - }, - "mean_score": 0.0997, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 54.1, - "cpu_pct": 2086.8, - "peak_memory_mb": 17101, - "disk_read_mb": 91, - "disk_write_mb": 65 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.2238, - "poisson": 2.7255 - }, - "scaled_scores": { - "mse": 0.1747, - "poisson": -9.4374 - }, - "mean_score": 0.0874, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 14.2, - "cpu_pct": 1527, - "peak_memory_mb": 6452, - "disk_read_mb": 47, - "disk_write_mb": 13 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "magic", - "metric_values": { - "mse": 0.2159, - "poisson": 0.3142 - }, - "scaled_scores": { - "mse": 0.2036, - "poisson": -0.0532 - }, - "mean_score": 0.1018, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 18.3, - "cpu_pct": 674.3, - "peak_memory_mb": 6247, - "disk_read_mb": 58, - "disk_write_mb": 110 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.2711, - "poisson": 0.3005 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 2.6, - "cpu_pct": 500.7, - "peak_memory_mb": 5530, - "disk_read_mb": 39, - "disk_write_mb": 11 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0435 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 41.3, - "cpu_pct": 37.5, - "peak_memory_mb": 2765, - "disk_read_mb": 45, - "disk_write_mb": 7 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "alra", - "metric_values": { - "mse": 0.2245, - "poisson": 0.4582 - }, - "scaled_scores": { - "mse": -0.2431, - "poisson": -1.9251 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 342, - "cpu_pct": 105, - "peak_memory_mb": 15668, - "disk_read_mb": 128, - "disk_write_mb": 206 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "dca", - "metric_values": { - "mse": 0.1439, - "poisson": 0.1783 - }, - "scaled_scores": { - "mse": 0.2033, - "poisson": -0.0293 - }, - "mean_score": 0.1017, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 248, - "cpu_pct": 2129.3, - "peak_memory_mb": 17920, - "disk_read_mb": 164, - "disk_write_mb": 407 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.1531, - "poisson": 1.574 - }, - "scaled_scores": { - "mse": 0.1523, - "poisson": -9.4825 - }, - "mean_score": 0.0762, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 80, - "cpu_pct": 588.1, - "peak_memory_mb": 11060, - "disk_read_mb": 121, - "disk_write_mb": 64 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "magic", - "metric_values": { - "mse": 0.1443, - "poisson": 0.1806 - }, - "scaled_scores": { - "mse": 0.2012, - "poisson": -0.0451 - }, - "mean_score": 0.1006, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 61, - "cpu_pct": 612.9, - "peak_memory_mb": 8500, - "disk_read_mb": 131, - "disk_write_mb": 612 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1806, - "poisson": 0.174 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 5.8, - "cpu_pct": 249.5, - "peak_memory_mb": 5632, - "disk_read_mb": 112, - "disk_write_mb": 41 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0263 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 4.8, - "cpu_pct": 211.5, - "peak_memory_mb": 5632, - "disk_read_mb": 134, - "disk_write_mb": 25 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "alra", - "metric_values": { - "mse": 0.1934, - "poisson": 0.7214 - }, - "scaled_scores": { - "mse": -0.3249, - "poisson": -5.402 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 3949, - "cpu_pct": 100.1, - "peak_memory_mb": 87655, - "disk_read_mb": 858, - "disk_write_mb": 2765 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "dca", - "metric_values": { - "mse": 0.1282, - "poisson": 0.1703 - }, - "scaled_scores": { - "mse": 0.1221, - "poisson": -0.3563 - }, - "mean_score": 0.061, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1296, - "cpu_pct": 2004.5, - "peak_memory_mb": 27648, - "disk_read_mb": 894, - "disk_write_mb": 4301 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.1329, - "poisson": 1.419 - }, - "scaled_scores": { - "mse": 0.0894, - "poisson": -11.7878 - }, - "mean_score": 0.0447, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1117, - "cpu_pct": 392.6, - "peak_memory_mb": 88679, - "disk_read_mb": 851, - "disk_write_mb": 504 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "magic", - "metric_values": { - "mse": 0.1263, - "poisson": 0.1488 - }, - "scaled_scores": { - "mse": 0.1345, - "poisson": -0.1602 - }, - "mean_score": 0.0672, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 938, - "cpu_pct": 104.5, - "peak_memory_mb": 32359, - "disk_read_mb": 861, - "disk_write_mb": 5530 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.146, - "poisson": 0.1313 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 36.8, - "cpu_pct": 108, - "peak_memory_mb": 6349, - "disk_read_mb": 842, - "disk_write_mb": 330 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0221 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 22.8, - "cpu_pct": 103.9, - "peak_memory_mb": 6554, - "disk_read_mb": 1024, - "disk_write_mb": 202 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "alra", - "metric_values": { - "mse": 0.2186, - "poisson": 0.6591 - }, - "scaled_scores": { - "mse": -0.1634, - "poisson": -3.0248 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 2089, - "cpu_pct": 100.4, - "peak_memory_mb": 56013, - "disk_read_mb": 562, - "disk_write_mb": 1844 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "dca", - "metric_values": { - "mse": 0.1585, - "poisson": 0.1841 - }, - "scaled_scores": { - "mse": 0.1566, - "poisson": -0.0317 - }, - "mean_score": 0.0783, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 1629, - "cpu_pct": 2091, - "peak_memory_mb": 23040, - "disk_read_mb": 598, - "disk_write_mb": 2458 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "knn_smoothing", - "metric_values": { - "mse": 0.165, - "poisson": 1.6999 - }, - "scaled_scores": { - "mse": 0.122, - "poisson": -9.583 - }, - "mean_score": 0.061, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 495, - "cpu_pct": 469.4, - "peak_memory_mb": 46592, - "disk_read_mb": 554, - "disk_write_mb": 340 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "magic", - "metric_values": { - "mse": 0.1584, - "poisson": 0.1857 - }, - "scaled_scores": { - "mse": 0.1573, - "poisson": -0.0416 - }, - "mean_score": 0.0786, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 513, - "cpu_pct": 108.2, - "peak_memory_mb": 19456, - "disk_read_mb": 564, - "disk_write_mb": 4301 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "no_denoising", - "metric_values": { - "mse": 0.1879, - "poisson": 0.1791 - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 20.7, - "cpu_pct": 140.4, - "peak_memory_mb": 6042, - "disk_read_mb": 546, - "disk_write_mb": 213 - }, - "task_id": "denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish", - "method_id": "perfect_denoising", - "metric_values": { - "mse": 0, - "poisson": 0.0204 - }, - "scaled_scores": { - "mse": 1, - "poisson": 1 - }, - "mean_score": 1, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 13.9, - "cpu_pct": 177.5, - "peak_memory_mb": 6144, - "disk_read_mb": 664, - "disk_write_mb": 130 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 460, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 1, - "duration_sec": 259, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "alra", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 1, - "duration_sec": 280, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "dca", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 26151, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "dca", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 26241, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "dca", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 31731, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 1121, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 880, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "knn_smoothing", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 137, - "duration_sec": 970, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 21819, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 21719, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "magic", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": "NA", - "duration_sec": 21729, - "cpu_pct": "NA", - "peak_memory_mb": "NA", - "disk_read_mb": "NA", - "disk_write_mb": "NA" - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "no_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 555, - "cpu_pct": 88.4, - "peak_memory_mb": 17920, - "disk_read_mb": 12288, - "disk_write_mb": 4916 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "no_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 362, - "cpu_pct": 96.8, - "peak_memory_mb": 14541, - "disk_read_mb": 8909, - "disk_write_mb": 3482 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "no_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 595, - "cpu_pct": 93, - "peak_memory_mb": 19354, - "disk_read_mb": 13722, - "disk_write_mb": 5530 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hcla", - "method_id": "perfect_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 345, - "cpu_pct": 89.7, - "peak_memory_mb": 20583, - "disk_read_mb": 14951, - "disk_write_mb": 2970 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap", - "method_id": "perfect_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 243, - "cpu_pct": 100.8, - "peak_memory_mb": 16077, - "disk_read_mb": 10445, - "disk_write_mb": 2048 - }, - "task_id": "denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens", - "method_id": "perfect_denoising", - "metric_values": { - "mse": "NA", - "poisson": "NA" - }, - "scaled_scores": { - "mse": 0, - "poisson": 0 - }, - "mean_score": 0, - "normalization_id": "log_cp10k", - "resources": { - "exit_code": 0, - "duration_sec": 374, - "cpu_pct": 94.4, - "peak_memory_mb": 22733, - "disk_read_mb": 17101, - "disk_write_mb": 3482 - }, - "task_id": "denoising" - } -] diff --git a/results/denoising/data/task_info.json b/results/denoising/data/task_info.json deleted file mode 100644 index 35a93bdd..00000000 --- a/results/denoising/data/task_info.json +++ /dev/null @@ -1,8 +0,0 @@ -{ - "task_id": "denoising", - "commit_sha": null, - "task_name": "Denoising", - "task_summary": "Removing noise in sparse single-cell RNA-sequencing count data", - "task_description": "Single-cell RNA-Seq protocols only detect a fraction of the mRNA molecules present\nin each cell. As a result, the measurements (UMI counts) observed for each gene and each\ncell are associated with generally high levels of technical noise ([Grün et al.,\n2014](https://www.nature.com/articles/nmeth.2930)). Denoising describes the task of\nestimating the true expression level of each gene in each cell. In the single-cell\nliterature, this task is also referred to as *imputation*, a term which is typically\nused for missing data problems in statistics. Similar to the use of the terms \"dropout\",\n\"missing data\", and \"technical zeros\", this terminology can create confusion about the\nunderlying measurement process ([Sarkar and Stephens,\n2020](https://www.biorxiv.org/content/10.1101/2020.04.07.030007v2)).\n\n\nA key challenge in evaluating denoising methods is the general lack of a ground truth. A\nrecent benchmark study ([Hou et al.,\n2020](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02132-x))\nrelied on flow-sorted datasets, mixture control experiments ([Tian et al.,\n2019](https://www.nature.com/articles/s41592-019-0425-8)), and comparisons with bulk\nRNA-Seq data. Since each of these approaches suffers from specific limitations, it is\ndifficult to combine these different approaches into a single quantitative measure of\ndenoising accuracy. Here, we instead rely on an approach termed molecular\ncross-validation (MCV), which was specifically developed to quantify denoising accuracy\nin the absence of a ground truth ([Batson et al.,\n2019](https://www.biorxiv.org/content/10.1101/786269v1)). In MCV, the observed molecules\nin a given scRNA-Seq dataset are first partitioned between a *training* and a *test*\ndataset. Next, a denoising method is applied to the training dataset. Finally, denoising\naccuracy is measured by comparing the result to the test dataset. The authors show that\nboth in theory and in practice, the measured denoising accuracy is representative of the\naccuracy that would be obtained on a ground truth dataset.\n", - "repo": "openproblems-bio/openproblems-v2" -} diff --git a/results/denoising/index.markdown_strict_files/figure-markdown_strict/raw_results-1.png b/results/denoising/index.markdown_strict_files/figure-markdown_strict/raw_results-1.png deleted file mode 100644 index 81eddb976399f43e8324aa74ed0f1432c918edf0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 113347 zcmd43byQVt^fh`g5Tp%|7Ewec1P6UKz z)<)m&{=PBppZDHz&v;*f6Z`D_#9DLBIoE!zASXp|p5iYNt}b>=G0 zDR|};y6-pqz_q%sVT(dh`y>Bjg-oqJN1?8w9^4aEc8XmbF?Lg)+C5%%?UP~P$HlsE z>N>GV$yI56lGoNRG8i8fe^w#6!*Wo3Sl$~Dpwn4$|FUuRdlCc~5lQfSGQshkIfsibeDs+DgS~DqQW|yLYE_{$8dL zi=OAiB=1)?a*Zu|K8`T6>utw1IYh3eGC#}-eNMwxuM=5z7{3gu-WiX!;; zyAkP`&i}tWy(dD3oJu10P5F4H+qdTj3RAy6{#k0Nr=p_r=+UG7t)=SiTTDz@85s{{ zWbkou(^s#Pv1s!+E^Euk$PAU37Y}My%0GPgusx2yKS!r>c6OGb1|JTnJ%W=6gXtA9 z8^~JI)Y9T|xY;kf^UM46Il`u({QP`*q20-*xAekCI}^TmWU9)_ICL@$J@g?0Ydr}^ zz59Qjw???HHQ$`+NQg|3l#meo^X0VAJ`NoztL{MqnO-cvqnyWJrQ^zjFow^cKXa}W z!*~74_&dZ!+C8cAtjx^SyVEg4#ipgs>(lg7!Bu!oqBAZP(Y< zj&?gdw-yHq9al!z(pYPDp28n|aTZOXbgQeYzP`S2iLU!gr9qMtAK0GthRMfpnQzWx z=;-MBbsTlzkFAxlgviM4#lnu7gSA$2a`G4DkKyvqkexC@hIQ&TGqd|bcIn>69KFwn zyHD!Ay}l?P$5-rexOYn_W!PmQTMQ?pas3BJ$KqhIDJ)ZVFV#y^Ve&#GVn3oerGq{d z78D$9mDV!rR;d#ta-03kbJ?8#_U+qTPwGtuhL)gXIQ>!QnK3mc(!$(@?i-MApt_3zc<%+>+D_xp#k(%^a>A#FU015T&k^NhWoegM=oIQA3nu5n$r2W6#Ux7+ zt;o~U)B6&SHWySVDqh+(hGCIm2*a4f!C_!>CnXC91fJCS?61`7d6?v@2h#{rP*ac8 zdU_^E$;iu-iNWxv&aq;{Vby3Qt>6cWS?&J)SKFx+L6SHmq@=3u$q!R|4yU2`B`d^1eO}-H+w7e~9y>So5aLhhOWjNCPEs6qS{Gdm|xq zdS#NFgdbuv$q<^6OtoBCUgpDPtDP_`gw&c-uVMx>D-R1UFct2?FkW8?g3Ob9JlDhf0ilQtan@ zZ}IZ-($R_Hy#4TDr%%iBYz2gJ)EN$glYl5X^)vq&5<+0tOr_%D;tKCJ%NzXo&;|Rh zbO;W@MR%{#VabkfWObr3TQ##|9F9iozR`7bxSwk`0!PA;{5$>%ysle|Z^${0j<#zv zTQ59>ohA0_)hir2AGy@lrlz!vjJ-egMAh5rX=zTd183UfC@CmhZkWPgi{w2$a}Ewg ztPD%)G7XIf>__2)aiWRFkQEpg4UGZMJ8t%Ia!)PsL|Anrnn}}#>QrBY#hgD|EP4>s-B?Qb-TT#h0l3SAD-3L*0!-(llNE) z`}4Wjt(b)}4u>;(qwXeG9NgzNkn{a9kl232km`i$fcC z>m99;jo!zDQ$UFjYZd4>tLeE<9Uk3Gyz!Vs40#qFB86AIkadeZ(0C_X9{KhE-KRUx zRlrWE>&w<6qUO6admH&il!z^_+m02Ib3{-C+Ls|tQq5lY`^q|dOxp_;tpWOA1g8oPoDjpZ!gX23C^XO%a!B$uj$(>1?5mm(WeVmU?w*P{20 z?~4i@2S=gn_VSCIB$_PMOpM88v3vLK`S|#pfsen)$haNYaDj}BY*wrj{ZLw3hb5Bu z8W&dtijU`gWF#KlHG2BfIyli@NsN&A#c;g85?{W2dDf;A9S{&uS6{z-M-lmEcuowb zaNtMGl(%>NI3p`-$m`c#b9OIs&dMeh6g)Z#XXN9nu(!V#9uaXtB>Aj~tmk*w{U?v2 zYuR%hJg6L+=$EJJUz`@hk#(uK|M0vWFY>Barmw@8Q2pwJ7|z?bbWfk1)*{E5ZzsqUi)&@}Wsf4>2RYI}*I`1gA!(@DfR z`Ro6gr^RSzPeI0i=v0>K?n>u#H|mtm$uj?SJL#Up;m*t6$2fM(B6neFcV2MDCM?pi z4I-{1CLx*CJUIz9lI>R{C11ULiBo20Mfy*jIsG?iBQO3RFt6x0YA?j|U_zR;`V-^B zM7;k7us88?hgW-RYvF)dK#~zU8jf*tU=->PCgAie1UY^x!fr!2+M6UsLp(v>RG-%D z*TH=bawL+^5=~7gS_U}cdv5ynq`wa6b9g{PM<<5!IZ2z>K{;R9u zv=}ImNbULj>C?v2kRzZ6u~!gBXC^19`0N<3U;hN~qIB3MP<4Udzy%=1K14X{-#$r< z5U=Ov=K6JA%{R}rw6%>CoAyI$S5i{)$0vUm8v3W@PVV&^Hv|DC+4w_Z889n>D1@oR zhe3jwAMwE?oZgt9uK%YAPzo2|jr6;7HGYaj{vw`*>ys(Ay$nKg>Rw44GP>UY`_1)YU?gbx+U zMk3AZd4{#Pc9t_3n%-90B4Y0`O!Foq#V?<CoX^Y66R9QIl(V1A@2n8)+&56Z;Ya9Dd)m<%M;+_l^D6muIy~ zE!qGpSk7x|k&C_JH0?WB&^s;|Fq@BHtvy&D9_dPoci)BCv z)kNBmv6n|GpGUY1toQ1Chm3R#Sk;-f@@Yc=thu8(dCzX=8}vs4KF4~YFn(ECSp$WJ zcyyDtuB{Qw@SiJ8CBNP5RmaLj^Njrpigoj|sGwABMhE7-VQ%-DCR?jo*EUak?vR=~ z70&oa8so9Y`IdXy+jJ2RXAEh{JrA|MzF|cs%;-D;`B%Vx{n=XEg$aj?!Tig2uiz(m z9__+-MKWn5VN5tUI6PMa^?dyOkp*Ns{bQiadSYjF0)uZiTID=cY6)dbG>`RD8=Hcm zC5TS0$A{ac79$l!K1=% zt{VyVA3wTd;Pk8oewU=i|i4L zvAiesk$N7x+qK7nEG#(y{{elv|M_|jzO332s)7#Bqe97KUhCiAk|Y9?l9GCZCtT9= z-@v=tVtFBr%YC>@Cn%_siCO-cKQR#^e6-fe3P`>&i1Mb-6(P4B&!hE(#YM9fR7FzK zZ-_RXCdF{pf7S(x!xa@3>3U{hpbeqq`S|hU?(XhN)p|QD1|)_+dEIpS&=W@(;uQiS zPh;bMfRSwsrp7yeeiVwHi#O%mHoBx(tNy$ko+&6zUuMlU`c`@wg^qXa;TyNXckX7F949$!|$MDed28oZ5KM@%3DV&h-@d8`3n z0!plQ+1%UA^y3Zsl^R`>lFMNi>_4V~5MI zxrAIcW+70yx!5dB%g4P-VuaD?5Lkb6P-HvPu2bpY4!d79M|&4)S~M3|iEgC^0;4!! z3l&S378KZYB}s_Af;r@6W|p;(dGG+2i0Bx;Qs`*sS(MqR$NmyjgsrWuTE!-qHtw+l zn9!aj2c%{uAt5=^E6#8srwK7!9xfMqHIv{e1aoNt0b{W@y$7n3+MVBlFgh`92IL}^ zFy%`QnTJhKM_81){`&HwtEYiY=^aG<-pyLV>PzF$X8Tl)YuJj|mScIT!G zj&S+N^5o>?*zwVJ!Monx-ew3eQS4K&`)$q%TPm6Ne>VA98eW=Pd*lLxFGM+Y?^0mH zBUl}|ctlLw4Z#h7)>cY|5;xy%7ugFE<Th(^whgFCkGGu3EnSF1e zXw37pr0)NWqc~JMxV7wX)6Og+TJvsX>x~@-0zQk<7*`4zGp?APIefdzMyF^(q&yy% z4vlO&rxI#1Im#derw|HaF}wNRxnEzs9dg@~p%P~dNJ^=Acfgj7EdxUY;1F`$s4d5}YuDI0I3ii~ zbhQK*`g2Q%mXHk~1l4E|CAY=;bld##$l)Z+yks)Dut(K)1VlZ;D|a8mN{82#{n_`+ zV~BslfNmXiMa0BtK~YudXvx|4-lF!P^wsDL&tJ=SB0gb(sQebR@F z0MBm{wk))!;zv29q@-lL&3PXY(FX+%l;SWwj!?S5qJ+H9$iy@Z2OX<%pAw4UwuE}! zX(H$-0p@nn(f}YZq!?-)n<4X3gbmnaF0RoFg@V>a?OFom{41jWF^TYv*_y>IhR-1C z`4G#c7M3JyGPqmh7;jt9`Pfe0cb#cRfPc#0c??);Tlb7ap-qgVsX~dbf5R7nB$9Uhy8S!l$7++r5zb_NI^x! z*El&bGe76GGH5ZGYOD!Mu=C(yuk%3mAYCaSC}@+A^m9>B5rlxWiwTEgvN&DoN;g;J zr|bdEu2g!-GAKQK*aE|CwY8|>JpJj@CkUF`>m9L3YK3drquiU8m#2V3LPjG=Y^1YrcMS`eU&zUmR&5a;CbuzdE1tZU}#WK0ZD^sJdzTv02|FzczNlqz@J? z*09C)o!qJd#}(befmqdJbT(K9*YNcC&Qm;hsl$-5UufCDfe z3|gA;N8`#pmKl6H7g)>b*CZZO`@0?&0OF?CGj;>o@mXVV_R6OTzLwC`mLESh$j^Oz zRM-#j6QXtkz-%B;o12?~Zo5D>W7)ePz!^d3b6-x*1DGE91fgo+ZUliIf?xshh~HuH z3Wvd)H&qLOr8D*$9jh(E(&j3nAG*0!9n?#1Qb6^-E@)wEWm>!zBo6D!UL|<2iMDIF zEuxv@ao+lu8a{{46g!S@x@(Qfo9B{sb1n00CtR@c9hL`mSL*Sx-D^!b)y8a9Mx|;V zczg35C?AnG2b|=iO`MjrCK!O>91XOB11VJ2a_3KMYwi2J~ zR#xN0>h4yA(pCKjn}gXEFgAgKI@Ln@O4%+>5)uuSD>bHQiv5kbLKsZ|b4aZcS*~2$ zyh;LB3F8zwqQNC@R7Tu(SYn9t1p z9z>ZM%x8Qc-Wzyaii^@@Fdq~#Zzq)(^=LabyF1_brn2BNCxLl~?x3!_psQp50^?zu zaMwKvPNjdqrQF8z3a|6pC*r4netjKH&q*U4g31wx4zT59q0KKi{sK?AfC(_1LTsx6 zm+wsfh_Z$AV8~ShR4(MpOBK9QvoDA9Ha1p!Y$PMBCym=;c(zAJOF_YE=g*VmE;wbW z@~P_W(K~nUPzrk-0JBL=LXr=t{BVC;@5tmZEH)O9j*X3tS)|;AJr5NWC%+(i0pp)! z@jj4tdUDbY(63x72R*&`(woeF=ZqK*!}fXzmjFZ3w1AjQQ%wFnF>zU<+-h8Gf;Q>N zL9HyRQ_L9ccaFBpVMU|9)<^0Jjf-**UH+bM@p-@1i$(5xm<=NAkJ)`?*QzIb8D>ZZ=aSt_5l@ULeBwjVT`Z{O}k)dQraMYckJ zZbHLTXV_R6EP6nSmbHf^#J{0d2)%f-1fV|r2aGJ#&s?`}n*h!ZNUA#A8j>yEF@}oH zvTF4^)TP3QbMhwN=U1H!I^uzZbXh9ycj;JMhAI%=gLzJg*`?eRl(z?v&3yZIOH0db zR#r7`8lb4l%G6VPn(a?f?h+GB%$T3@B4tMR{`qs!&!0wR?~{tJ)X%mjDoYnPgv)z& zhNTBBMo#N!(_ablJ4eHIU{a7R#cJy0GeR}}P^Np#CC0jiHb}lUtx~A|!sTb&{u;?o z?dmP=9*yDcX<6dgH6ZwySUG1HC-}wbbHHOSj@2HQ&%{&See6{~4(iSra4fDHv(^9v zp$>0sY#amZ2eJp0;z}tp8bBGqE~>O&aDZAI@>cK_wx{)e1jX6qAA9C#To>~Z!s6&) zcVJ*Z&}AbnEp6v$e+9?{D5#JcXwtqVZsPav+js6HxNi;UR=fE6`>%{tZrAzZNhVvv zcZ{CqJ{ZoHgyr-HfGVgOu$N!JOb;z>L9kL&R<>LGxeD?FiI_T51XMCo$z2Dv$J@t~ zMd?}= zTxLH3YDXm`jD40Si^Ahx6c9qd9g~I)?5##xPXT6TWlhoa(`eg4FM>>V_&+-4%c1<~LYaS~K~PnL%8=HMg}sK*2=gvGZi${z9RCLMcpJEx-vFbRMYcfcvNfA)~Xivk@i* zxNWl(K40S3uV3fZ?3n;J4}4Ft^~87B1duZN^*l#XX9hb)Oy0kH#}0b~RtAL8EMPJK z$3juio2F=4vzwybbKp%RRAx0^2RYbv>tHpz2lm$5WHT%em~xwLy9of5ZPA>jpcg=d z;OE~TvaChM9%MDcA0HHfo?6JQ)%Ex_ay0C=ejrKxIk=(dQmUAk4uck`C=}%() z_$;VJ+w6%_Av91pK+UvD!)XQb8mJPmYS{Sr2KVt{YfDH-z(9=h)ABpWr1tE-X<@!| z2TDC{$b{nJ;%eENn@~2x=C<@)%x|2mT^=g!SaML)Gi@KYf-DgnWn(|v`LV>$j_w<* zVIN{4dEDa;B}a0u7${h63H_5HmM9kIUYs&ax6fR~WvyLwsn#VpRN)*=Y1LJmsLh@a z{VQL0Z07W~{O1J_+Rt*`?%QB+*$=q9%xUUFyr*|i_p{a$==qBv3l*p{SzB8JJs%02 zKbPewlh3Q*;AOpiM?GWXbSmk~l$1layN948XnszEs5U9Gl;vF$t66%rx;P{>G(tw5 zi6VXdr2y5?|=V(O6T+SaoR-WjUpD9002rtwd={@z^D92w^!Bt`ent_ z(%K5h)Wr2xP+!AV16e#ZzYp>E=CI98XEpaPZBZPCK*#{vB(S6Va${cbW%76Y%gR-ZrP(rvWmSzJeXo~UHM<|pTRo2MM` z=-xbe0ty5UHZzM?pAou4aC;ce!LU7c7q|vVDX9cO*OII(CWvhVh6(0BE5rVx&fhcb z0G0_-wu^Pz`gQ4Ru4enDx;jcV28+E4ef0|1b#0xOoB=nGGxbUkINal{a3mA^a2W4_ zn@9-XL@Ks1j{(MSuOA{R=y}?@x}y-GK=K@htZ+nBz4@`r=)f{=i>6M?A21Q5$WoY{ z2M(q}ZPrWK6ney{G|GR{g>0Jdv?(a(@&c>(l;UJFF~Q^g91e=ZH9+b6~dPHR3+t{7sm46(7mXKAlY zEKOlVG4YbV`|`vd)2WOoJYR0SWcAw8c3Zjr*D3Qq&awyV#5(dq?Br_x_bL9p3KI%S zG&%b3XU?2QewLm2`&VK*vb?;cPZk-dDgU=Gp0P${V|3SIi2i;C&5ejt3WdM$66gLc zZJEDvQM_*TA_<8Yj?UAkiKbXNd|xBKpA6j>&tE4(Ro~a=HHz4mz%txL) z5yJtdYF5)LQ;s;~*U6-Od43BQ*MeLSG)ZKozxf5*C-R?)ioT3|xz%f!S569ozbEuR zhQU>U2D}Rk`=l_vESd2HjMlpuYkezx#P`w~y4B3KQg8aBiRJ-28)4(;HaYf?7Eh zXv!b$?R^WIP|^W~2~hKb7*AY#y+08xpIws?dTSn&2^9>cLqS#5VPm!nI8?@f3lOIP z3cY$op*yRYjnG3tk^o)gu+RsauRTFnn1y9ILd)VUKNIKx<5mX;Gs4>*t$A$*K)Wl5 zii(0rZen5rk`$#?5XdQzynr#atsDU+slB7a6WHXE#sqe-$9MvE0PcThX9u#|_l5?Q z+R#=ZpM>5R4}cSpS+uhIK79B9(FO#m)V+4ddQjG$J$n{BHb8IzB-&bsklTC8>$`2P z-qM~+y27O(VlhTBqkG|)xazJ#ezoJyi9xxz(>jk2or0;Y+vAwC`T{901r03?)b@jd zz*X!&^UGu94n|pHB&N^RVT!_oQzI<&N?8UXNM8L(EYe@UHU%_mDBUBJ193GUNYJiS41qO}K8tksSe#Sm*s z5cjBpqxAjzJ0mL|+q*Lf+p}Hb1c_jpGRjx?*eXm&$Fh@?YX_8>ee4>=3_v5^ZS6sF zmwK+Lc7=5wA(uk!p)k_(`0lW6hahN@+aC8kY3k(HQnnWdY@yZ~ z)f)wbehB^%A_4-HQl#94a`XA~=kpOjiUF-$V>@#!!BwoI_AFi#)p=cDf2(O@_qX5i z;R~gFb!}Ti$^=)94{ccK*;tpPr#{aW?u=b_7KlH+Z}OAH2T^SHb5;i;B{rW>Ba7Y( zo6ajIAtNILfL|`u-atyme0{7A1{_E_!bhtikY7MT0WpQ|+O^*REZf@KkAM*ev4n(@ z@(z)9mD6gK^SYS0IH(l;fa6Pt;=q12;y4DdAr%M&*g5Yi&0!jVd&*SJtOke&YAT2W zZ^Oek>+o26budt>K}t>UGLj6Uuy5n+2ayjhHycI{Ai3vmtKPh8P(Turu6RJ?#1q0&h^eHE4C3PiIlJD(Ts-Bt=f>{|tsaRX$<4C$$5XIk1o(9v-TyeK5}P@7~#r*!MS|2q(O8 z?XVkS+D??zTes!_TZ5SN6C7`F^#JzS%0sHG1CsEm`8EbkbBl+TV84z+Ab>iVAF%zm zZ^xWHn4PK1K~5%EB4Jk9KQ0ur@}{ZZ)}id5wX8mT7}0xWdDE0dHsSE|`|xt^-2M?K z>99zoP(i8PJT<$w>LlR4zvaG(QG32%ogn1SAQ!8yq5>!mbSXea*L}+1q7z^p!rr)a z=~CLQaVQ9Uh>y2DkGUbRluxC^Sb*&WB)*|)*HZk%%M!c5t6q|DKH8nZjQA1J9wAPy z;CDb>!Ue(eQ1QFL5?&+WF9-? z=gPf@mLf`jA;Ey#B6gSud|R-~asvTl3y>5ju38!>Y^)U2ekVKNP&r~y zh*_vR-Rgc+m6LWKXZ+#AN7ulnLKyAUI(0#;C}(C|8t3d zQsu}p$J-0p?`M9H>u5v~*L}oPXm(VheEUPl5+z{&l>*hR=Kk57D+UIq3UtHDX9XCvx4RB`spK3Ur4o?A1>e2v$grMu_kRJMKG)%b=yEFuC@oNDf) zh5fVSFaa_NpJ6|~3jCTwj0lWSnwgB%RB!9!^WJ#|sSL=`+qZ75)(|HwJmOqTpF-T5 zQ17k}{LI$krn?6Y1=#z7x%{E{{0=^51J``=#_S_2r9wm^y%~Bc;{8SC72ney^Vv@- zyxXx}w9V!xBkOnCXCjqeSD6*|uYXcHG&S|pyu_oS!MR zX6HbZZ1#5Ndn!Wz?NG@ghd%6TEIj5=>-FhSq|__fU)jEX{Y*tH07|NdODm>lPWhrL zMyncc;n0bRiTMzNvu$m3R**uS0=V1lRGZ=osO?)^lVdfQ>SZlKS52e$5(06PSZwK7 zMG*Y8h|OTBUop}&r#xj({8LH_SQ7RZ2SEGa#9-#^pr8wXc1<4zRs&lb8wgjgNazoQ z<;|bNJLl~xs;a8UISiVf&|`bkv9ou(3VzvxRP9Enc=5>`R3c)pHa6@MYV8}pe+P`Q zJXTwqm)FT}y;aVlQV+@D*UiXQ75ldslWeFjhn5QFie(3UKZ!)nq)NXu$R(QeEz@QJ zk6GT({+cN_5^9R@0RpK`P@3Rl*FPtM^8S|}0p;5IIvyUL^uvc4D_6;)GleuiE*sZE z$Rrgj0!v82*`1CVGxo(SBi+~BO{m4vw`jA9yM zc}LrNPUTX=c!Nc0D^c&)tIzp#C?iw*Ow-pty60@n(~X^8UYAlW(p__;iIZ#8%k`Fo zwF}o)?ZJC5@Uz_LU5cPh9c~)tu&Pvp!YC4|uU~Dg%Tqc#6=XB_+B%KUC0}-(P*@w6 z*&+Rbp8$srGGRZY6z~%x{#M|84!6hDw$qoY)$BW%BEo+47B5EoP&~N5wnPcpU~`#s zD4*%NgU^GR1`1p0?b+^W)LJG7$C3&k`majRw4Qa zQ}GsH5sjx}AMZqLw;N(BZ7!JH2J39P$2bsfYoc0eDUbW-hQ)B`He9OnRS@~Xm?(R} z`KP9n08MfFz|(v%A!cIc9V*=&GLQCDLA`;{;p-bE!{B&CGg4k?FA$I;A3eITm9CKo z;>?egvI15uzb392SdR~n)DD~H94awx1N^329;P4VQt^OIAR;0HpCUyNw)e*apPIJS zmww@&R)+K(RfH6$R_NTqu+K>->O+BKQl2WBTu{*c_^y?>w|9j|pl7F}3eiIys3pJZbQv1EN`ro!_ey24O@XqyI+`P1jm=|gI{x=YnsV0-l; zhQSl^C%b$ZW4#7ekICujcwx^`!^(!IV7SL8B0?nH;T-N-1d zS^qo%0l`v_mfJy1nk(Tm+2lmdF1Cs%Y7^&A8Y4Poa1wKUs;UI&z5yDlM!e}Au}^tV zIl(0ZaZ!DLQQfXI0%8iR$;hav0kEIb`A8Rj)_A2ZL;Hc|IS4ts?Gj&OY)uC6DWe>&zjo!(Ls{Wf<(cQ!xkmOZnSlj zD_`kv_Un`cncnNPg={N~M@4xxQBsOv!YQy{xrq|S6l zE$5P0FW2iN-G4?vC>A}yghM2_5n6EwSZ5&biFhQ7P8IzK=q`W$`~fPy6)PG!P(~sovx0(xRx}u9*#Pk%{wEj&;Oy-}XaqqMLEI$D${=5gtYnq2 z0kGbIvcwHMVo>vfws>F>h#>SygLa4#~*0E};ssFYU2HDEM#5{-0Je6hebqH>xbUGs$UmU}=?qo); z$`RE^zk9l%_P>o6{N_!s5t@^Wb7;w-JcI%rBa;GOIWJmRX6NO%?MZ3N8{NcsII{gZ zfBW|3sk(`-d-nnYm86QAM~Z6aw3aHd^JJ54X93hWR1fE6y92>4#DsCR+_{F z9j#?qZ9iOQEibs)3w9<%Q96r9`avcITwB7>ID=?-!?HMU-H-CK_`L7i6HF4_eqgNz8$~OErTZcRDh1A{^Je za{R$_2dMo+TO|J1A3uI9f++?ze>FEDjQ|fHA0IET#)u7IZ6YcjE3lmcIS*(?Mpibw z@G4?6gEVbgtjVd=)YLRPR_h71I1C-=e|?ba;a^<3szx4!KOpq4=O04)s=%IX1272u zCX$kpDW5)p>h~F|-wB$cG_w0B>X#8CAXIHq!Bn>x8Li5-A=M(8p6&b`fJW`pf4);% zn*DS(x$|u2&p5R33_>h|Z=@!af>s3Jqu^g}>FO*B%L=(v5U{J{o#9O`AW4H91~B3& znqrFiPqUIqWzKhjVpI{hw|<&&t@IfLHvHxYPm(k_&W-&@C;Z2P*y8rlxwfP&6)bzc zxYnt6$Lj&FUWJadVItjg^V0`9uue?&UcVB{&CZeLd;pUXvwGfDA)zB671u|PKwd<= z6wo5k6z4cfo;KL&GBrId7mc2SI(q>G%S6-kbN`3FaxYAuSlx!ax~!~Bgsl6$HcMoM zz+-7s^Bfv>IL_?F4vl65Vf*r`DICPWfY@|~8-?4 z)K@Q5#o4ZfO~^ocQ9fL1EU0T>3;b-NFvYfUZMEI zn2nlAZAi!7k;3eMFAVw6+b)`ZPn0&aD1X zP&er3+LWb1b3+(9YQWcECkak{W##u&DT))m+H)#cCw&oW1gB<6XTY#uHtt6`iAw+Z z^QUA<_?%q@py&K_6TDMyqF$NWt;XgSBArYb1f8LxAwp556?`n&E|n0Jw6`!YhGP+E4Ijh`RJq*yZ>7~q0)^P4U!Q&?>Vw)K23rx=M=bPYUT z8dw`6OF-E%LbOnOIkzNHqZchw4_3`KgXrj!OJl|YDnD`4*vixv+WPp!>6w_A1O%#T zvfBsttdf?1Y#UkklkIFtJ)TVqyQ_O9j29>e&kOiRh&*n>?DmpVkOqDR z)Zfu(VDJ3JB}l+Rrjscq8aj?NtCAQkO0~E+{r&vlWs!sU{$KVyqM8P1m2>4nfw{ zzM>!-#Hy7F2RA7$h|{o8yd=TUbX24afdvjn>{hhDMIKB`CidzLKCr2?HeRYBC<+nj zPlDEUp<(ns#5$E1L`tpL&qm0$*%XUpVg_N!aALQ?R3g<;8|b=koC>o57v zA16!Y3r5^^C+|rkA)U_^o=_BpkpPUISFJvB;o{Tng#Hr+=UPOYA@4yXQ0~Xg8Xa7` zhz7g>+zCt%QM4~HY}QOnMt*^r3Gig2T1A@X=0TW$^C@!i8mLgcSx>Ut#BicGGwad% zZ|=xnCL_Dq!F1E6N!Orqghk4s_l{AYNiozP{A8+^8er}P;^$}5*@Qq$fiE`k{qJC5 z6VJI&iHg~6^LYkQlP*Llp(GB^pHD$#0rDTriNOCaP@-Fxjgb~vl}i#jlnPr?`?lEs zR>oBY(CL0dY`h5TbqP+Jxev9XwOe6}GjVOF)LgusEJW}dMdqV5$>fT5uCouweC}D=yxCB0X z$)ByzP4@S`0FZZDrfhcg-VDBB>Hu2e_U+q1Lr+-oOg3%`68*Q`=0PVEF~#ik8C2_9 zLiYr=H@+_zE#b|XsC1C|-g9f-!ln zS6INu!~3{+BIyf|U#jBHL~ z;(&pJ3A{(sSf^xPSYAglzn!UA$k^MuEH+Dj?UatRQU+}PBt}3?b9OC8>V!2w!0^S% z$w@+gcR^c|kZ2*FiiS>p9?Z?BPu~)DyGC#7tB4>+7Hvk-B$o^h$+c%js31fPZ>xg= zl{ked0}`Z{loa5hP2~veo0K2$524i7%^}RfCd6>bWW_dL=t@$}+$4;?bNluI6-{=$ z5_KokS^urRMDTB*5^||9zu}kYJaNwQ?kfi!%Xw{)5;4*upfZ=rsP@ODM!6AZi3&J=iorGx-jf5!x}! z8iVivT}{-yHu~T{KCL5d^$s@un%8J{+o&icE4y-SNR1vDi~(|~VH|AwdWBTMiq*yC z00^*qF#V_B)9!2V{@WK`5w9Vvah^Ya9#NX#zrS>9mf@p8%{&htpiPI$Y9#}>cxrU( zX##9-;5%?}U%z>yd{KXeqn`xb8jg$EL_Jrstyev}p-UP1Z*7XS-ZQ{T^u5LE$P%A> zhv(9G9$pY}%3Z^;BR@9BKuP^96VpNfu#~Y&GabeJx}7PX7zgL@FDCuG;=<0fmZrK= zZIW=ZDWC{uSK^A2nXhoecpLCKh_@@{s6qz6k!(J|atKrdEp0(rGz3vyNVUHGKZed>Qe$c1$$ z;p_*#Hh6&P&8CBCMLuVe6h#Tm)E+{ism_`BNmZ(r@?v$x}%D! zYD9QAhKEla)2th=;i79h=OBR-M67fB;gGU6WBGCkg}1>97KMot$G_Ex>h(iWWIu3l z*h2c#B^1Hx1oyH46pwVCQ1Sd}1Q9j6bQJ7qX%j!8P-X&sEZQ{ZfsD+1`b!kHT(kj6 zKj2OlP#c0fi+k8g9Iz-zkfNerp+g^<_YRq%R9ub-3*!Kx&%Yj81`tUIHZvF&q36kw zbL*ii88k;7LmQRZV9~9cH*eC@KLhJ6Fd*3-YB}~+EIXg3H#BT`FMcE@N-6316u$dw}c?z&q>4pHy+;3idwHpuNGSV@) z5dV>>^3Bx78&C+q7z+oY|C_z_ijaO5;;_2B`7IL?oE9s5MOzX&?=f?a)*_UoAzPnyk_>OY+SpaSKaN?m)Mn*s*I+8Kq zSYgTNyaEySEFxnqKfZ-reCDys=CXytEH*=8=E({ zhtI~yx}?jfx9|EVeGNGQQZ)IIJ5C%i&Y5n(v$GF(=-SxcT_0y_yHT{HUSWu(^P1&R z+_Hv9Brdl1T>L3J0&yK`&jTL1PYp9lZ@!<5K+Uq?mj)jgfoABYq~X30*Z|JT*p_^- z>MYh3HhjFb4m372;)X%(*%iJ3u2m4CY0VQL8WW2lgJvx~?B>sTfEX{uJgJM&9n}P*G4w^ldjM<@xV^OCnVI zjG@o3y={UBNCcifFhQuPIf51Ek~H?Pg(F!!b31gu<%04Xen$;q&A|IR4GsoBP$J-7 zEnp5dv9>igXQulEhQsBbppHRb%TMjHHr$(Py1E`<3}_^XmPvv77w6^UAB&~tQSqOt zmy<7CBgY@i%?2F+AKTQ#q-l<&1MOWhV1{N*kxei*$vWF(_OZHN{(7{`%d4|e$n?d; z6d#{|DYB5b*~ZO&a3|KGhzP&tA+NY;Rd6HP@Y_>1vHQc8!cDpWDv0X}m}q)pNrEJu z;~NJX%0(3~?P*0$@F;UlV()#Rz{f6PXeIbDx33MEI9f&CanS^ih7|HcNSg|uvDVxkigJacYVrLmAxOgUY?5(cPutx$Umquu=YM^ir_KcUiZrm{`iH%{GQY3+xcJf4 zLq#%I=e;!Y^^-fFxzBTrY$^Y(+=i!LIZ(H$2&Lb>M>cIiN(#eZAv-H85o?jn=|k^V z$i~gMO_0bNT>mVZBdLqgy@P+`;tLkyAW37CIhq36Br8%+>xf)xP-ikI)?A$w=Dz0? zzvY3Bl5tZ#yunEk4M4y$wIYq1kjRh(0If3%t4?yU zJZ$g`lq?{HtbkYwFmvx2bQ3csj98ZqU9hO+aM(!e{@FPVnlR2*xAmCYkAjov${#0Z z?r(%192}&8_REi)ApZsat0RrWIdTb%06O=#;rh8t8tBeHXkEH}WnPIqwJfMcd( z&UR|;WeL+Afg`)cC5e`!>U%2fZ)^pGpHn!F1T}|1IRLk9u@LV0tCoib{o0J(#~Ckv3n!Okl1@gx$f5R)w7jtfBaVYYDL1Zs0`(_Fn^_3ZxEDC>Q4Eky~T!9v*==u5;=PIKmv8Z$ttP{I%Lhi)aYI zQvY7xMedEXGF%?^TtkA)n*r`t@tN^_{oV3`{@2faT|Mq!dpkSisY*zF&BsbjhJ9Ed zFjn`}@7O;A2?+`Er=RjAZT8^!ie+a%3&Hl5*|ffZAK-)5SU(l}m{?+FE?^GaD9p<< zJncs4`A9T6rftvvD%*#Wp(WTHiC^tvrn+AT)jsI9F^2nW6>AnNYi2fpOZnu{q>ijh zd~)_lMAL;kDFDBo$~m)y$?ONJ)&uqv2*8JcO?IH={N3+5CKv`1dPx8?3y3`sxvv3> zPDT(^`$!|jpeNF;e>|^N%V#&+2>_<}D|B{%5$=0n_FT4g(D8*|0)V>N&KrH3JuQa$4ejQ9ARib{}2H%oUCU9M@f+@AG?}`}O(blXBnpbzSfG`99C%JdWf1`uyR1 zSM-lCp7W4q+E0CMu+c+|KOeV;Gj-=F^L=?|OY-xN(r-3nk;>E9xZ~~^LhIt1farje z`vRiPSc61#Evq)PaXs)AiA24X!)qRr$KZb;)9Gp2^>3OS7TsWFuOfYY=q2sidW;2@L7cu^ zEvdNaZ~4TP?wWO7)d}U)In3f;O~sxk9YqOB$s^11l+uRk?W$Zmnx^xdl)TON+BL=l5w0KkVd6Wo()jiB??|dTjqTe&;*kP%BHz z_V7a=M(>WD1C1z_^X;nb|$P>YV3fczUtIR5)!mH05h+ zzqJrJ%5Rhx_?tI+c-;5qJwFwkVa>B%R}rHEO7w2|xWW zXOgjkbyl;8a;Sl0|2=vKf|_PC&U{wbTspUwot+dSml2Uy(8{(gs(VX{+!Gr1s>_1S z7oxmcd|m6#Z%P59s^T)u`rB8SyspeVBbl40^Vah`K9a2mdHC+FUek-W$XGbqb!tF# znng~~dFZEW6c2oq89CcV=5zi8#_DVn+FycgVRd566|=VF1%9_1}}WTH=Px$`>bIk(@$Y>!g5Vbq9I z6kFSKz4R{^>Gw~1TBfvat!!q}i8~cHrTJd~&!Hi3-uv;y-tkLl4s6vK3=9tsFACh1 zmPWSv+U;-<&Rw~mw8E1sgewKJwRn|}j8fk<)2V34dCuT|KzsVEMtfDRLZZ5IDEuS; zw}YBp2{AzJS>F0qSu^j-C)-YiCQa?{?dpnR;yxWpPtK%zo?)@pe-(P9BGuF;Yxd3M zjv1^4>XUaWv}|nCn*NJXp&3AY#qV#XUy`XdA(H>M4|mN&|&j{{#~*e!8)LyFulf!-vNKyA4OUj2UaYhlEbX1GzZ zZnS0Wv6_`3lNY~jq!xFELTg?kX@JAqrs1&Z6XAd)vt70)PTXF}^9&{jg^Y{ldV;Q* z8B+I8?yIrktp{JrS*6DCuyW`*i-9NYq?&7O+!22tfZyuxtM!3kPYF5jk9CVSx`+C`ONno^e3tvht~P}tmp%i?*nZHJ#?4+*hrJKC zAD~9?`o_Op$<`7JJk49hHNvElo))FGra^Ek%LngTpzS#^T2nELQQoA+XD(xZ-WmN4k z-}^V?mJ#)2d<_-PPfmVYr7g+CmQ(cRR9;N%(i0D6IMw!+WoDg!b?8UCK`E?Y`-B$L z`;r;F^>7DdrcO^gb)08H&Qg#G?F{K!HQt|G|J%+b+X%f=u$s=3Jhu=z<lQDUEIM~t4$yhzAnml-COeEUT^xo(H zy{j!Hf&@jam{e0Y(XvblXr^S$v)LFxy!SQj4%XzO70sg2!%hZ$r=#qDDE)fYbRg0y zS1&3B`H;xbqj*$&Cr8Bi`SHW%=y<(Q=jL)M-Qqymvl%>)<7dlxiBhtbk4s@L4$#44<$0`9bci zY(iBLc#%6Jp!tvH_3FZWX(ZOKer$LXlKNuNVuYS%(4r!O(R*ik|H#kH5b zetZ+KI5x50VMB76t)+4aU$4sPu>e1R%8`oy4)kEu<47CQ5U{q1&fLv&*tjjltQh>d zK*<+n3e;FyGwZ^yHMx5|+lXu+a_*;(r0**|9s26wVdKR$^*K6%NFejRp;QSk60drA zy6y9)|AOhL7mbYE+l4~+r9vgnU%<2N3`5tSk^(~9e#_bB~Gm3a<qIc0r~RqtKDvDs9qx7mp3TOTJsdmXVQ}k&&!SGCUMiR8`zC+4|qd)LN1) zEK4E_YM%f`*oPE>gEk{Vc;XAYU&0EvWk_X}tXWslUAN2GS|!%UUfXR;$+sQDf!XC; zbv^$Zk_LX&B}Z#!6XD%Xk3~muuk!SC`W~(S?*R_MjX2l_IIx;_IPEbC8U8CwT!%-J z@3rc1s!E%Wi!&%=cY7Vw|QQBG(gw(BE;BP-MNC~>gvi( zzuCKz>j4j)uTm(f<5?qrM2h|?ju0xobyI?o9ex#q*OQ%Ioo~`LOvt$rWIMp*EAMkO zXyQ^M_1;rj;WP=9QDJ4J9~N~u4&5*FVUdU#)9xtF+WR-;=AoaTcYj_*8S?K-*$js5e#$PH3pqY-n4YY!$YfUs~?k zV9%sd_^E2&!o!2k4yRYO(h6dfe|#0_6jWne?JW(+DgNOWEO zjX}M?U)y?;My65}Uw6k=P`A-w=-=)Rm6&&08Yo@64jWd%Ipms1^zo(dxuEY{xOfri zF35QV@zFsdcCiwX6qV{N$Zo!UyRM)fqc#F5Aptic*IKqp;C_Xg4sOS3K-p2cqd?<2 z^Y~Bfl#2<>QQ*kU(Q5*j{>fRTzI8xB2z>(xY!4qku=K}aKA$nM@wBD@)dQ6z(Ilg>w0!?@9*L08~k9m!@>d@lD5W2 zQ_W=q1=|C&pP7~Y&6MZ0p&3acg8ljdH3etoHrp}#h&A*IKiyZKUX1f$)ueY?*2%9E z=y5$h#$7Mnd2ufiFLFFNwd818{iW{i7^nH(gQfOWpO?3Ymp+Z5Nf2?onzi~kruX4e z^d|Q*(Yd#)OnVo34nGk;N`6u@j3{7CYIFVo?AZ&UBJ2@pJi+SHaM}>bOYx5j0FX{Y z17)|{;#evY8N6_hmIwR=fOh=^bMfL9A+-C64q$no0M(tgv9N0kQ2l^_zDl5|EPWe2j)h-v^%2)3(8iM#rPs8m>| zBq={=99w%n<^X#V8bR=FX)(P(v;ILH3C|j6kX3iV#3Pf(Jg}MU?4@GIt%euLno2>~ zzg_&cVeM@+v|wctM*~WQ+>>VXcnLFbAhfH$gH{0`fUoyC&#Vo)5VVCvta`+5Jtpj0 zGBPsymOjthO1m2C=x7DOZ`bj0%%u31=3_UlLgWn@c|&}ec>2x! z*0eJVdu~kh>?g`enS!fp*Mw)*8)gSL-n_kzg5?i=#jX&gq=JIE@|E#&C=V5=2>(eC zeA5Z<47j5Zw+COIiXDK5%Yg3z0IL_ZwIQfryY+?W^_BO*GPVj!GxBW_NN%umN&GZ< zv{O&cVX1s|shpq=!=?q!324ZMC=CH50p6qWOS=qx7<4js!~O*RfspoQrhNl}9CiFm zY2UIH3|4J+cGM+{oslJa1>%9uqffjuVIXpX24rQlHmlLS_yZ@;Tf>h`8gCZDYjmk^ zbp?AS7H$MUuMk(k97!bNo+gD;_<$*jAr*B7Y%nH7B?oS#5ss2(!|9T`U^KAxarw;Ksn>vh{kaf>RxpBD-uN!7Sb?3#Ku z3TP3)`vHApwKfykS}aZMkut2asHok19@21bsx!Jpbf-A55RU=5gt^KxKuJ>7_-rOD z^o)c+RzA<*e~-pc=+Rzu8}V>D+S~I*;{asgj#pgIUm0;fA&73>5rT${eF}z@ z>5kJ12d6*ufKrb4JhtozKpLKOWJ?whaS7wrh={m0s}@rd>{sv{=JOK)Gl3gkZPO#* zzHnOSP=g@R;Du>SKX%JY#8&i}Mx5NxTmubV7xx)dOGzv_;M@U&MR9+I4ou{a5Hwc= z>D{7`nBI_8LR0ybzQyp41og#n9{SBkP1@f-IVQ~dK69$lLjFAPb6$omaVO7@fhSW~ z`$U{>c;C-$#|F3$q`7R{W}`2bHx0K-``($R_?vwq(E%%>4E`<8#p!%aS3ywGp~>L( zb1b+l7|E)%(h#2aOi8SVG#dY%U#;LwW5sqewNTDYL1z3gaQ7|E-;l$yypG&;GrNBM z)I5E>Ig{bx#kA7mV(q%L@+9B%sC7nb*Ed^-LwWFR73mw?`jThe<4xyHmdifFvgzc& zGw_LLN+&*M%Y}bU&n)pvX`-(b#658bN4zV#36bK0My!Zs)T?wM_Mt|}DP~D~3w-#u zi0}a^p1?suySwZICaTc2cW4fw)str=UX9=cu5+wgAp+mK94X8WDN z_&;kk*tK{MwfD9RK9)G8aAnSf$IH%Ib~by@KOPyA^|u+csmPnV&0F7?rR)1~ zA!6pb`BP`NQv0U##w(68cH8&1_1s0@_DjqAU0rg|(hlyu=rQe0vAZ#0>aGgalU~2U zEnXcO*K0E$Hhx{cE+Q?@W6ok{XLUvd56Y?Q5j1D-s zAjJcEZDQK5x33NuM*m4NJn!vI z`@q*Mb*)5M5YNQY^X;FWp=CAKPUkL{+Vo!QdGAE`&f`hql-o@wE3QUe6&e!YA+c*{ z{4^cjI`PDaiE{g)*9*YeSjK-8TB@oxz*7#yrW4~n+Tkz)0yajN5#+hPG!S6tJiNEv zD$D9Y%^?JRS*lHFT@wJ|G19w~^OKWLwZ4-909I6{ktC#u4wi=FF;3v#uZc=y&=q zY`AXsr(wq}i>X)CsYk3{JbUIlca0xrVeb!o{ngyxTCp4}_0fo*S-7Zl)+1%UnR6xC z%OWZ5;Ka*{X_sFkI>8Emv0Igio}jg#?(tuip#r+LC@IhG+(LaBoy3XR)1KeyXxHD0 zAi23o$7u*$0gz=ZE$(eay+$}D3%wZl4Yy9sZ-+xTxFN{8E~A_0`1n$;ae(y4WC1t2 zJ@U;53?`n?S`Mf)T0OoHol!cPqrdn;th!f8_LEq^hi)k;8mi#j#0l7zW|6ERkLlF2 zQw96y!6hDw*W#C%?BDGC_3g}q?{5r5#u8Lhw`A`V*dOPn@+KozEPRiG7RZA7vU zJtmxtW53U>p=jK2eD-=uo~E~{-obRxgG7X|_fQ1HH zTi@*^^)JCUoM6s`3S)txRgV8yF%!zW{ocoo74HYKnrK_K7J7b~FNp3p zma?DG>d#zaGB@ZE8?@fMUHZN1qsLmq?+t`h9Dnrr*12R4lbO;K!GlQa7ZB1I*^Q9R z>d5(GVc^hlg}0YyF#1{&AF=(xP(W`LCrLB9?MQQ#A_mQ~6k4FxQw-R>lWP5A_Z5J} z>1i+m@q;HW*qPWA4hvF8q2EFNu`?qG^5ox8#`F0NK(RO&`jy_nzYUZkbcuDszrsV~ zV*1o)@Uqad+Qg2ZGav>3Mf8a95fS?KpRPsdzqRRs5!Nm*?L1T3<#QAiq+R|BMN4j# z?(fZa9dGH*Ei8O~#^_zUS4~|1jTLI~h{8o78cD;ve&0){j+EmvkK(OU%@ddC^5D}qc&h#!O1hV@B6`^c`>^_zFYsSFmkkapFC= zLl#7w{=HIK-EZi-Didp1vgv7L;W6U>?p>>hGWp(kFyF(0!dPPijUi!34=aFMNJr4H z!*c0^zc;Ay^wn4nd&O-%C$+V-en;adfQ07LE7#JR!Q!FN)2~*Sr`noD>ROx7DRqQR z_GkCiWgMn^q4tT7zYJNBLywIjhBfgwOKoBoiMB*yOK=QO`|0ZI>l+wIV-^x5Lp2RY zs(ZVPVBXEE^#a8J93zlp?GAVgX`~7~_TPo^c+zNSVC8cA4XoQP1)sM3MBJZOs2zyT zGZdf5-^5e1kh2#ibCY&W|K5LP6MI@(>-HCVe*yH@_grFgoJZwJ_ugj57uVVAJ!*^&`kY8}^CFZ#|< z)g9s&86LF%tw%$q2dr${St~;>%rrcq^z(x5=fJ1jXU~*FIc0q+`)mJTPn;gdG6e*$lhu-Me-X^%^4*YbKSC@ipvRx=4}(8pYt1uB3?b^D z6ru1KvOVgl@Q)Z8%#Xx=z($PO{dXlR>On1S?Ojysu|+Wm%Nc9Ve(~t>rfE0_s@T8; zJ?5R2ed#hvV0&;DBfbMAeIyfpZSh1Xg@nzHzcC@^IC4$(Y+h%;3m_Cd)VCG!xR*v2r(9N-uC_&4U|%N;Tr zPa#gd^Z)nnmE@IlYbyn@?-2VR_&h19S1z$osy-p8%xIA0X%eyoIQVk zNr^>Qo9BY&4%ynBnlz=ydfV32qSRT#wj;YHaML9hR6xnegrq@==qcbMK4f2V=lf1n zMwMRpk(j$_1#wJ^tKl|)utEM<5C5&?FEAvQu{LV3s7RFz?cuNZ30VUG`oZSEu4WW$ z`eZCrCh#pnyykQ^?pS zZj1l-SxNz<-kTvj=c(A={_9GAi6t5;wb%al{m5u7#ZbXRF{{$cA z^%Sjg>YgRLO&T_NUHP3LdrnWq_Dg37?~wy(F{x@aUWbRZeY-BXtEZK>80a?msB`rJ zt~C@&wn@R)!b==DrVQmmwSZg5BoBp*=>8iErwnGB5@h0iR@_G}w)78~^i&1D6fWB_ zE~W8M)P>!BMZo;@w2VZKdHV0K<-hkB=R|DPI5yjwQ+`m9dYe?4GpYX8WRCBj`_VoX zk(oSy`|(42ak)caBwKRR-@*k0?U{pNj}3EYx%(=JFnXA);R)kjHH*(L7mzG~KmaU* z$U_HIdkEn>jz<7@8XE97hWfc^rd5O^8pi{IKG43c;7a4{p8AwK0=lvD?6=uO)@7f` zAJ8BwaD>2)$>7rZGTcirzgXcHIYt7x+8S=S#<>f3Tn|&kONL7SN&nMcQgoudlg4?Z z>1Ai7YB@h&u7p6^Zrw%qQ`H5(`xi?->Soz#sy!6F!It3IA;QCT<2RIsW|7l7?p(_K zdoT5gg(~j&<1!l!VHj3uKcOR$gU`i;I~b7U0vSPgLd)R_lZFQ2zmAw32mhlk&<1~e zjkxp~2kMF^Qek4YAbbpxzoPqyqdpqb;%JwrkWq&7>q{WF0LbK1vYt>w07)HR!&mq28&8i*C zdTy^nx7k>wWMpmdV3NSa!b0W!p6v1lr3aVRj^?L_T3Q`&T^au9m(g=SnkhQNJe3^k zKHbU4*gvxYklxtiEi(LwP(K3TtwUI9&J2RYK7~VXW@#BVD$8|e++;T*!!L$|KmHsm zW+S^L9?wjf$_YgEja!*y6d@Vxn{tQ19hjUM1&gmdtkT>Cw@$-4p!wZ3fKXWM;Qk5H zZ_XEGE$=ILS+ETpL`oFTa`eXMm&8OGz^&L6*e>@ahlmvfuws{}sSrXU=$FOC3ol>E zFf#7&Z#j7Yo!BU%WUb9np{fJoGwHF(``-Bj-My!%*yY7-i^Q4k>jno)#}h?D_!hBp zwJU!DWD~QdYtpZef7U-WCsIDis~k$@reqh$Tkoi1r_4#`TWvV@cmrt-u-1)0e3u?< z)(((Pd2*KO^t%ztlcA$qS`o91+b^|(#FM6+&PUM-$>?iQ0C1VE?{fghJnNe(2T6H$ z3Es|2NFeYgdz>(P5$cUr6F=#N=3C|n1F(^CA~>3_0L?BCXxA$jC+Fz}?DNDHf^R;n zXu~WD4l6R#>rL9Tgdxp!4VRWnPEO+NoDBYBsj&;|wNu=u_A7_xULOwDvv*~+-)M35 zZgc;U3p`vR3mX3U4FS7;N7@FwntmxKKPT$<$U&b`ky1L|TAE$~IK*jA<%Fr7CmMsV z?OH?PryaZ)>GAy9S^C907w8rCr-Q|(x!H&dTcD5o;K9~aP?u$uetv3rOjl}P+G5Ac zFzqOnpPvt`F<`t4jBPn8qBQTx_TA^JNNBRHT#&6ofTL=^pMrwN=VT%}u}{7|;Muvj z*=x(OIDQbL(I;{osPdVXQdgT7`+Lfe*%>a04Z6u%;i_(7+iqiyry#1aqpQImN2_Sq|fD-ub!3w-rjhA|QT>Ij0!nvYA1Hs)ZD3?qJn$B5Z!@QR4aTRJ zGEy2E8fFqqkJEfMy~yNsEXa9#!}6kTN#FdziOtvY3-rHHe^StBmtm8k>UWYB5D@5X zyPetc;e%1O)>g0Yj*2v)I~20>^B)rMs%ec>tv&D$`prA(=}Euo=yLAVy6=d9ja;_& zY+kdGQ1Wt}xC{qwdhCJvUx@YdQ++qGwGbIauxC)RAnUZ~d!=9gn$0yf*m0f3FI~ei z^^p(5@PmetT2X}(rz};!Sl~$R*oeNd_N_sh`kYTk?M$~X8^29_#E_PTfoX9~oz2ZM zmnK8o=ACE)&A)x>c6upP*WVNQ(|3E!+{^Hhg*>U6WX7+vXrgA#jfWY8y|cN!_u5>P zy|eCt8v3q#Ywl7lFOm+-*i>ydvuchyF0_>l;W?={Hcy7sfXZ!pl&;1`Z{B%x$OF#s zWPO3$NpJcaw`GjqrNnV~sN}*09M1j`VPP+4T2Eu`cRA|S6Ncz?vM&v8^z;)8sJ*kZ zCIC?oqku91BLHqb7FV}Urt!hGVgOLXjlL|K;3WiUoEUS#X~om!?&_9i&Ne$!YAf8$ zZ$(G9-Z2Ox<}A4Q2AsvetL*>c^y-t*`%5dL27b>{BhE?rSIeqx{P~l~t9+rrDiUt1 z#7mD2$%{l*Nl6rqklP_9L2XL-(5+exA%Vs~g1!0hD+gzFEPcyy zNF;Co5_7EZ`|+yTTJJ}uo#4yT7gu!oS^M>y#d@flR{c-^?(g|Hu&S}g)kgBj{$rlb zd)anbn_GJ`ekDmjOfJR@ELPZZdtjWfX$_a0FkRu1w)7zDPS@6VK@a^bf5x4p`K|k^ zo_dc{Mdsh{8{ds2yV;39!k@+#lN2;G^6xtWnqqbP&CV`=sA131>mSh0AY84C>OxWW zMNSq)u*Ay9Hrzq(+20VcsPvH)JigtYyYf~YWyWf(V5XoI@n<`XXB)_#>K z1yY+H>S_(rkDoCnIQ%P~D3$ zb3Fi4{#ikRNaj1q3qw-k({qoH9^gBW?$f8J705GI7g!Ru=VggFgtmda`X3m{z$HWwW^6=5 zuBWJF!oJV8o{zbPn88epk;8DmavZr}k7BwFOyCHESJ)4k-`Kw^a1d=`;!xt%FCifS z6YpSU^||C`I;S!^58t{Ar>e^?Qq;;@ia2!qkh)RW%|h+nHuk;fW^Bc4)u=bBQMONp zqjKm4-dTt&Ew3Qf-K)H^Of75)Mg(@FRMUgQ6Q6nCP&3t1GdZ5f{EHz{kO`GeSoRpb z^_~?iYQi&D+9mQzB(^tUjh|D`?+gtG0ga$<)r&!~%r&!9eXGe4#Pr4poT+%Ja#&+F$qE>o%R{B<#KE%qIQHp(&f)@o5fwkkTcZzD;x&bZaw9XaH-qxN%Jb6t=Dc% zt(afJ@8uQFhFE_;KiK{CS~VpoD4l!B4R~mJ0cZ_vgsQp5XRE?eG;Yb82k%1U*CY0UVAm@7?)o{gK^vTl`k8Qo1zWXmKx;t0|vg2U|yrG{Yd1TfdOHi*#W79 zurMY<>F_d0te`QAbr&-z);9L}8MF*=Bei9t`Qa#q|A&Pn;2+Om2-hYoFo`GPnl>vF zbdgI)z|f4wsfd0dbmM*7CA@j$yiYF8?e}DAoXpzR9NQvYD;<}Wovj}JwFs2Pc2G^3 z1B?2Mckx&IgQp0U7BGv3hM)fXhet-*ZkY@<64%wdKP>xdVx<=*Sl_$%U+yD=G0kCO zAB}_j5tY!+KVpN72ECG^6MQdm*erh)aM#w+kwDiO9IR_{a5Lrd+{)}YO!)(FNS?Ud z-3mgRK`pSJ!Zx&Hqd3!6=m`5hT(KLuztdM9aJY-~B`BPt8NXVK>G3nxV_FYvcN2Y& z#gAS0gUy<8STgyRQy2;2AYjzPtV&)6q(j|E^xfJuG+Qb#-o>)FBtJg>3$leXQ!^B7 z>z<``wYEY(Ahq|5A*)f~;N~q`^!YVUHN+lK=BEF3t4umhAUjwaWl|cP2O#0fi;yhs zwVDY0hZWQseVR$z$#(kiR>GC=JKEY##2`SRf#BLfT_eK=o2VZjuLiNpt)WoO6mg(l zzc$ZD63~?;C<{-Y)=t<%l&+wTt9yl+dQh7d<(R@%fFuDC?{rJ}UsgR^Iv|rGCIHAt zkFwmLkpMLUk|H=cqKd%G(bMdU%4=i-MI6F8edlWC7v|P~<@=8d;1bGNZFw}hA+PQv z*qFTac%lTm`h6@|@0Nn0`kmB&?;2sM!RXsP;fB_5>#;2qwQPCCcE7;SOFdFL`M^h> z1Br-qT+`J2A-{yaDnS(hPL=)f+k{Pv=OHA+1q>KEoS-pv|F=RYC_a%vjMvqPM;+#F zl|eLMWqwiAA?3;~!%pMyYoMNQYXif%Ar_vyk0T|grOphF!N$$&3je^&-#!0Dwl0OS z5Z_Mw;H-45_Jd_v*8xuZulUkn#wmDoP4#rGem}UL)WzU2?+@d6u%BcW3+o+10{!)uzpkLq5(eRIY z)JnLi8*$h#-W1w*&AZ~wlNNzM`!6Q`1kbFriNj(lHlnJgbv(+15_;lmLpSaAT2 z$3>S|uz^4Cpw@G#KDO7&!G8Y~agEKEKM!d}IZSYP24e!l%w+6;)m^YJleRGjeBzZ& zqqhWa${TLPKCx0hmS8@~+{r3l$>TRLzl19SE~!^;Eb9aQ|G|T}6{KgcA-PZv1t0Y0 z&71gJL)X0a>liqSSBGCB`C;YA@y<1DIj5jJe}Tf53`lugK(+q%?MY-{A3sKZ>=73b zXzI5v>YcQ(m{busXp<}t|1H8_)7ve%%2ZefLE_RS)~%F-vi4nDONxqM8+9p(Jp35& z*H$tOFn*mf9@qZaoa|z|gNOE)=<&M-sw95Hj)mtb)>xGSRW85F-`(f2g}AT4;4WxD za|pvDJn08&8DZSY=j7z>c8;q)UjlO)Q5b;uC024(49f#DkZ0}1sq9vM+==i`P}kCm z)NhED)Z@Wn+cw;|n230$uOHhtrP*lZ2G$#FuMmCAo{$(^dH$_14l+t)oll`Ok+o7#3nA5Bl|`tad`re*|r2X5y%cu+R`$lp(o*@1{a(OfoU zZ8t()Ny0H+crIbC{b^QKP_?0rA{_0}76y6$M#H}&I#`1I3w*UXJs&;{{dDa5u6RZ0 zQH+{N$5DrrpNB0c@q`8oxHh%r_rQ|JC*f(Iyq!q|_DFHgp*#QX^;RfrDJX0oabvn) z0Pb}*>jrkv1Mz^oD?RPoB+hp;T(9y)^*!g{|WgkmWW?_?V)AH!|wTI z1CNYmZHnd>JOW>d?~3XdF2JT5(JUvu*bWZWD7qY_e6L6}O=D`ia^zm}xrp@NaE%yW z7&Z~u&5YOoW*!t2sbm)UbCUEjw@`Qj_iY)E;YQ^*q|)BT9E*W|Xrd8b>ag7ls|}0K z=Kg&E6iQ^YI>)yoh~x0pi5IL2ZxgPRG>w>BScF{@w*n^=NE`f4I@C5w@cG}cu(&_o za)ObQ7tWdW^`-xN7gJUO46P;A!F~E;5XaS)le>^*AggT{Zk$QzO4lY1s!vMfLulJT zcm4B!kBUFg;?@%!NWFdu+-~LNmBWn_vx&7@PtMkk&n~*W!pJwr1xq=gI}gK^Px;Lpf7d^0BMuFIubqc3Vt-t6p2)`^yKtCMQ{J_lORRl6 z+!)HauaJTwa{Zq@k-5`O>9TP4~VSNM+gCEhxB`-4xXG zY}CRx9KL?gmY#tT#p_&@M%68q!^BiP%M2)85IJrOh+d zt@;MzIu1Yj$X>ZH)_FK{pepu(r~|?mvV+BFu*hFJ-F<0xS4UHhihXP44ENW}-wdLY zLai68Z4gHq? z+Q@K*4$wAe9v{$dw|(M#j{190*|Z7AH=R9-9H**9Y^M18=ccmvodma<_aY+M(T3P+ z)9+30=K}XiA4y2Nu9`nnxc}W}{WtS>RAYY-_2Z6O=g+?_iH(XRxV#gkYy$IX+2 zq|e%GQq3>>M5+wUyz|5%dnM{i+{x}Bbn0-Qg(E=m!;7?Ch3)m?GA6xb(@1UFD0bsF z&)U&b0Av9zq6yd{@ezqKI$6hUnlN?^BLnIei>?FHSzVc0wGwl^Th3cg7}w+&`M%l= zD2y1$OBnYBGltN9oak1Kb62CfGWqhs{k=GCWrWh2_Bb!8()s6SLl#t4sKxi%e7{lgtTRuu%904csg?Z*NnsJI`qGlF z(sqy25a`Z$h%#9hyi7dC zWbkdL(OfoUGRDQod2Pk?0HAD6KvD<0sL*Ad15$0wGz^{V9w8$oHX1FMs6b9#W-xVU z!eyz%g|q#G(@!*-ngV44kl^gE#STW4BK`Kn_`WO6-j%D)TUo7h?PDcIt2Oa zz6gW8&{c>Uo7$N~Ntzg!q;gKmGK=m|8@Mme zqU=rT9B;SZpY-o)312p(Mt8d>SpKX$UUXWSRhFH3{2 zjr-CCpPlG6GjJ5x&f+JKmsDn&*kZ~_H`X;?79ZBOyo*!$T+a33-oUib<yms0>In=HyNB->D-l#FWDsLPCVyFn2B;B{A)db zsS5Eu;0RdIZH3_1nHPeJGY9UbXu#+IHHPFg60jOrM&|%Bt{Wvh<#VL2yjj1T%FV~O z-xG|7Lh;)eG!J(gF)P$6F*J14-mv9poZl?K!OpOQiro_eH1Txf&%J{E)&`1aYPA&j zv$cNRn#WO+xX-sN^hm&`^L_oSwNi(5E?&HN;ex#Gks8D7D!tcQmpZTPvU|d@okb#y z2*cMpgATGI$4++M-252H$WU*R>hMh{TqS&0t`#dFp|nVpG}+={6Wi zL34e?py~3XbiN=FeuoFhWS985n8L8fJupm?6OWZP@uufbM`<@;AGex{`55=>NGl`% z&bL|_93mwuWY3MHBu=XyxGwTCOf>ue=~ULI{_D3No}lsSfNO#Fx4F6bGHJu-q|Bm$ z&Cv}EqD-6b5x%G*(NNMwD_-N$h~Ll*ed-JCqtjM3hU{EBlnvH5Ob-u)MxK&ae;+<2 z_jZD7N%Et&1EYhZ`2EtN%BJd43F$MG&_2vG%KKN}VPG!49j0UidQFZ6b{jxo`{~{pgji%2DK`ZI)bn1?0p}jvq8GC zxeL!}bbo*}py{TU$<>g+tQak`<<8~Wv_}qd+3c0T@RaQ@Z`^ixm@(K|i@w@oLHdHC z!NE-ZhZftt4hOyr8ymI#K$}>7Mw&ypTV~J6K;zt@`UFO@7lueQt;`7J;s}qfn-aS? z+$1O({+f$yzPJ9wYst;UC&p7asMey1ahKaKM5)S1$c8xr`Y1-97rd^Nu*duTe356R)XvHO@`+)oK4r?v12+_N;Bb29^UAJ7$&#?SVX^G$GwR zY0IX`kJqdrRi( zqy+wS_o_6tlHR9J>*(sj2kWNM$7DWx#c0VF>o!gox*Vv^{VDo+H~)CsFjva+LhGe@ z3Gvh969cj}q>SOnp~M$hBZkp-hEQ z4r1({BAx;M(cp-ngC|c_5mgW@enF$R+`YV}|MM|3ofl`^4Fzf5(8&6*z1Vkh&)$_? zlD8~MMjWk(Z#UVqE8yh*$5}D9e2;8)42qo}dtcen7>5da)lrP_0|*0S9MHOiT~P64)V&5i@nuf1pc1GgBD4 z1a*2Cj*SE2Zu2q(947Aa+ZsJ69mx}z6KBs$Lq#KNRGRqZn|Xj#7G;!An&3SJ&MixQ zEi>Bm3bH=chP#el55ozfsh?ON{J=U=>v^o!Z6a$r$Ua-PxH~hlr(AKa$XFNTlmSSukHLPo>^O%J3MK!fGw>sVe|R(~9^ zFGWA`kR?mO>ghNIdHHOuuRa`unVI|<8(y}UK7ac3>{iM;r4)rc1ZNK$ZkKmFD^~+) zY0sZHkzl^&9Ga6fXD}iP813&yhgZN!9;5t-iHX5@Y3+=Q59%(!tSKafmZca@3E&21 z7ZliIqk&e09QLu8jbWc0<`y}E^$-2S#ONq&Cet%BVUxu13)%`d0Oy!@Xe1QyD`Ssp zS~XqEn7k+DhN~CZXy6PV(LrO39w%CzzL}#>w}wcw9@fwRUo@{C35hV1W8(&Fy-<&+ zSeBO0)JZc-R+m5gFlO>O9^D{<2}iIxRV)Nk?sCPQ4a;8Iyy399H$5gweKQ8B)@-*H zM(={f_%>VT3)R!K61x$#3=IX0r$SGiPQOKcEJC{J(UAlEtUnO4XXfUv*Pyr)UtC9y zJi#OaNUQ80*-TfdYIw9E35MVTv#?_1m8wSX=uv~j>8%+RxM)G zFEF@m48s^si!n3Mrnh4h`FF9DCYb-0mFdgR+#-f04c^ouf8|j19OI1?9_k%!ZMm2c zKk*APH;jIx(`};NgKaI3vOjMN&O00JCK}=wJcg>bno_*(zbE?ysik7~DL{@~B?IGOyz!Wn>E`P9CDbnZgfsO{TQ z^c4&9^L>5PQlnw;7&@G`+&V(=E|wJs3&&kRL@j1a&SC+xW4&y%T-!gir4J-D*H{xM^I4@3=GI?k~mMY zyE24;Kk6mRPK)%jc39ycaUUr--VpbZ1`khaZ;%hhwqaJn{+6%IzOTmYFhm98k56*A zqO}Ck6+LaNnkc$>MXapEZ+dW&AHf%B+&*@79psRRwR(Gh*H8Vd8>IVci@Y2_DdCW( zgr>|Vi@m<*iC>`zz8@-}Nj5+iTa7+pnuy98-+X%{|g}oKsYEKJsc{ z%h<`GtDTLFYTlLX9BApieCfieMt*!Up@x+3$}U&pBxG&YV!Rx17zIVRW#_i;r^(=# zcXW1|M&&O|Su_+c$@+P8sF159{AU7&=0H6}e1x=X33#z2g-XH2F*}4HMMZC)(b+{nYP81~i4Sg} zmza|38>r?md{?JT;*&W@&{IL&??V{2FHT5!W1PFc;PDl4%<@oG4G5Qp69+M6BdHDY z`2Rw(O6ChPROrznzulCAX)3Rysmt&dTqWy{#yQNinb4Y9T273O(bDFA!b}Z`)>QIw z&E|xC^V$)^lU_|uTG3)cQC<6@IQy6#C*7w~hb;TzoE%&EPI2-*W&8BAU>C*P{K?5l zAmJ0gz!5>O*l^reUlt+F%)$aRBaTpPD2Q@4oBaJ1r_tWb>m@^2B@mv+Q$d;Q^f6zb7q9l9Y*`Foj=HS z@w>vTJZ-qI^X-&w_gh)eZvMai%3;@6v~?s2bW0V%MtlNp1yKU&sFjQ;bg!; zo(}j4Zbm1&%h%Q&qTj5bdprUh7J7Ot$w-7a)O}_Vm_~-V?GjOAc32}KS9*+uR6)4= z&`9na$ec^uuu*UTlrCuvjR(o)Yt99C?pT=_tew=qUMP2;GPx*ET(r+b*gwI@*cjoG ztK`+nhrOCcgNsU*0pD!>cvLkdPB^^zV_f#^)hmNNXV0C3)GUlvAaVBc@3x?QOW&&7 z4n1Os6W>=>^gh}w7L!UUUgsVlU%=shz8SHdo9}@+v7ZC{Js2;^Bh`xXbP7r3M0uNK~3AYyO`TY5FTibc$D6z4yx{#Sa35$bgnD1u9?b9vanyJGseTj7X_v@7(BXOgr-`&g& z3>qb&yMi|KKK+x96Mb^#EBq~u;`*@*98USAUB-<(60;vLL5SGQ>su|m!ctrpe)ZTT zzYuKsN}(J?aZAcio&!E=#56esE%)i@KGQwm4xWgpp9Sf>4^F==0>v0>;}0P^)?83Z z_F-!Okj`;^__cvR`E^Oc;-G*)ImU7YqN*BYnz#?S4Y+4t&PSh35bU zVpk#mhl7mI(8$Q@ca!7Mm?+bCo@8%N*3;))^B3WQ<80V@wS|@-w+~tFEy!&qkr?+4dIe}2V=pGZB_-w+jyp`y(T+`5di0;07u^tX zoTuW;>vW5WjX}M$8gC2Bk1c9!W6v>hu&%b<_58{$gVTuz(^g+j1-=QJ__1+ZcIxF( z>(Yd@d)*?69cNnOT)LDxi51GGPC_~`=QT6awnKkQ@Mfy`8Ws%=R_E{8gjE1mD1@$1 zBDSPs$>Oe+Bi<1h3;4R|B@y~4%u+SW)*`O2pV~h;6bu_T=w}%GueBs7VBi%}u4h?U z<=~G(RlQ;kVSY=pMq=y&G2UpZY<_OC*BKDa(9jTssZci{;T{Jtcir4v z7dPO+8RbJ-zzm&`WP^N$^C-@JWdS75mUEImJP%u0XjYc&I$N z?&*2Omzy1$;>YYRj82G>YGUJ!bWWDgk)y#m4EHOV#-u$ABh5@mARALzk zM#>~3L8iR!iS1H9JUaM>AjDYdbYJd77W(+{V{lK;>Tdh)44pkxF{3029Dl|QQOOg( z;S-Hm3>Di7Mo)L{)&qqE#3}f0u0TRj4AR0?=J1dZn=Z4|2~deJu@eC|HP&9IZx0B; z;b4F{fKt@u4#w*7EUoMT-0Qs@9)Vw_^}y{sbEe4wj9$#TJlXw=V2XdrxhB_>j0_x8 zOZ!e*b~yrN?WQ#P-qum`fb+S__p_xeA!Rq^f;L$$UN~+y*L-zgKb@~n?b)E=6|Vd; z4Wl13+B-haJkpUK3)ZZWGpaYxF;2se5MTyife>Wzu^9=ld=e0b8+{{$)C<8IuVu7~^cMmVO1`4?%IB-baI(CQn}fq3t26e(!yp!~#V*pU;Pkyp zzJ|<}GH37K;=QQL3!cFHbA-%>2PY*#5g*#GwTp1H-e)Bw|6%1NcAk}dn$9*2(C zt@XxX=BRSs7gR$uGc(uz9GYHmaSeYZlVgWQ5dWH=S2k1TzkHsWdLZ;dQxb~2V?Et6 zmuCVp@>2y944?=AJmX&ri3H0wyQN3R-QD_DsrBfrwJN<*lHU^xzi(wuw7f6N5+!~S zcwvjGhZ#ape7#z2Z=HrK^R^zQTDY7%2fZd5WWJw=+dotBW zt~q9a00f;Skln&=B8!Q$dAsXwqX++e%bT4{-rFqEKrxBE*@4N|WvH5oL5Ik~jvz6| zwcNZp`}&5R;t1D#yMWMSVFawKz8GD%93-sYq1S^;|KJODtJ;v>J#tgY8b_^FfKJgk z<0=3)6!o1%f~l)(F1&kbZfWlleVIWi;nJ+EvGDQ9N89bkxeqyia1(sfZ_Q1=dw^6D z6I01r9d)#I!=b}22`NJ#L&q7fbFN>z#?oqogTgyBPdN;Q_s&UDC{cH%E=k0~tNGgR zWjFYRtu7v=3)SJIYgze*DJXYuJA8d6nk8>U~S>Q(*k9}u)`pj z?5>RLQbHhD$hWq&Z8UiJ=n)T`6Ar$;A}5yfNW}FgaT@kXYX8rM%%cF;fch!u(T@Jd28UiH^t$+2KJsBV3kM-^Ee6WF9 z0r%enlW3$;cq*sn30J6v7u(W<*Z*-VXOKxvPTsb>nYE4sE-`m8xJ_lC{KJ$(lDS`b5-z&8w|4kE5D8=gf4Tg}hZ9)~{||F- z9!=%nz76jtA&DZAWX@QIl&MJO6p56v44KDFDMJ}65+#u-L#7a!Whf$)c?e08GDOHw zB+qft_xG-6z3W-)UF-Sh-RoZW?bf#Ub$zbS=NyjnIFD25gplvF#)j>3^=~`kpIu0! z-L-4+3P;6ke704FrsTz-bq#)${a?n|)+kCoJnKiM6B80x4;)aJzl7!mi`GPFNI@P* zIG2kUzz(lrYiG9;Nwp3}0JJJF2pW`jKzJT9tA`G;3{MwiGwF&BS3nrs)3ZDX-E%cZ zZSGs{1A;zLWH5eiYt0*n#q*^N#}YLa(`evAX|30->tfBpj?^e6~ zdF5^y;|H#GkzWxzGpF-1{Uitgj6|vlKy+6M37~hEeuA)zCKn+i(Y>dMNB?KK4tgDP z6}#~)y0#9DRPOhH;D(v0DR|(XV6u7^Rid2)`a&SKf(ekj?KV^FoGFG}Sg)xZRh(d* zpP$bLltR~Zrvr_@IZL^J^F^x%{%|K~YT3N_yKiyml(LpVpy{c@%fANhZ`#5!pzn1i zO58H7<9MYO2TNRN;KHY z;7{?NX3R>siaSK`PRJ*L4$AI?_|VET%$Rv+0YWY`U+^>p6>8`8*hK0()&Fdk@rE=K z8a+c`JPEe#H?z6wcTs)3r@qwo(9XsAJst0(gXeYh zGw33N`z2mH$&Wk3@FVZ5?w&oa_i`=dO0u8o^9o4*x#Ku299_6qs`;SVrMNnS^SX)2 z<~%$0@%IP|+#|Am*821-S9*7As$|fUUl+bj@`x!#z>E3_(A$}|69)`jI<+a%FX9)( zGz!8cLccy+zeJ?8{MoZ9)FW><^6szr1znb9I6;Ut36u&069FZgAObrCLiy;{8zA3k zvUfwjw7zqzf+Md}(C5D1USbd;!AS4Z1TPcaU?X8lEE0KU+wPq(owxDUjtF|Tez5hj zWb8%X$5NGV4q1j9UZoc+L;*IT^}V)6jEqZ0MX@-W7(~2oDYG8ou&sTYT#WDvTk*uN znjOoRzXmCLP+!*Y5oh&bVIYDd|J2jy;m0UMV)`cnCNLBg6>E{c|D2hDQpUhVKu)+( z&u+6jj^~22OTI=UQvHn+Zewlzb7>j8T_S?dw>UlE@4NX3(fGt3rd%nC(IOCu=1*;I z2P3WWYqWI*)R8^$6_{=z7NrK%)9~4aW7CH@vKRwn(OE~pgM~IA6e4VG?OhbS{Iq{J zoLs9Q+|JbRYpuK5k;UOc_sRUOhcY$dl-mgUP+vm2eF60m_O^vjRTo{{+^iW^u^^S; zTDh0Dwzj?gNh^oejKxrth~!q=byT;3mm;tL@CLn%MLR;boN&shC=(p*+tV62o&?zy z!H6)C1E)DBWA-x!z_Fjrbdi4hi{&&bTHDBcF$fu9?x_naJ9D}b^kilQNcuU5{{b?P zo?#^tML6Zw^sK$e;_wAQM1UmaW+!LGxKvtJ22xni`-yp4TNS_47&PVAEPlp6BO^98 z79Nf1-f+7T^I0VMkV4j4kgkaw`0)eaOc-)jj)!%=!aOwO7-IhDU6;Mr_VD{4F#o>B z9)9nhi4bS|hj(E3enl0C7z47yfP89e{jA=`;Ju1T)7VHV>d4ndQV2TNi?UcD_-8dV0JibC4hiXxHHxkP!p1*pH;Lw0S4EJy90+* zp$+7c$8P!j`Zi$-`s~UkkS%qewIC`eSQ2$C0kCg*hM;8OoxSIYmG9Wk$>(!cyC5m) zIM6RlGgen#V0xP5~C~9Y?5iqAijsnP1Se0TrIR zP>3@U3NKX@udBnSYF?C;_5E0|-qiAU)$IBt$&*6dQL;riYn+&=OpCiG_6<}V3hf7u zrnZCSt!rp_s#}IC^3daRr|&0^j5FPo&-X$%ld!0$D4W=`Kdi)=AvprA54J>^W3|$; zzP@2-8sP_Ru5Ok}F7vI%VI=P1#lL&Ql>PqhUj2g_+CA>;Sj}3!O^P9To-ei=oLOj8 z%2}=cD{BN846+TXzixO{M@-ek{P#x;C?zBd2sWQAC2Jw`WnB^Hc%|1c$oy z!0KQ7bQ}kGXA)*NR6DzMx4eAGlw6dAXzMU17bw6BOA0l{xd^4Ex+@TvGE?7HK6UC& zB2SW$EH=_vpME>_TMv4O&r!VL)n7Vm+b1udU8>s9u-$d1WPAjyp# z83bqwLw6quW`vbH@G37%MT!WUao?A;s7UX@+BsD^Vj9$DR)vYNm| zedz8_p`65@yUtlp4-(z%u%LJE{$51@NXdNQ`zar*rT-B~N4;8AmD~ z8-TsUy!?C>G`-u43KVN6XFsK1?|Pr`5mNMjPdS#YbrY$ImHi&~CJu~czDq%Ebg=p4 ztz9k1z&DLMOQLwwVD47dUtV6$9v&7(46<)9C(0s1WC~Bzx9MiF8>MRimbF`a^jO*CegwaX@`AmpcHZyycuO;ty zI9XPjXpPrYZJQflRX8KJ8is-epBFe9@;P%z10V zj`u?UowMNetKX;6OVT}k|MY(G?KhpBor6#x!o-r@@6N0~388EnS&r%b#h-5I*_Cj$ zY6ll1UZ1_OWj}faZtma6%g;=WRtchXbpk7gW&1Ygft|&fxX#(!{9jo>KdDtbI(2oE zU0ChQryF#ZyqCGo*|}nVghB1U%^65M+M(BAn6Xd?(krMqv#Goq*Uonq5j=U0)y`tj z!Svg_@{pmWwcxgmS8cBJXlvihwp6|@Yg*T(d^ssMt3ZI+vFGRWP>D+in|4zvy4r*s z6if3mDov7-s+-);lh-$qW@#m)8Rn-XHj0CoWL2 zZ_g_Q1_QcC)mn<>)c7Zr3vod_kw*J3f8{KV$>rC4&Yy4PKlXiRm|B<`ZCHO^5%)~B zcUOeEnvJdRt!pK`vys{vsXFpc+0W9Z_j8@R+PT*-g>Glarz=IC^d56uo&8D6MOw*P zoOi9ewRKb-N8iK}B?{TL)*QXazeIKHa6jjcecZ)NtiNexO$0okPyrHx-SZwokqQ(s z+7g&_{r%kt?$8}Pb1_1V7>z|@|1jj-}?n|(7$GgsPPrWK0@xM_W>YB;7c+9 z643Jqz`{Jnk#JR(=eL|R{Z{zt@`~Vw-M8HeH?RCEo;LDId?YSG>#`?&I`hDdA1{R8 z&-b)qimiAgnmB&q#no*S4iz)QXVz417tCYj=f$pD2AeK%NE*^>FJ|y0$z_iQ^L3@FzTR~R1Qo` z8B=0_0xjd7SjLj~#X7e^f~p*!;^MMx|6p+nGS#^6twQ-JFE12N6!s+^`-2#o zn7l&Z?NC}M|9p#|Y=0cFqjZcs3kGV@L`UmLG@qilbKOs9<9gjnTSTCbfO|2WdDm3^ zchkc6kF)}eFKZjB!@D%R-?NNO#`eise*G2Kt@V8TnVZ&+rio)G&R%PNH1o=+Ip;@L z*A|5tv?s8K>#Oe+f2zS#V-l^3h!?FR&h$YW=Em)f*7{!G8`CiKnvAtQ$T~hF8X%`z z=K~9`ta;=fT8blnxEX(E^Qk>I4J(M}4@Krrm^v<2*@szs@2)*@U z=zPZ+^{pQ=Q&JQvyhLR*fbt>bAjTUaRu<4N*64d*w4#U_VB@ePTE7=hZb0*89O#_H z5}iYWob-Z*^&4P|)1hI!1E-;oPh10qj+!|bWQg{_W4L@F9C_nQ#^5E+!izif` zoQa#zY9$`7wT*vNw3ZuNf&zt&RYU^;GwjzlWVW5-n{Q^Qs#fG`JWS--P*-zQKv9_G z-Gpm*XXhT!?2s1&h(~s_Yw;O$G+@-af!P<3O0%+T(Y5PZMlkPYT)g@r&I!29OUl*N z)oN%nizpC3{>&ADQ_p*(org`%3|QUEoM{ElYjm2rj4>rTF7Ex+12p8ovOyV2ZI{@` z*dX=cSCRlQI27ERN<2I~F#7#aJP$`AHN7l9JG-g}narhXdQZzngGiD5y8D|CnoapU zVPR>fs}{8!JFOj|Bx)wVS5@J(`?>2$N~93sm!r6iJD|q{#>t4 z?B@&EIrNNi&%6b$QXNX8U*A0{kl>Y!&3^jyJJh`ARZzcp3O$FvfjYk$d3n-F(P;p11{GXmk!=x~w}ONLm*SmmtL37cEzk07lhs;>BjKZ zo}TpKa8E4EkB%rSlX9n#A33}``0j_dooj-&9(GZFO9`smEk8K;Zy_$lz==H76Q=ed z8>u~&=p#oO_SHHWuEugg`Wssqcc7E*QgfUjJK=2ypbd*c0@Be*s8*kHHV7<&Mqywz zD2l-=3oCz(210k4SpF>lvWnaB2Kf$d8t^NI;Aw)h>Kak#bm8*lpH<~!=cMEY$0{)n-59~Yb060@QpOsBm)PWvJPq-IZ=VH2bjRx+Ysw+k5)@q(+1g@#7}J(ZDM& zFSyqGATLF{o8w4Cgzw&7QxUHfr;B%1@0i5lOJXv)oydd6ir)nP5|~bm=X?*!M>e5%ZCW!MD|k43_t1AZ=|aM97}_Wo1nJ>p!7 zCEM?Hc)f`ZLQ{l5ASDdg9F~$QLkas4_ukwdxt#3#_GEdgu6G98_+28-D5mk*<~^?- z92prQr+Rq)Y5ORyACWjZz~8?8epUOz9x_CzpT#-bw@uo5v%f)2bYJ4)7L77#Kp7_#23lbP7-;`b01+Wm%_);t%h@-vc67 z3o8?3z&FUeEJSc7hI70Jb>FLAPcPz(dryd;WtS!&z&NS6^-m!1| zj)W`c*P{#b^RTTD7XeG<`n_0WDPVpa>bVlss4zVHGNnvh7({^>-pwq+%sA4x8J999(8^t>-=`+>G@KXh|*op{kT1eb*bQeap71( zsjj@*l|TcPJynB53|xxpB7(Ca90M5s{pdAl9i|%g+i|Kz?hDt62iP8q%YQ+cp_M?T znLvbrjzW`R8LN<5Z_4Dn0JyE>$&=ba2XF)Sp=aTTHsC5p1A~4z5%0N7qw@kgGdqbP ze>dep4_O3ei1sl(IbfvXf+yuU3*CjyEUc+8CS-0xJxs{T=#J+->HTWG z#Ko7&9XqH4%gV|M=r>kc1kg7`OAsl4 z?1QdF=(M3qP*~&eb^>0LXSgA*p{;HG+4LY2Y|9P<>d#3@N!7-=$=CK4I==d`0G?`) zG7z=b_+zCMXp&f7=lTr+7M!%K1J(z9_<~g07(M%vN=nv)!JS zl+0Mv*Wb}`u!hMuiB+Jt`i}-;sO7Me3l5I6v&G);3n?dEK@vuLC*&&T z>$7J6Eh(C?Oqem17RC1kV`db}SEB5z*(L+dnLK;?)F!!73ni>Q)Jj0Lst3h8OwF@O zem;Kiju}|y?Ch+?;r#yzO*%Wpo{0tk)oE(No`aFc2<#1RsjJ@(KeUBd^7o1sAulWL#X=Ti zKwr<~&?C4@m@Zg$!<-*(g5_&tDXPv9ovpc=1oE7eo16Qi)LSxkKXeNc6OCJ<-sHA$ zOGz=`!3z)Nhc22}o0OM`K^#EV=2Nbi&Zrx>6$t%dk;y*2Y8*uUTSBE$|E@*$6~U|2_*_1?hz6h5-&ela}#0tH;mVN0}M- zf*gibE$feqj7&Z03V6M!DDvOAX6*?(OOo{t)HOkio3xaaRIRUH^~K1>PT;Eu{)!xx zW_^~qrP|jv3n`fe&+yk~ZSAtsQZR3kE;$c5bTb0Nh1ikxq_jic^Hz(u_4PMTxpsM2 zcXW6E&mVH)4;in897}3Fr>o1<$mENLB?OhkqEbWA;fF5b6Nt)iOIa#GugwM zIE5si`$}o+E(lP@dt{h@l%^dm+c}`z(#7}zsU1de*>!X=3P62feD3)7%#*Gdg@$Mt zoy-FTy{6_wK-UBGwyVo`?RJG~{hOqki`;XA9y&Q~Un6_13x@8!8$<_@sd(--I+xXj zU<>jm$FqbPV~H3MAubv9n^l7W;x2SlhMfuu3vtle{w+$dIzYK)?Wo{3WSE8iw;mRk| zZ^&th;npavVXh7|%Rh~d{QHyy*p0glWCkWJHisf3BIXQC;BVj-@U-!=&wHMc0l^1m zYT(UDt!drk7+uCnGvdbn?^%$j`kd23{G$_Hw>*y;z8#- zm~SoT-~MO$8JS>Ew1%7|aUP^3CAG9e>|lD~ia`YZe`0VQXEh;W8{q|%IJMpE(xu*s zd9NrZcuQOvfirtlukHs@IP@%h=!D_M5YvG&iqHhA7pNFnCp@0(8kv}Y#q+8(%IQY9 ziXCw1(Gtspf4iNe6wJA4s1a@vVZx8%p*vn|CS$SA`Zwj-Q4EA<^Xz8C$U79&VdWu% zgc@R5nVz~k`B z8XWh%k@&WaIWbGv9W#U+#Gl$uFD(OX5EOj(W1&nx+v4;0pTFe^!4QE5XcNxt%;+BX zU%OAAmm`HX!V~@c>@%@Hl)bzX8`p)iT;Jl8%gIbFJss5B!J5Itek*9P^2eggxukfh zW{3KS-n*d4p+g9}D=Q@csy-$9@a(1{qjQT;$O4zZDm_1u2hRbE1K=O0>))OTcw%jH z@Y-BN(3@BOMDGKKkD}^t1oc2`pkayvU%y?vjQ3xVC=b{C+RWn4N=HdVY)I3g6HVy1 zAcmJpYIQeN+Wi1gFwv!3QSs5{kb3k%OHdWzVmAarS^GDTPb-KlW@i(P%^*8tlvWd1 z`5(Xln9eYzq6pkjxm+;zbABK@W3X8!gju}h@@p47Qs_oK8v4-L3E3qovg0_+Ktv8n z2s2WF->xgV)%T_Bza!}*&*r0e%b`S{0EVHxw`fPyDbWk>-Dg|GdrM@*5UD2wkdRdn z`FH!MbVJf>9%kywsaIQYD`&OEN~e*VcoUTG*S8sziqbL`XWP|RFz&bW?^6A~_^0|M zGfy7b^+IQ#l}0>zeeKgK@0E*pXMbCd{e7~5-{^x)lZCA8fKPNtCG?@Kogc!}txK(iGw5*)}NII74cc+&gm=cL!4!Mf1H1Rh=8UdYyZ{^MWZ_6fN5du|`L#L@6x>O5SVZE8qr#!Fol|2Q_X0B^dfhU~kwZXJtV|3+Fn4 zHlA%RQW@Lc@y8iC%~OF=TK%KQI>KS_2Fe+vi{^6{Es9r<;w zL(|N|3ueM+{p5OMxKSiinNwpT-?-@2!^Frzo)E@vS3Y-ETRZ7WuHsc%hxY;WM6yFohLJ4m#p41G(Ovrs@@!Xu->l7+{{ejs&!h1WUc+4ME7LP zZK0N{fF{b)bq6Cr>B5+s5k4CA#~MM~=rwN+{7`qM2-|f+Z6nxnT>%h+U)X)f z;Y5Q*o2bdI!cY0_HKt6X#%t!BhJn})$nQYPh05y?{Kad{D>6Ys9rlx%!7soO&UJa*mt@EImMZcDasL7%@jY&*KM(oWqrQ)>poa-`Pq(e%QlAyT<;hh-^9ebh6ZD?=nk4+i{piuvl^*oe-Yi~2bzS* zXk|I*{i+A0e!RGhX-No334SEf1Gshth1W1E#^(zT^wzWOSK1vtU;A-eFCL>}oU>GFElC0eyvsS}SRTv0m{aL8T-41l>s`R*Iy zHHKKfe5nB`cmN$)Rzmswy-8 zd@~Gjt2g4QWV$W;|KqQ*=By4N=JWRPf3!&YKP>7nA6Xnb0{c;C9(^n3v89HA4Zu!Sr3-|sFcc; z<;6M7?uw@JrhQM`0qC;t;*OLR6)h}Ou6R1rUJk6D1}o7}9z&E~1P4>mN}y8_)Wn{T zA1g2&WTXO`AOtqu8sqt0G|ugGZ{>2Jar3>Ag#c%dlxxPl_J3uTpGr^&t|oOt`~B1< zUb}T_S7c^~zj`I#y*_!pt^+Im+gPdYOV1~I3&tZW{|ryp?cGbh(G^TwRBIrOJNdDE z33eInD#dUdCf{r62a>izvAvt65b12B!2X ztAdaC7W^re>pY+qv@3sgE%QcmGCau<0!-=e2YWj7)M1w4q^$>Wj?v%ljB7_ZseIw% z5=v6lgHz|tW9M3qZ<{kn^}<0X_<9KE06BpXY+!_OATHgWOML@7!w#-LzjnqsH(ZkC zP=Mb+CGI$8&Eu7yuVrn@#tv?lH5zWm=U|EDVH~?Oc#;ivh8Zo7>A)^Yx)&?mK3#e5 zmNF_p7~x1y9f&9rG&{&-(VN{Zti$)hTR&?b1>FpQ11j~zfS@3{87|iUz8MntbgPNL zB0;DQGK@nD??5K7Fpq<)pRI@p=lGrp^q^G!erK*e(G?Q%Ei?^(bCT z6G^0`(4EXxXhGJZqas78YpM9;OmvLh$mHzg{08o2OcPYNT4$^%fW2 z(<$8aq|STk;8$q|zS}uyh=W}TG9J<|biAPbpOF8xu9+wED&& zf3N=+F$f8Eu)?k8RA;x_K^uKkqi#}ofrTaF)@>otaFGqUR~aF{OoIVO-cl9K-X1RkYNr`u%J+4=0HZ! z)Wavi%AD-%l6#)-(3B_IqEXROJEJJh+%@WaE0MF5rsn#5sj@tNN0#GqCV0&C1V}1* zo@K_$Peuqt4k6-qDc#>yE*=fv+jh`)fg1a1ABH)+|~X!H&WMZniRPV{Ur zQ!AO6Bn4sI7d_Ee&0GV0De$Q-2uIoUR&Yw}GcPyqMU9@bl$kW}$*JU&%(63W z6s}RUS^6HH_AJr|W(T^ZB`d8T;3VpQ;jliuRKgOXz2kUoQ+~6A6 zn%;ArI_x4CUwZp>qAm0Cl7k;UnDI8SAe>VLPIS|QZ^kGOqIml#9iAgndY`{^3axR9 zKY#v&cknreZffhwWSlGP#VS_FH_e|wwH~?);qM7WD=!RyWe5X24yx#B@gbO)0;|r9 ze-u_`|Mu72@Yv9O5@5$c`i)6O1tCe^d+(t5Pcmtx#~8-f^g5iSl%&8}qm?-$G=EgF zfv-XwZ#0Hfv7zMxlyimEpO+!nk3pZ_(Ib359joGo#8R-vp*0od3?h+3>#u2q$O0Q7 zc}Bc^+!qPu2FzoU*9rTe`SoZA7qR`cyzl>gveLYQc)N+9`6cIB5wE z4vyMKLL;6du4RX9dpX%tW1McCN=2&+eDrB?W<>b$B4)S1+`Fkth#mN}wm>|_sRUD) zpi)dearIy-skQ_?;z)#*IUxxQR?D;bt*ceXS$Ao43;9+|Sy@<&jE?Rq?guMn;w_2! zLF2F$Vn#l`Tg&B9&EGNs_s?duwP`+j=Q^88q7nPRkcdQ^(qHa46&lmpZUg{5LUu|m zc?lgTFD5q`BdUNNBR8aspOzb6i@kR6KslvIn^i@SbShPoA1X!q>o1@^6{uA zTnRtEGIL<%vr|c8S&UNyFP!Kn@NGZq)t?5MCzOXwm<97878gBe!FqBH9 z&k!na!|E{=m%Y1m6`9kJ;}##SuhZ@*E)$)OSWq6-^XGdIhKnN#s-7&y#zS%6x+N3Z zCQpdLMkDG_>7Df-K_t+3Sbz~qyDZ@EZVy8`Y>j%I?;T=b1@QK;oz%fnp-1M=nV1a0 zrtDbSFI;iz=;z4xp)RmL{(>Su*H;XtH?+%)(Xv3$|4*|RX?GGLDsZ49Ww}X7Lm0@q zh;)FM=3C*N(w$@Ejn){dKaW1Nv`jS`{dGd5hpc;Y>G7*)w?gIFF{EP%!$msn|3I}3 zQ%J5N6C_y2O4mdcz97wALd6U%?+Tovq8P@e^VfTRQmP_7!~4@OmG+bS1XDCdZfI`O zfWB^6$0Ol?6@1Y`OT z;;NAm3zT!w6fGesX;|iJi@7bpo#_kguSAocVQrAk@&W3pt4oFKvs@5%Inh}JSc>b% zISmaVJRunDFJHeNvg$~Kat4?-#Mm*I8{|(e*4+E{HJauH_`3rWpRVySmxC|};)LUJ zayB+L>o;sbmAZ{H>-ClgX1Ha(i;xp>B~$f<8%t|0W)Y+CsJEgq5wI&yMy zT3Q|WJbalgTMe``D9!y&m_g^ospJnJq+6k(%?%BzYHG~F#(p&HP<=oI8?mc?$dXhg zP7qHqF_4ZfA2*UNpLOI38=nP=#zDg!vSQ}JcSg{8iBH4HPZ0bKTnRrzcZiSG zI6=4J?OSQcI6+Kh=`DH*b_}2NC9T`%TTy6R=FywZ&P>^qCCp z%!Uu2(QL`Kr>3=4SU^C{?F=-h!KTL`nW*mwFf}hi@>k0n!M{f!#_fg8N)4bRqG9K? zvu7XN|7hEt9V_>^B`ZEAMjze5Z1P#U1*qhtyn?X(iOmodN-Vq-);tIxtl&yN+Tli7 zpgL4!*{EMgVfHA_SM5x->+M-@=!d8RmJ4rKL_5A`yt;hvIj&rPO=mQ={Rh4Xns>|dDiFA3U zA}$v<(tXuSm%bwL@}s%OeX{LiZ6BC1-rnB+a*p5M=Z3pQD#{YYj2w!D=*+1*7C0#A zQbh}g45nJ!4nnR)O-=2gJ~huHD3DP>=n)YS%DgGPtyNx5S4!JEAIyGht*)-_nDu_L z2^u|f@HTix8ehJ=P7%XcN$!);BM&+Ar1b*OW#1MU5RcR z!4|TtomyJ>5h?f!%|hrgRNo(&V^DV1o_!Sd4Es<+vUv7&hD~pw?GilB*n>Bwd2vUs zQnG2DAzE?x1jFmt*KMsj*Ay>vz|W#HBVzL4A5;O67~F8RmRJx}-$6>YmS6PO&jj-l zXf7%lrI}WA5ANP&^+Sl_Z+HcQCH^#RS`X!dpzJqYOvmWM4$_87iYD-#QG;XGuV0r7 zBIZ23D7){oAE(Xf&^oQl^dD&ro?kkNW*Jo96Jzx_Q1TEJZSUzhzduq(qeFJCE#a6i zo-e^|U}a6vl45$VzF*y~v^V@KlO%d0K}toWRxk_zA2TelaOeCv6Nq6?ulz9sE8>Yl zSH;0~>(;HQ?U@XA@(v9RxpZ?19G_}?HiG^nF{to42zf5fhW*{a%&cE}xt*4dPOG@( z^=pNkz zRtX8*FK!)`P%dt6-Sg)=vkmmzC}L+06Km8*djugYz8EGK<2jNAJIW*2L`8o>g#<_` zH8u5cFmu{bG|X@;@7uqh&=n+`G`k>EBHceaW`kd2TQoN}ui(tXS@vNbIi_%{%4{ET z(P}`cExmZRQZ!~l!CMQA$DalT>eqr< z7wzriK``A@c82We(W3!cnSRPFw>KU{@5rPR-v@;UT}Q)@W;B)%1}~!oUygp<5`8-) zBSoXRI(MU@di*GMP)71cG~l#RvgL2te_}JfmhrG%%)uM7-1kb#%0ijM8U_X`Z=BlX zen=%Ubn?da?N}W)`Ae5Bq41iLVivY^$>bfW@F62x4IogAThoxs2e4-*-JE#TmohWv zzjgep$?#X`!Opp^B`L!~&&KwR8t>@ceg~}>9!oJO(R-{xXo|w{VU`xe8}3u4@QUBr zD}!PhXif((f(R|1Qil$?;?aW$H;Rz*iuwk3SC#Gr=Obg`dDU`3$n`(xRcp5K9XYa$ zwKFs{ghws&Uh#r2#f8ZoKaN4^e4aymIQD$cI6NRu3*U(l>G**NR)a>|*R%Y5o8J8N zd-vMGtOFd={q+0}1ST$H9W!wod=eSot7lJ5I?qkxf&%>fK2&&K#YI8elahi00jIK> z8m7h!106wFkhy&5^dZ=j*S1Kaw#z|?O4ajmO-&84OE)AUP}#-E_zOYlL5r3I7$2w# zFZ}#j<}!Y^=f(ldDdpjzkwchr#ohfrP1Z;KPWnlTn|{P@Je}DoM?R6LsN43`wauu? zX%gPR$11zHQR)6DC9dQ5Xlgtv-ao#7hmx7lY;|NfQ7x5M3bYQ&6h|E6c^fVG4RNjZsPKG&nab)zkOI zW(Qomc8yz&n0dFcK-Uu#XH4|^i&zCEG`IjeiElT8Zr?rwamgLC)(VP>l(A9#7#%9g zyYz>U7X(gi4B*3CfzA{5s0TFMRzkTR9JJPx^;BB-Y zoB|3GeJAY^xHI^Ege8;%ccviWh#}X6IKNwA$k{Ai{GmO(I(87;6r=C;1;>Lj3~MP`|}!D z?pLqaWn^TI9<7KuNlHt*GlIy4!*2wxZ}6m3$%nUZpHAsFx7DSc*15etLzLJ(ZL!&Q z9aeMDAR#md{=)G47hw>D@`~^^PA5l<%+n~ILO6l0XL>m*s49>@Zna3R9E4DnKYw6A zfU5QT`x3t}h>?Yx5@C0J$Sw%9{U~pvdRCgOH*?~z z&>@Eb7+tN)C<3?Dn72)omnQQoH>gEiz~pU|1bub0ydbcFQw2_^XtiEsfVPt!yT`^~x2?gVDs)xW%l~Uk-8Mc$Z*_{zuGd+&;gR zf}-cemFMN<%fy^(H0Q9JpDV*QfGD^Zw#KVR$*qySQr#pvZqHhSifiW&yfl4d{sDml z@sxgX`=ay-4~iiXmM*^tmxhJG8QA`s%KI!2-4?tl-y%#iy`zuQGZ>}moh-~-6Xalg z*J7kv?$jqw$jHcCN88L06(D@YbSnEK#Smj-<1bFX-3B~$nz)hwvH6`V_b7;r>_)JK zDC#ThljCRk2vxI-7jsSPx7)r$bWF(x6+%eS5#xywVV;VUF2R{Yc#9BZes-2l?mL1s zB=LlUw4H+OK^fq%sA%JxHzPgIQ!6W1AOc()x);V^36)~)#~Q`O#eaYk4ojauE={qv zoe<~Ut2d22VD!N2Z-hKzT17=kNy$PWYJZl9tP(K@gB-Jjlf0Wn6)s7OPaAT(sw{cA z5O`y&!7=+XF=3#;2YE4~eN;A%>y97iUvqJCLE!yI{-pCUf0&b#^ZYp&|Cbybo)v05 z)`&UksY?zC+tBUv+UZ)*IfX9FbHm@zAi%M}9VeGKHneZ_p&SiTH5oB(Amlk@wSkl&2>Lg01Go~yO0V)`zGNV;5Ep_=q^DFsYP$UAPrev~ zpsw@G7ZuEynULH-Hfim?gGBjrc2*iX#|VoxHNzt#BlY*o0HDAg_M?H$*!B63xqg0r z*fVjGE)6IELKBia?Ed{(=tez!^axh=w;|E8iN+V8YY+@&XJ>DUJ7R5OVq$BHA}TEt zQz;~7F}H{XW7N^nz=tw!UcG4^j$w?H+x~+G^WlX6yCO9=f?$%fb3S$(mM=T21nNrI zq1>FD7WOgDZf-J|zzt7`jT{pj>rVr`gpgT*)*xnsqL9vZvfGZhAAWTso$U+^MUaNI zwjM`?Cg)A=TOfsOY;0f=V2>dGQB4t%mc9n7gILJH&5a1IZ@<_;A$t+-8G#)lelN&R z%pRhj9H;bMswX>}S%}LA7(YBZDsiET)SqIEk+srJUzD+1apt;UZqbU4&ESF7`tB?} z2H;0=J0Z5kd#@f4BVo{Bs^0_m1o0i@StPSVb)hSRfqSocdd|6yBKiPSg8mc$8(7MI z>}OD6oY2;WZdb(o;CvN9(Dvugt1vr9q@^2ZuECru1v3tgkB@_f1qc}UAyyLGV*)@2 z3~Xms6j79?9UL9)0b35?>-M;6?9gY=grG_V!bleM0zCw|QQ76|V5(!17?6#=Yfl+fHHf*1nU`$$bWdG|he0VMx*~F8na+_1yZDEI}Co zM=UxV09Dm^=dkYBaSyWwpz)`qw~w7&PM6*TF;Lq?EyDprJa#*ZKtk@JE@byUKM>i7 z=a_GK&(8Ze_r1B1R+E|_T4V!?k_SFT<>H>OI9pF`?25yuT0ZDWEi z?-4LSts;5*%%&<)j}6yp6k9LbPbs7>Oj^C?F_Euz`REVS*O` zUz`va=baU7xnKx`qmDhyS6xANc7sMTf;B=34A2C=8jyGK!Tywd78B1yYb*uFdD|CJQwprLqq-j6}0QtND;xq7$1WqNqf(x zgwTx#H3WkhgdZ;tv2XpOyrpv6G=ey7~~_wUtW#B<*mU=ZTv;f4sDPuCwG`|k>& zf*pw!cYIY_ zdkLwFmzNjr7ZxjmOrvt9fggbF5-0#C=xq_6H886yAX3CyOP|EZitT&%u0RH@8)qrQ z1iL;>d2C#V@(xP}XYIBOA?5uhudYbcONeEM_&!-i~s!yOVcqj8z#xB#q&o2%=7y?kwd1#*0mPij5FB%q0R z@88$zypHS9O1|MK_0wB#Wu?cQP5xNLVguK3p2FC}w2a%CoaliEIs$7K5B*gnD9+Ba zSp3Fo`A~=>XG8Fo^T_kTHB^3(@-;!s{(Ew>I_q`}Nh4LY*T6r++}HTUNs~zKu4(&Y zv}2DN&K7?7aKp&EgC~z)jI~<%r#;mk$qqnHux4^Wa5NFWErf-I<;eRfp17O@UlUIm zM#Su>m-gd6;$Tak{Mr<|1T=o*#*JDotoRK*W~S`% z8ag^UT3Sco+EHp>CnlDOrd#-92QvV{1Y}lZ&rf%24VP`{?bR)Mg-{Mb#Ozm}JE5W5 zwr#6K0tqY;@FUp62EX0}bX>6+N3?)g7~noEwj^LQW8=i~a!)vTB006QGpr?g6twK4 zzi^(^wW@dNSouiPfA#DsX}EV}uzdPKrMD@4=(@Ct+|gc4BulMuXfS7HQF%k#+OK6`ZaN%=SuihS@6V6OsN z0Y=h0gN^Np0Y4bjs~3Lvt`H)!pdfPFn;{|Z&=H9tFKL1j_%4iTMFg0<(b>*!lEA(& zD>g(iDXSd;J)kiw(N_T-!q4XJ-o1;o3PF)O4!xtJWA6;o0*r&IL_leF4Q-9GVoy}A z&i;~2-^S0jy&hMJh*hWf16tG``9KXH=ctUv77_)?E@deH) zwilktUxbH1l@TcQr8JSKU7BPxX4Id|)C_3>SH4J)$LiJHFu9m@xJ4cO&- z1pNq;_{tyVq~d3j)N5^bBqaVc*oWGD5yQci;li5;)gX;s zxPUp;WE*=Jw)ufqE`Br!o{8d5GW#|um=^d=|G+@xBzoNUkQ@+DDy%X*tO#*|Iog>s zlh?ub>b$O!^i6GPE6@Aq25DLzk4#S$yj6U0KyB_Dd!}65pWUz~giznyAq2>RMipo= zx{93+3`6A4!?qY3Si6wmU>j`QK}vYQ9GX{nLT-Fxsq0q*OrHi;{)1^sy0XL!SwBhO zZKtUEtxAbwj%pEzmPHt7MC6V)Z}z~DVLCWQ^qkL-OtCVsABEgPp`kfCIdO%5VA=>5F}Ur9n1wM|VG9=drG= zN6;$<-iqK3a2`>BoAU65XL`NoEcr!iYbjh>Tb#-3wJ2RH0LQ+3<1CDkKMjCd2D##r zlBkCdf#Gv@x%Tz#E?co9cvi%OBM^yzCZvQT)ImloE+R4mW&w<{T~A&Ln@dBN zB$hq*p`Mn@#@FFr2N;De_`G=d=NF{EjaTbV6$qY@FIhH*0tv!IAa=K~?JbBXw@^?- z;Uj_D!5<#&r$oXIz$+T$;7O0xa4EM*%-qT@wm5R+NT&37rJM}rj2EW>i$6w$ds>1P=g@1;CRg4_&WZf$s9u z;PL5!i;V#tyn5sK(B_ADUJ&9L-Tdn_vy2xco-imrznBt`7)m{uJ@?2H9xPsrt8Ee# z%taV_L?0vC?r;@2iy)3tD(U6HRL&gXqW7UCqAQwbd{Mtt{44kc<6nJ3R^ae-_LTvmww7!i39=H%AK5>^%^83L%F??uoLcsshRLx=PZ_8rzrT zzUG!>&88L>2J$V>p!kH~bI+bV@mD7$%6lGQGmUjF!Lb6a#1lYA^KR6D(oSPF+Okd%OtaCQ?;zH>bbZ4QON-T)@I^c7(nqCfz^ zUEt?Wq%uC{;c9N-w4~-Zg1C%jgY9EsVbR`$!3UjMh%WtT5IAO!$s%5SZi9LiJn%Q% zNv0&tC+}zEY`78P^?yvM&iN73ZiI-1I_rXvk0jg4x|$m>M#jb(Xa^F1thM#YC*psJ z7vrYYz=inH=QL1u;s?C`zx?{)Sv)zuYJdlV0sL2!ka;f)^VZpL4a5#dMZWJ;Dvkce`%$nxrxb{PBzjaHbdttlpM-myvUHe zr3uC{Kqz{-jxQfdl^S|-&ZwrbuFZMg?BVGWMoty+w=y-kA?;)P26i7 z#`ECwk$e26v2ll-v`fw?P#L%+17yvs*LDNK1CJi*X)B$k1ikOE200su9={XkY=|pu zY64pbPf!CVA?>t=2CJWg6A*@F8;sOKEGPd2j{OxH|46WQ7!>cEuLee?7`i6`xzgv^eULSnE; zyR|ndxZm1Am_y>_v#;mO3-UqKD}Xzxac2^zlXz*QAKbP#je0rdP6(|kMqnIvTnKmb z*8ciMz>kJ0MDmZ(T-NUBd@ZoTKI?XKCX~GGNy#`)mLc*7zMhq&B7aOPBi)HBAwo3; z+D47T^z-$uT_Y@~S08Gu@Ad{#U?(nHL%J zd8=s6CzaGzy6?Rik_paPd0_$WxWR=esIEwI1IG_RN=*#LIMK=O&W>lM-e*>JIs~&$8D%N!*GAU81WhlGDO%d;caLf%&ldx}m47)!(ii?gFcqod~oz76L(qBvU# zS>6e-^bq90p2B9^f+Pjl8TkYPj=r|GJgrVY8VVDhG@znDNITeFAKJd^`|{vWgT@u|$K3CGrpengvQk8udQcBtmr|pL1S^ee0dx}4D5As*0#MzSLu1i-~_=YmDYiOK(u0@p8p$^Md^9* z(5*u-W=Jg&;2_a{0_%aI0RRLzt&`AGKFMZh7bxFLnTCpkc2WMQz?}UA+yL3nG%wuk||S^ zImuX*3`OC$U+R8;&-?xLZQr-HdwaI~xoZvAb)DyN9>;#{$G-nTDFY5MY>wS*vluAA z*(#j+sQ^npecHC}I+Q_=V@ecRKmZxH8w-grfW~(r4S~(TCe&M~{?KQlTfO=?4i}t1 zEzW3oWF6TB=vO!M>p6y#4~}Ny$`=VP9{t6O7qPyBmtRnF2I$_3sugkk{rjKLsKSST zYfcH8X!g5uC4h`$RpPVMj-W}b$+JDB`kn$Hw}9A)F)1ve4ty7WkNU-kOa>*8=fH*K z+VAob!}oP{yD5}@oPH-yo9)6T zg+MVyTNNpY(Edzpau_*^+qPJuF2${eZ7d2blo!X53?bW{RyB&Me=Ze3#&gG+Np#=D zOC3$_{x-n>({Og!L-zO7zLqUJOgqF8k?XNk~ePr1k?-?JMFGx=BbUTbQ=FIXgp;-4Gmxb3Z4{GCl*A$FqqHyWVmF zzG8KlDEAKv0#lcT z<`xi`_4HbOeSOj2;gt1sMS}}m2h?{(rb0`&`E?R%kDXX?zj0Jx_%9CbaBgZux)0^sRjMv?F@(D`Srx;RbS;DwGAaPF+YR6+MpGRdpnQ9T}vbt}F^#>WgEc2vk zI&?fP0++Ep{B%u?%Q>r(5^AvKeNnxgdNjUIJB9X>hgQN4 zbinXJ9xD)rbZ-|k@o$>YCDji)vgciJs5pQ1MCOOP)74&5wajaxb@~0(cJCsm4VuV3 z4C7~BqqRSO%J+8oWQ+s2s}oB6Dd}-bircjGvJA3{cA%6%SrywmT?EonX&cUAeF1$O zbm!AGZq-;K2JWH6qsaj_CvNk|+e|@!*5$e+1pv6lITyND{19ZqQf=Sk?B*7kwora) z&V>k@(|oz~YuD;!97Pr19Gj5>SQC&54y*9wjnwO$`&%IK1hfwy{S5FGsMY;IlQRp1 zDA%#{F>DGFP&tDv+*1h6Gmt86{g`nM96#O%k^-@wxO(O!8D+GcPa?@xl2)^~&wl&} z{Kcu^Ms8TrXHfS%1a>(p7jDjEt3}m`iOP60)gsH%6GUfj&?o?CHM>2h$fV3*>n6Rn zyyaaJ&n#+XUNYNQ<6*zKV4(W`-c&w*{=qYAeaXr7+Y`?ZD{i5xO??>CI+tX|apW-i zA;=a0rMkGdfI|<;u4}PI)x9rmS?R@w{Tt2Tnnp!5Twne}^#*%{N19*QKsaD)HDet! zU@>Tg2T!;=(BM7+SUS(W<$}3rbUkWa^p^MU@960fmxhjUS5L>{ z-g4p8Kci@PgF~^pJf`J&arn}r3i_oz=zGKTZD&JSTv(XP?^y@zOO&CyT%K>^DGgD(wy0b$RxnlzHpv!09j6HQeIv*VI@tH2DVh zd07L^!=Yaux+`8+w?fV7ww%()7X!W<_lxR%d0q0(e2|%qXfX%AU^;uWJo}R7$C{(J ze{PVOHH*J{_X&Or%2T_Feqw|I?H+{u_w6M8| zgq7}Fz}~k5>!Ths(Ab`4=GVJu{G=-}+W2M8qni&yYQOeA8If}R3&cVtM81I!R*9WP;-8@SWctz{V* zwi(h}-NQf|e2$*Xx6s2f_W|ZY);NHSm1t$e$90(JzAiBWa{BZ^rqYefzvObIFP7Gq z#d`jhnLVbSlab-t=ZxsAnUI+)jJLSHoutitdexqJ%`0>o!1X0gz4D6}xVaO6E8WFF zm8|Dc$-Ld?Z{N>VC{4XN{7J2(;>AU_z1r#~CMNyc)e7WB)3&e6=3BGwK$z~B$^-;a zgcc=>%DsNOWjKNOg!bHfj>2OCo+s5xeqiS5P+8M)XE0H~>1GDvuw@HDjN@Oir=db8 zbAXvGkSK*+-rS;q5D|Lq8b+4O(5V5B20o`gNYgM8gYvpXLWiO;Bg#M*^*3iR_%R!I zbl9)%2~(1$^~Mj+lDDt?&KeO#zm|zfTT2US!jqt$p<$+5;q7G`o-@1E{A#!au*s&b zawqlva)FZVde8P0U!k&q}Op5&Q(o8QqgK~ zYfNp*fUuL%xbK2g<)*y;74?VA-kt$uC_o{-Dm}eZ>zOl>G0={1I1)U&;j~?C&THVp zNl^c5YHrt9A_RQxD*lG_1e0jn?$m(BPSJX%^Ompn_4g=->x z-CI1;9r?DJZ|2_QyHVeKr3w3*&O}9;@{22`w*=UMnykr(F1l;zTYowB8$%dv*}-WV zWAO_KrpA5U;y(mTh!i$sC`DLUTOCTuIKEsD;i2E;I=~mFW}CIS{fYA_a8Qu8jy0HG z0x0zPvn4TR@dAV@!nXwN%_C(+xfX*A0C_3M|Bv2mQdkNH`Va%>K;J*{vm zmMVGPr=3P}f?PJG*`}~6;n2l#A`a%zW`28V~EDz4^>e7E}B^&dRl zxuEay&0D4ZtzcB$#h+pcze=tyt)-sjTXX18YvOyY@9fIX$0UgfeF?kefE`><-oUZeQ0%nje^uex0VM~ zHazwqe}AK6$B1%c^ValsqSEA+6TERV^u~=ikyC-X8I1JwO?84CMp}o#Ap#XUZMmXJ z;c6qY8>HL}6gnnO8#puj!_C_eqrx~+k#g*bssnbv`%VpdNqc2C51zKO>&iV|fjfza zwtxg4=qNoz2>)OlN+6;Zq5F%riXrM492f*W7`P)2V8TAW%X!Vz%naH(aMCT~N!7UD ziH+*wl8*^ZH<8yr#C0U-o@p*Gnndbdw-I}}i?>U=cK^(F*cua^{_at;>%}&U*=?;% zaaQg7>U-H7<@%@IwU6JCVdwRf)SVqYE8-CPbm7pvu`MYg`NxniplK_le_*DeP1u7x z4O(ZmZhp|&Kq4C_;~@%HOQg+Wl9Jrgt~NOQuuJLIZ~Zzp=J~BxHd<2x)ODnJ4KH3K zKN-LZn?(um6kR*4M#zn!*M+bJPWkIlu49?67*L00euaDDQ2}J&&#W8RkstB*e;FE@ zMdAHrYwPnfD(pDWQ5oW<;yqu!e$6&}n2gnhrNlz?jqD)>gV+H$p+yKM8b*M=Aa5kh zS&*NydQa>a!TEuoi4_SUgEJ@u?d&e%mlm0ffBA9%q_px{pdL4agVnUO*5O%S{Bh_! zr!1gWY4`6Z0E(f>h$xM~3^oTA8z!7EGW&q5(=?v1_G{kWO@DK4wV|Q0$8n*2sfgtJ zrKFyAJWdgoeD4@u^6sq-`z@nZ75e@UsnL%LGfNdNkLCQ>*yK`j2^$0pr5sz+(lQl* z9txS?Ghc>3eM&wmfaycP!1rSSY7k1M*uvgO(Gi{?Rp|&QShwY||0=&P$dACWbnJQz z5L6IObZCKMc|qaxag^aG-%k-4ZHhnmxBw5(bU@VIf}uQA`REleVjyF$Hci&%8f0SF z@hBimkh_6V7!dFZ9nQYL00jd@oV@`^1aK9QS`omDF0SL2`-7Z>=*Gd$Dh9G8nWq!g z@Y#S!mXKY5(8$5X6&DdP2>bT?3 zU%CjjGT=nA`)u38PJs_b< zK;>L2AJLzI;>X}0YAWF9Cn#fvv)G^P$t5gvA9n(z{QxpRQ?MclME5n0D-4NV7fIq2 zNSF;(2VSZaxTC)&{iuMLs3<2F*A2<93@Wv6-}d6C`lu>Y%vlq(n_^XEWwo`+t7vHf z8?$mqIR8%Hb-qAw^v1rj zDvO4OCVG8~bOyax8wIZGkDizNxoy&4W{-GisDN#A^HO=hUqn8ow(ecyYqHUL+qC7PzH+S6}sDh`yNNxJ!~GR*gPO( zav1c!UGixk|NYSaulgbX^NarfY^ofg)$e+|-`kr?9~-kTOL`0OD-`zWe*aPDG2XS7 zQg3FODZS;RvBFCB=bLKkHBZ^{`;%Qf^n;dH;sfpahJ9y>$ke;S=SW9ZJh}DXHT++& zH*aEs#yMblsL54RGX4X!Nr^`FD;AEz??M%mZ>lNCl>XuF_z>nBw9|V0JUnPcgn9jK z6t#t`ZclbB*0^?OSm5Y>wr!%+U#saIGIZ^iiw%Ge7yyT zW~4sX-yNgSc4UbovSLuO)l`LM)H#Q0KW|*pT01>X;gfr|YU!(C+VIeS1%zgny zLaarPwI{XdtR3jQPl5a3k? zGKG<$qTnXdmJ8%*pk`ofZQn|2BuPjoV|Ja{sKd#udQFbopen@6V?0?@b^CZ1u zw7KffaUXH7@pT?up%ELm`z{^CjRz03wY3!!dkBrr8J`jBP?>!JRSdFK2t~^sl2#jW zf++;D5$J@4#PsAP2pr%&EwUd0VL`-iAF^eK#iJ?Be+cyb=S0L-%m=$6aU;e&ycbF_ zWisIoKnY5)F0~ zVh>!%F%^;&e%B&LL5l3vVlsRJV8I#0iCUgyI>; zQa5N;_jP+vNgz)KZoQs?0hM*!Q3s^KxWx}Kx(aF#c!R8sf_A zVo(m;#ZsIj*l<3$N??h!t5&HWVDI(648Axq69(=suJfsRxhHBpaGY?iPGC#^fUu(a zc`$w#(C$GSl@Zk)AyidYcK{Rx{1`lT=n`{c$l*up?%K)!9?Owc3FI^SA{^Y3Lz)i_ zR&h&uEsS4dTBD$@rV!N$3dj!#v8XL!DD4+I@EAfNKxK?>9SXpYMC5T*#?~^uCvgbu z!_AbJm@{S<|J69H445q=BLnw2_}aCwjZIjNxCdc1mVm~hRE5f(JVD)deXFcA(48ml zC<1?uckPU-0}A_~#}0T~0#10WUa0FoklZ?#$Gj%MF());sh~!0ujttz$P>l(Dl%{uWMVqJ>kFwbl8h*nqOe5`1t@c%WEtk^xwNs z`HxTaVZIKr2c5ck+*jR|rAM_`)s_e7!Js&F?PYcKX-E!W&_3k)^>6`8D=T8giJow~ zAZT_0y}i8>5)#A=Dnh{dO-%ufhqCO??lD7iN#@e8N9IYWj+j$>Z_Vz!Cn(eXXV!tD z>=?48WQof*G(E=T;TEcl**B$dh5Pe|)8)5sPdT$)QH3AVwWg_!oDmwY?B)g0f`L_5 z*4VBiD^k606Y3X|$a&6OQ4F|c-b%EKdR;?AA3bq?DAVYosO&y_N}e;TQkzXv+Td2hsq`*l7!L&i{ zQ0mQH2H}y>-Xbwh6b8TaBr1D-Z4DmlHbv>|R7fTdMjdhgsv6EW^FF z$;05lNlWt|EhmufV~4<~LNFViS%dYr%O9*{_tMhG)(i~RhPi7fKV)R}-@YaC=K5u% z+g&R`>e~4iABK^t~x-Y(Vk{iYHx7t-F0twTwi&xS%He z?JvXWkMsBq&qajD^Sg`Q#*HPE2js#7=h0<5R{ZFDHcRKbbEp#_&;fiF^-OPe17h#; z#ALbG+9>8;Le{}^5C(P-*C{{R63yHQ#P#P%Diu$pvvVGy)pOr{u^S;Fck)Zo6ZkC; z`5U=w(o5XGPS>{c#`-f;H`4D2=nc``%=Aug#eS7nfkqX(yvGM8-W7N)czW+I*E>2L zIxwx=e_F9}lPuGb)F=fiy*fP^%}9l?@dIUIQ@;mJy*?=cl}ySpciE+ndG&AWpIwl& z`Wf-_nS26FPeAyvC5^jEV{e`oXUE{r`<$slqt__LF)a(r2JBXMOa!gxk`|Yj?>iyv zZ*Zmz2mFJjtawSSm;^se$k>F!wG)v70#VYKu#om`@7}9obKK-#KE|@%IQ^7Zk#72b zTmaLYrkn3MI(t`>q&Ke|akI<25MkBv{2+rL!F@s_YZ6WA>2ErWRlGZPWc-9Y)DC~% z-(F9)1G0V|jn=9Pz54jOEjkT*T4FyCr2)>_?!LA^DPU|~B`ygECv4`oQs3ZTF3I(Q z6Kbo;`NzXV5S9&30lpCPyC^w9NkkJ@BXoeEpkuS6Ay-`d&MnVKa77M+o;ZaULO)9a zrMKk@uC>QEH9aeQ2fFc6Y~LT%g1qePuaFKdG!k4q4pyO^a8pHBj3%GiQGKR|&SgD9 zQM*f@F;PfaZ5n0Y(KY?9)B52=aTfz+Qm1Wz=HYFtlDxdzahIzszaTBz=;dPj2BtEX;L{T#?=lyc|*80;0o{#5pl$%CJSVR2% zX(cjyU$EX#eJT}1?@ub-9i03NGVwap z0dDxEp&jUfh9rto9Njp|%Q3gM=f=~ni<=bJ{24ePBotb>(VT4qcjsJ*Eo?PJGvw%YZop#$I9B_*1MH}s|EDY7lT5oU~U zHS&9}BBC@ZT6vCLY=nDge`wXF&Q*6O@7!-`qOtLQXY}}C`qh)HC393)+4S)<7BnNG z^oeCJa1gHFDs%Vt?L7BMi}RbVSqonRXh!)A6f~x4q4*cKN~}{`W>yw{cMrmkPKxUJ zRCg*p7k6d;SLil$bw^7mqSBMaop|)<5waWv!FByIE8ujBWP#{^C-2HRUf~VR8G@=O zc3K+|;B=3286de^Lqm4!I)7^>Z2!0XM|dPEHyn;1X$P`axvs>YGjzlwFWcvtTD^ zH11DsNk7aTcoGsrNrGkAK2G@4M$}PBNs1j(DBYJg0JhZNjOX66ucG(Ga?FM&(a+2W z#Er~YyW@p(H^lO815dB}0rW)Lds9*p%`<%EPOVMTpf3vS-aX^#1(H{K->$z`^Zb?i zg=$%QN5v4syt!4S7q^J04>vX>j!q>el^*-H?bq~Hg(xLb&*qU2L4elJs}iI*l+>Hr zq)U+35v^Dm??q&!7+)%Z zE*cst5!dy@QbB#dSscnLLY0-vz!SjVsNEP+`{%}NeD!g(3%tA*pwe)v$Ry$h8oXHa zgHoY6n?6*=(rY13pkX@ZBn7i>2dga_N=jA4us%J!vF%1q5M)B)HA4GT`$8j4X&E=U zz;lh@PSNX810U|m;r}=F%#ga$6BZ}?Cf_#{SjYqECnuo#@UYiNdf0KRp#h97LQoYu4ZjA3OHI1x^kvrO*Mysd#ul6ShiNR^a~0 zg6$7t48}PNJ*KRszjSa{I}?&=NYe6wYyv(6m;QtOW3)@>ERE|H9NFV4a=F2fF%|S z8%HcSAunD~)x%&5EipJb`bNv&9@DOnnfr?5sjjw`ZXNsQNq5L!!>+^4Z5A?6K9?Q; z4&9MHCchfmY_!SoH>O5pw;o0k3)Rg`4W;>|2rYKi)eHQFO2hij%`#YRsh~;8n0A3;1F>KvX zuBIgSaaV$-uUIwK1t-Iuo&{;Kl=&L|Mo+IsWLNCAMhJ55I zi*t=W=J}TDIy%HO3IoNuVD1{U^WbeNzI%CI0_#a3{TA<4Z4n3O3& zGcpB|Fnzj8aip(8zHw<|H}?UzddFfM!G^NdNoi@sT_fl<>gr=+@Y;i42gJfNF63lp zev;A_<9mXn8|Hxr4s=_HN zei|7O;Zfd8jI%zj&l0QyO94hg=%hT{XSIonS$GBdW*NcCgq==o5TJzSDcQfUun?d| z`x*NDch5~OwOAPo@$>h45H0kW1r?p_oE!;OMuh&KK5IOaM^ z2JAw&FjtG_Y3-Mp*@+$^LdVzv28N8HR4Dq5x@Fp57N_-WznN2mz5A)p?#LPU?n8i` z1q<4-vyi_#fOKy)SJQZth4=eU*F%tV!&Q1|9J_c?EI5L)8BN-GC{f;mH3v>tXh{it z+k&vGNRPZ-kBLqAghI$>m{64Rn7>)G#w7kzZsK^CLwvP7=h^ojE2B<|vtI<|+IpR0 zB)d__Vd*O2hdqi`?B_%N-neVBE|;E$-&UljxJUh^50myVq|wA!b(Jqh-@E&3ibFRp zCuPS<(#nxwIQjL@coOF=kSi~#k zcf!K76Xak_WtnG0Y{@3M=pENSL5-T_^IHT1`+A?W_3H`VHL=L;={XfvKUqU6-MDh( zjVPqap@H!e$bN2icA?2b)P<;DymdpjuhS9 z;Y!cdL~1Izm8)_Ot+S>1+@-PXf;>SulD>Cq@30_k{THTvKPUv*-!fQf8$Ac59TG2y_#06BX2JB;aN!v zru`Z(``WCGo>HIdqc#6?{e^!byJY8;v`w}86xyclp@!Ejx>Wj-N!753wxo?KNYI#7 z=6mgk4ju#Lrk3*w4Xj}P@0+-utFkg* zaHWl}THsmgzmFjWi{=Za;6@4j?~S_7tDY}-$G}>lb+QRc!wR&|B`N>CL78obFH`r5 z24_=4LpsthVdeDirK1|g8zXv(PF%si>VN^h~hrxqW5*1^oU!w>)R3Lpcu8 z_v`7tFvH{k@lw9WbC6IRKD03JabB7lEJsPILiYyRzrkuQeb0KYGg5;$RDAn;`Og~z zI4UXYSU--p29c>7Hytq9@qgX7xaZrYlyy>Bg#BoEzJAyGx1dQR9o0xHc7@dwzC%(u zS-WX`r{K`@_v=Z%yEc7hv{@RmS-#5@It;YTL$6@cv%FvEzcnWme8O6xKrn>F&hwS5 zpu{+j1M!roFYufh9Ol6N=ABsng2N=T_2ttFyH~if3gBBN`-Mm(KX{@boIytX$=ZJp zkzO)NtjbaA+ySH9#C0({)XzG!F!^9G3IwQS?cs#P90`Y3r%!%oRMWt$#8deti-s|k@M$^+RlKf`mL|R z2QvptauTtS8~KWw3ym(Y`!Uc7$}=G#ib`LLPcLK@GSn}CZ{?jnk|>s_O5mgmSqXH< z*OzGjy$oNQ&%fPn{HpTYRyXW0_zO(Zw_fp&e)3?VZqfTrU zSCHcI4Yb*I?Gs@!j45PAa`+9pEB%qj9HE@;W_QpFQq_Jurr;K0-1(BRF&pLc<1WXw zbM_DSLreu^FdaxB+c%H8B8^#q!dG_hIMBa2n0^afOU`d}DDFX=Cv^PqF9uD&vv}yO&(Y?oP0E`}4D;36bcrJCyGb z7#<|d&^|&>0^%aYyRM9KaMn2`y4345v>vDW?<2h>@H`?K$?^ z+4Q5|ITx43#h(=fK?yCr5~w6YGYmb1_lwngGu_J>7oLZAa8Bs{eGWX^el5=Ezp1{q zWL#|~diz)TinEt_{`?6%8b*D#pLB${@%cE0sBdsZm+;eC_5ec@i*3N2Jdfw@`{sjn z0b!*K>Z7{0_QbD_KM=Ww`4HfPr$EzON3TG;^R8wZy806z@~+S|fwuyE3z+ejnUN)=bW?>qymyWVL_BHA( zddlSF3dFIJBmk5nn1m;RSX6i)$&MVt4p96Dq)K0kyd(j+5oUF5$i2;zId@5JUe9pZ?ZqjICeBwb z9i@WB)=J8?WFC6++$d0~Zrm`)YU_70dT6l20;U9hJh&})tfWhMg+m9zt?p#Y98_D~ za+-SGSXP~UR-Jco_({E`sEE$Y7S-JM1F!Zg^UyYtwGcxdL;0DihH<*p>)6Aw+ptGK zU?Id89k$vDvr13eFM^sP4Sp2(598e>Q@}egY>O9x#$Q=4r&bm}I=ti9AFZZOcFaqD zUE&}JReBGEtzElzv?F=9-ghTXuN^O@p2`uoIqF(!DkLqaM)p6!x4~|!P^6VdJPdQ_t|;cdheK>iv)aYSz$gbk zeZv0+6eWCVYzuN@xtnUKRMCARCb38GP;Ab5X)bR4zEqi;iR-s*cqT+S!wDi0k&741 z!JmlGG|l${FmY0z137fglTSqbMvWXqm5%NW$S?h%yns~V3K1@h-@&{JeW8&f)&V^9 zcw&_QP!WZLYGKMtLZ95q%!F9tZk{aYfXfS9W;^U_^)+r5h;G@gW-m5hEPe&vDXdsp zn_>|3qX`#8&DPWL!?vssN6+87F8%HI*&sK`xh!i7+SLk12(J%xbdeo`>vm0gFP}dg zrXD4X1GB(*060Tq-}|eGA{JufLMDX|08}L<_2b;d_$mawc>IZeBW4$LxyvBqmaX$I zd16_)E-J#PV_>pr)q>4-SWn~Gpe7r4Yqjhcp1PVmGBwvZqZ%Qxx7BAIof4Wppw$@( zZVA~TC)aC{hngDk8mMDIN4G^j=ht;Jb;G%_Uydy-sT~^3E1!R(U1sW|dT~|Ncd;Dn zpqp#@x2#AUKvaAOP0j7zD+vE%oU>Z=wr2yoO5pBmk9lAC^NIVWjhuC*(%*>3X_N=V z3NQ!ow*}ZyC;f&DVGiUF%!)VH-xB;AH-bIFc=_{0%N4Fzr?;wKjI`Zez-Mf*xb8>X z-nx8OvRLC3986)K)nF}6-YzE>KU9Z+ixUa2Eg^%{^)H5mqTkGpjW4)Fn0nn4m$VRz zRCer)0EzSEm(4z%yc0eA2^rh{$>s44dp-*N-W=OH>}Rlww1RjfB1n4ThY1u7|3Kbu zt=|z7lTxtBq{TBqyM{Lt+Ba|HliemdAT#<1B6|pwvQzb9sKzxlGysrKqa9@`^d4O_ zWLWeRGT>{g0qHT#is4mWznn7kGuF|FX+znA$d{8~q zm5v&9VziPhJ^fyWnX8)D$fR65{j}@6Q1&X4NdOYxnq0U+00G9-*L&bBAT>cOdgsnf zRKSGez00cP3u$7wHNt|Wes+9p0tR>TKq=Sc{btWpG& z1k2`DasG3h#V0EL>~c!dfVW{D5Xd>QVZJ+~DL3VGzqOkH<6Dm@AY7kFwKL}V=$}da zy|^b$HoF9Iu+xhh5au*DtE~%~>%@SJ$PhxSJ8W=pWTdqNTLt=Q=1?bE8m@~e07B(`_T<}-7scp+|gkp z9_Xc^dUVslQ0Dvs2Fko+56U_PK?RhCx7D-{A(+!scqx?bqUD>RV6PiyrS(K}$||Tz z@jw*(n{iu2XFbbfDp~RcFUo8Us)9Fqgt_(kg9Z6JtAqvXTJl)&rEWqTH&kN;cQ@3z zK9ny_M{E#Me!(-u%6HoOnz$#jjDO$RB&r^UE)d)2w}?vRqLY8O6zRpGIKkhS-kyNm8beLk-y@<=K8fWvh(~zSBzA1Tt%%#OaEG$bEvJZh1)UDPNNIQD>)^fxM-56~pry<&CwTW{{<=T{f| zO_fzr>Zz-rlA#l!dH#w9HF%v==y*-4n@J{9HHKCibXCIU zxsu4Ca%k0p>`#!zNF;2azpIuc#G@V-PGOCSuA9zZPAhB4jO-%C``MJvZNh&H<8AI| zovsjP)>czXba*3fIwTc3>=7fn`;N#vaXrxy^>@cc9Q}B3#DNYjzK@3V>;FXyk`ie| z@X?E6!~*bS4=gP!X{cd6<097JGrC1RY~=GG#>rrdTPW80)+&a*xc$23vAYX*tQalm zNF##3)c=#R8`e?Xll41%pIFrByS3~)vdSW^BwSBQ^vK(|t9317Rnvxge{!65Iu;av z{n(`rAJIVexG=@_?-?y#hcl9Vb1wgPu^%mx%wHbn63QB|&V8RnTUmH}|K}Q3SN~Nv zt{X?Txr($Z)(h5&GFAy+mp;xUL)?K{6Q7tZ)@wG1krdqj50DV-S;<>BwxPz=Om2|8 z^mg$19TDO=zqOax?IFVDquFY%9>%L~!5YZ-77KfcP9C3hY_SH%UdphxCxpm8`VsqP z`9&^ySCeo3G+)}$;BaYTf4;Sr{Ep*WRCLJx?R=-2ETge@G^6?Im>pEpR=2pv@YU7w zSVvl2xpzG&sZiK1%u0F(&FKFr^0AV~~{V4el2YTL^5_yc%FX?5&!yR=;Z`~0Yftmw`qEl!>ZJ%fk zo8Uu#Hy*Jzj!bK*o%eP<&=6(2U2J@x!STd{8>lO*UoJM(jV(Pc-icl2Oa1Rz=V=9bLjHWz07oeO-~|livDDT!H90<1k)DGHaj+`;D;;oUTU@m`)i-x(T%gN1tR( zXgnCTm{L7|IDje8lUyKeoJJ!p9Lz={36cLpkjN3?mK{Fyfu3t`IMNUwNUJnz+OGLJ z@nN;b6U{2qQWb_M8o`G2>yHwZWaug4cMZ~nH&JO7k^PVHbB-q?B;K)_iEPqFw%N4d zKM0a1|G^!r1~TLM?r!UR&7%GBeu9Vp;{vcLF{@a84iKeL=DD|WgX*ZLmhGD?g|pmkN&8?ba;~M2Ce+=&icWR2Q_KquPatt z?CQ^NN!L7OA^mNeQ@-ZWJ0jtM7CTZSd9Q|=rQxw2aV+TQ9y>}|&NiY8n-o6xu~R$#}ouuK5XLgGejj7T>ta55ktwY)aPTsm{y?tC>|M z*Q*EeI_&+)%hj?{*=8&ZoBsmS$89RBEefS*m9EArsYPBrV=RAuIG`IH`m5it-Iou0W%A56?-&YeZDc5K-RD1u zr#v`t5SA~$5w}WPcvbs-aF#AV=Kk!Ty}MFwMU=Em=j@Mr8yHA;{u5`X*Yx3H5iDiq zXKZ3Jn|5xbPLGbF`@ypXzuz}FwY5fdJH`Ja&2_{TC+8zO>+n5je?5B^KkQ+p_4F1$ zmc6eBBf{rVx3Tk^j4&mg|&en!c5J<*kn76vR>-7Cw@ z)8y?NmnaORq{_W!%Mr_Wt=b*IVu^G6oy2n6&g_fUgxUOehh|IT60=Av9IVD-<&h^@ z;Gi3v#_!f4V?cxCerHaC2u9Cx;nP#7{|-&{MePG4XgeEiweQvUya0Q zl{QIUXm4oFj?}I?^4cOe`GKoyYaVM%ir?`~d!Jh}#t0U(e$@z5rU96e!CR;CruXWV zyCOS~)BL~dyGfU-zr%Pop`_cmMzk(pur700u=S16sFi`q-H104=7}Dz-{)Mu-w_eF zc{|}&1~}whjc8n0(mS>nTt5#-M!f3+0mzLY_5|WW$d;Pd!i%`|MV>ug0Z%wMbUF<*%D{&v~rzg8@k_r$Ia~GFT>C87q%G zcD2aQcHEH`EvnP-EYYE^(8rie8{3dpC=n!xV{2w+21TQ4N?y^OU1CZ&U4QgF-_1$q zt5}Z@Yf?mF{fQ7hoIZ8+FY3=TuO4=^&`_{@&-;74a@^_~7E`O826l>FRX@2)HS&Jg zHs?m|xz7w8yM-fp(~ifByFJ}o`AMEuiA(Z=O#glH@lxry(4jY+)p>%4h6RyAD;)z2 z<|Os5#Nm>j((B3X48w1Km{(R$&3=B@Y3^lO!|%{*^M-g(>M>Yfb$P1}bnAOJkUU$WuO}r495KhEhlOGAnT#r8M7#*Nyi# z9b@BBmlD(CXC*>aOSgAc_o=hif5e8XicHq z0S6hl7Iw0K^+DNSVtIOQ2Rua#eYs%}1~UfPPj~OyyVvK_)tz9uVNzk^ ziyoXCz9GSa9CF7faSzV)3*4;!T_f*0$zY%0JuaKYXYA;(Pk!n0`h^Q;MdJ65`%n#- ze{cRa$;PLCvd=d&K86=4k$kirurTpbNIU_3OXRP1>Zb4 zM`F~t&-2Se06}n9O*Fe8{6?CA0prym;Fp;ZUgkL=b)016eD1;=9`n0T-=fU*!oMU;R{fVB$v zM2midiZd8%`GSNH5@OqU={KDqxIP#fsM4Q&9lAsIVqh639^OdG0assJ5wA4m=Hj8X z3rdF{6!UlFp}634WJyosPSg_hM!bmv!T<+Y`iG=&w|kmP*GqJO&>Ke7ucR z@2S|nZd?`Md@N6m*Yn`X*W_P8&Tq+0Z`G@*7n9m z89hN(Brn24)&U-KAW?Si!R-pTgcsH;gc;3XFTST2*If$6;u#4@ z?QEnf>oCr(JM4Z`f7IE`W!+~48w)$Pa2$_9Dq>wH$iD(T(Qb@|fr83#=qxedOz^PN`l(DMt}(pt$b6`Im2 zJo0ciOL$%7bu)v&7d5YbUzI%3yXTtzl8Ii=0YkF?Ef!3Wp+903vw8v0D==~Ef|6Go zIDfspAzf?8;?TSPtVk38$T@*)7N;Kut~qI-lZ5$K^0phS{f9IeFYFs{GS1>7xeC!X zImHvit!P1zz9a73Ifp|9&qiSXSt|7frg;IkxKa}E1yw*;PqDlcKf zi?vWX2s9j?Oo+C4mSy=}`i5pjV3C2iS!6&=m+Tf0z;tE!bTl~(T~@Sym;MaPgCIA) zCh)9xbO!fHNYE`A1;lBSUH!>aXrr;}M<|_Wo;gon3CF`V7Z{qNziY7{`cQDXv%A{! z$sgC^!V`zz z0-bSq#5UQ31_2=W$XS@&@9@9QEpJ}nOLQe@Xq%=p0dAX4UAu%W2h}T0jWc~?1chbRUaZ83WN>@dnu(-r5@ZoSz;2$y$vrR#rPGmSA?*vThQt1?AFont88XR1n>b0v?#fUZ6_o0_;?-i z4pfc1v25O~kMVB2+S?K9sZ&vxr0J89N5#;zwyfOOgG}lgxuxptN+sx0+3dHEJ+DhJ z4?S~ zSOSxM-bkxT7d3rPZP%WnshfH#R4Nc;&=gv*>$kLjJA7`0=vc| zHwxbC+2UUOZ2Q5%*@>=Iw}tN9RURwimTKK1c1d~SIc0-XThO72_8~dj5|1b|w~keN zaBZy>WYeZ&mvboBwsGxit&|^E_~1wc9ZJSTWEd=4-LTe#a%S=2L89O4v+=u7vzCb2w5y_tmY!e zq=V@xS0)+ht}M46pO^|IG_nxgScOxkwy#S>8}Pg8Zi%MjvS{qD%NIoZ_4v1E-5GZ- z&x%Fs1~Tn5+h}u*hHg%v?y9DmoxHHSobv~I3;X^yoewovg4S?Utbcmb_KooDN}u28 z=w7MxmH+*U?q;h0dJHyqc<2y_BM+{ab*}7gO5|D^u28wLb+F=5Z$Q?a%-r0c@-%Uq z9y)$va*_0zHksjcXxQHtQ~|YRv=P%=LHM@Cj1&^$^-e_nLaIIBlI{IXJI&+LBYE#1 zg*oa843zG>hhA!Z8Eik0Uov@TyOrO$-%cHalj zAD6FHP{7m@vkJJbSBtw{LOkOGhyPqSfFXDPTlgkBru5cZ$CPenK6ub%Pl%HfHUU2? zmdabdq!Pq;DET+M{`AShWwHA@&xNUjx%bcIwb3eq-9vBtY{35(TFMS+%Y!0%Q*M42 zh0wf8;=WDrrsy>#sy$BkD45Lc5<1{Sf1x9{G>1LqYQ>CpvYp54wOxB}R(u-E*`2oV zi{q@7uI@syn7{DVtACyzVCZZhF5UzfhqMN>$|p$+D)TGEP{nd9(5zKcoS|d@GHb1B zP!-`wL)ytL?=4g9i~+V(hgade>d1A0@7kc3~dU3_$!#RsdJ3stcG3>A}`q!x8=!A*duN-reM`m|v zL%f>@&}qysJ$-NB$?a3;*UQ$>itrLR`p4ve4V+CnP>J-v1raMuSX$#8^y5JvAIbSW zw;%B`9=efMfhQs4b{1S@+~g5Fodu*F39+#k@l1(yf11~R_ctFj-@sIU27ROSc+W9B zN>pJL*b?Z@;nc%sg(kOjxwh33R_L4jOKtjwus|B`t5^b;C)~;d$zx3W5YL5HaI~K+ z&VNBBS%su|6#WE30_li|;w$HAMYn^?$1)8O!8uS!?NvD1$w*rjq#e3jzMI?Zyhv4Z(dui1t7K5>Evjvg<( zIWs4^W`D*z^^iOh8$>2rI0U@hStA;{--}(1u zgyh}QC;w}pmDBrym=lPUQ>z2al394V(@F_^mL7eJww<=7CJZ&;OUn@O6e)xDJ2uk-duFceW0EY%fQ$g9;Qk^+Pjx~6df46 zBl+tpZc{0&8YDl`Js#ZNUm@|zs~&Sc8Z*@JF^1Ams=dd@%d4SjQigO1`J=U!6*O^L zo7vz7{{f{bnoAz>m`D0UvtC9REnSq0?QLy@IV9$-v0nViA+M6}IbguRvG|y};SJRR zEE5 zxFT*{a;30lNFzPQq6GQr)COLc1Ts?mzyBj<^OUNXkhBbkc$(Q1E|!~nDh5^DrXjr) zavnSS^Vg(5`AX(bCK46=wh7t95GaC6>kvE9N0>XX%d6;_4 zD6$+1RS_z)opr-g}TeHn2rMP&Gh z8k(?+z_2l9IWWR6{X$1*RsN3x;W}B) z)r5ZHCz0iT91nWjNm(G!5lTq?Im!Ak>H^K|TlU|#9U^GF9E^eVww?FcgsOyfSQJi? z2)`x;df|=0aq+9HJ!G~TN2t^;Kg?EmGu2$ozV83?&+xsT z6zWPFX`d^JG=C3(4PIWWNlqdsLas4hoQ1Llo0yup`I9=_{$PU*T`RcS{(gf6N3mB~ zQucK+b*P>q>*-&{>H7dIUedM=txeDM^*2z1t2Rs!Fl{pHx5mv_joPb+KY?YT` z(Bu2z^}F{=e*z2Vt|+5R!&o9HUL=iiUi9@hwCECJX&TRxR{WA1bI>B-5~uHxlm|_xpDfBvd-r`18h` zRzN>pJ&c}i**dFm(|@1r&orW)nynE0_Z!_5|Mt1avD<`wLwnhpYS;MxTiGoC+EjV` zD`{+8mp{eS{$GFPCEqdu9@*-IiT9RrvBc(OF?cfjzxRl!MOt;Pa1dt2_`!w!@=D8( z_xUTn+Ic3@$8D6KBmG2}ez9|BP#KU2-v_+(eu8zpVMAxh_1IRvHas(9gPT-9HWv~? zzv3kr{OFUW{<%as5KFdzx%V6D(>%|#RB{Y_MNx!QK>PtWo~m-;^9BW(8K>NZ&ZKfJvOIF;@DHoBUmQjs!~ z7B5QXA!Mo+rA%d(Ib@2GDP=05B%u;z2$`phnJbl$A!8X*Nv4ocA?)*^_rL$&-urhP z-}fEIx7YDIesAv^Yd!0E?)$p0>%7kEJRvKBGVL}uF&%^b;u2vM<%X?96=43{xUtE? zY~8_?XHdZS_ett=QLi3*7m_;5>T-SEwdW+3l_@Cyy>;^QRJ7foWAa|N_)@SN>rHX` zT-nQoi*No}9}t(t2$mjQ?Z*TDTYVh%=&;}UHPMhEtEzuj?O0@4ib(H8|FTrh-{lsQ z-iv1E7Nf+-HOvnrTQV50CF$?Pg>gQ|SCb0mq-LwRn!$e>(2aQs(T)k)+_G5lK}c^~ zWW8!ol%tG}!1nPkgCFX?{@SXilUF@{az)TPGb$URsKJL2UxU*lC%WZKE^D8Y=s5?uP_Id*J?tZioYVvl6C=%-v4!qpGK?Qk3=+U3bSW@vmondj0KO&g6f^HUydaZSHq zdqGsDy1L15>lzqnSW)gU{_zwSt0+#l$$eILG2(Teb(urHXQWU&QiS`AH)*>1C%wNH zT}oFjGrs$>cfX~5#CYTU2G(m=Rz0e7p6Ki2YB-JmUo*bQTjM`33ET-#^{a)K!B8d0uE3ERkSaztF$a0V z#6+E11wt{9k-_95mKEXh3SiBsc|G^HCp*1`oqCQ?n}2QKTAn$>-Uu3WnX8=ZQSe%f z;+vCS(q8&Kv7xU$XUXgSV(-DZ9@RYx+~e<`g_IQVAKQ4H_=$q6(^278eVuXn3+qMC zO&Xs>OmJD}J!Uxdmq~D7J(FS})*YumZE?33>NH5`oP#)s|1BIti%933fV*NElLJ?V zVs;zR35msnMV^4;?kjSyHA|DBJ{ayZ0w5<_AIXo&FM`ff2a+yg!)J0Q>hF4rMlRn_J1%#CalU zZ80hT*_rCy0Y@ob9X5;gG~;>U)VnBm9~pPAnIJ>`!EaT8wt-+=*4Bc+?tgadaE??T zNxzQYBqi(sSt732qd!C(RV8p7d4B#;;5cCTCxWA%6d!K}Zxn#nNIH+N9s;J#6!Hr8 zKZkAI)HO5+>pns_2Np`D1DLvo8rwdWkgECKi8t0_yI$Cc6W9ff$St<+7e9L^6s4nw)_@Z zS!1=q$>yCJTLP;Y0HWFBu=1yLcJ5lsxzF7Ia}5DiWnwV--=m|LV(Z{QvkaV>2rabbH&{m` zjI@UVTRJ%}wO#Qy;>Yjz(70<`LYhy^p$xqp6c9R;qHruc$zc``_m75-mR912Gnn&B z;4=XvChnEY6c7dRXTpZYP!6nau%WT+UQI`&WpZ&T5o4{T+HYgp zp1-}sPzb1p?jW>{#k;4brtU1-Z-!F9PSw`3r+Jy8#WH*Nwo26Jaj%fg_o|#AMjc2; z?XD1j*K}@SpG)(B5yhylB?8HBR{hW{WQgO5Q}6p3c5afbChd^EYbi?FZ&S0Et3n0z ztc2&B+CEDO3dSNU*PBau^sK$a(xtKkvaza{F6k}OY*z}iGDyC&eq+KWFJlU| zITMwF$Eh_Yqpz3-SR?wSc+z8a|3v$~_Qzb;ElD4@&bBu6BGv?9f z51Fn2S_=p_)S$^hC55fczAFj&=`+3k(C;Ul*d!rh2rd0?aH@HE*ZZXBP7TdW3p}Z{ zY&onm(98mpjI&b9#CjVChol1<$k0u`0>5WwS?bfJy|>JlKN^tHcz)dh+O>XP>;3Mh z=-+K0#k4-{2GL!6>p@#+9Uj_+p7P*@*g-YxHED9pzuzS$^k^FOSY+g}R13?1>ejkW zE3}lm^1V=`w7MX_MW))SEx)WRWgav#?5vjDDf5T~ikOgo8rWl=2Tn>hv0k(e@4w@x zVexvxY5aMgJzC_}`36((rGic@^Hk{$s`5n4X@%2PtUUk)ABNy{%q|XRr(_qbm>C&s z4!56Vim3Hx9HjL_&gS1Z>>>|VG`b)dR*#nV@($>4{vZ zuI9S+l|61vww|TAlNU>VYH!l3^%wTPrtvX=X2Rn=5gA3cf?_!Y-?f(JW?_tLEzQO) z9bXDLJ~jIuL&FDO*G6Zp*pZkn4NviFviv4=#bD&99gJ2N0B3tJ=Oag@`i1O<=o+ zuqg2mVQMjm(bGx)qgW@a2|?t|-BQav$pX!F^YNU82%`cyT(S=9*`i`OW;z9G}W8 zEwW8=*4DY)qw;dtUwnfW(C73og)hc48frVmBW}N0`f4p%<@01Ckv9hsMasd>{L>oC zq8N@(K2gbtR1dolRuRw-;`Dzv=2m(VqRGIpp`yD4o-`~rBG4th%t>ewyF@+fcqO)( zUB(56JXF$r(52Xksc0}y4el5f7t zEvs`Bt^J<}(ikV~MOup-4#18zlQkqxiH6x4@!#7Ggytw;}Bx`*h zL?#?MKl|fT=^niduu`k*8QxrvHhzHBLF#JZXay4gDUsV8=3tEY8Q!^LUKbt4I3m~H zFJz;F@w4B7N;mWMFHV#FzssV-)|vg|&*^{o>!)KF`9^2PO#1o$3AyiKFuTAJ#w zJ900q`;<*QR!&1=(X!W^BRZ)t&cH0ZE7B71MtxPi{Pv&=7JT(qqg`+sk49h#jdU5tdH31j&kg&7Y%W-Jtb;f7W$!}eqbc? zzAj^P*J}5X-A%Gh8N6nxom;<6C!I`FOKAnc_(-is(yH6exq;Mxa7 z3p6CbmmzSD_*Rwhq;a*5q}t1z%^@R3cf7~B{gq`6?t<?cLnh3Gu#)=;ASI_t-u*d{J1~zG!sTRzZI^ z-=3WXj#)<^)vdQW$GD?Vo6gd7-5T=^K@Pk2?uxMF$&c;Z=`PoIE>HLtv$g02xt&|R zxKEFtZIsYT}Vsep;t=Dsz1f@eB0#qM&(1X9=qhtIsZY7dBqBak7wW+%onxQzNV+u>C>f zB^J4uN6PV;313Qi_R{ka*L^LNfXWn;Zf>aejLsAqa`&XaYj0imFiTkbHNQeuR|>nJ@|E2fx zg^~k+6RYFa7(_GAm|3IneK&~#+o)(F#XwgdE zS9|p4Va4tdg~+DCjH>p4KW!%roC+Uq`@mNetLc{)bg$tniuILm97M*YU3;ymYrSVT z9o=w`fkTl;3t}-#?@YvW7-w9y_7K!RGuH^n2CCWE96}1p|X~o3D zq|Kak%=?^*ycPkQG8x{mXlOy5KKlO#lwGTJVt-JE<$W6BvRRgE1yU6Kl0ybWl zd9{7+i&gMT=N7HhZ1%a`+F^TyIxg~OT*+8EnbkogNS1Xo>+8(N?ifS@3yt?v&Cu(X zbfBdxnRi@m6aQ)XmR)Hpb&HGTiNpQ!w6JoeohfXy@p;(9)iJ-flg6id3kH4;YH*XG zl;+fv*+G^0-n?J?;=WF8z4**z?!aCOaWs(Pk3-djL@I2J7>KrYHZX`XtZQGO7t&O>hon*S7caG{x?)_VDwnZDCzwN~vS))`gly%M_8&c^h2H{2$+r}%CH z6craJRM+2fEJ{Phyd*F0#LF^bIF)APQ;v+feli;kmCkyaJJlTyCmtRyAfGt@w#rO+ zXvVYG(cL&i;^1k;z?lxI3VnmEw`X?OX4Wt3kfaa@v@bVZ^xnWnwdR}V+Fku$r|i+w z)?T}M)s<(rVq-ZZ_Zc+Z)^V~>Yeg6T`i<(F^j)hGt<~8RRZFsIqgKM91;J+br40U> zM|9AkzY&3p48Aj?UMJCQI+U?AEEYUtsjKwVPC56P8O9Fm9HCZmJ$hBvmZ3=x5NNy= zXD_6D&9!cLNO#`2p44%5L*{HVTyK0L}#_h6m_9sGoz#qaj(_R z0wc+hu*z1@)Qw1+aavwHBvSYeg78h3R^k?iIcLubbJl7@bBer<^HY4gFpfDw{cu)vIcSj-alnwo zUH2GdOQ>xzZWeNBd3^oO%&M@0D(YUntvB0?5o67S5ewwBbeHxq(Rf!?p=amfzJotF zh=UxcR7>ZklP!Hn+CkTO!SBa4dfq?YRY5RJ4$oXZz%&W`SJ63L+FV*(EnC`rwjgCs z#`~J(hrzhC?oH8u)&!qfNzk2~uZTNN5pv`sD@<)0b$%ZpCW47Zxyy;~P6XioQ^#_Q3~Gegq~ z*C@a1oN>vZmUCG6H(njz&LooH`IJQWxX6}%!qC?e{Tj|)kCOiE+gxDSZ@jVb7Q%0a zxPfUis%dO}t>|>NXfFN{-5nyqK_e+_hBxe#ABJ0i5#Gn5l5EtZJuuffz@>>zNZRK2 z^{mZ^U5~0G6=jtMH}sFvEKAbU>xNxeXaW#v#Vx>}3bU-UOLw;E3~p95@XFe!$v{_l zDUO40bn50IR;vf%x*e^ba#f|DD;lU-7QJ^kH#$MSIp9_sxc$JuX#wS?PI*W+n?;=4^W2oR5uN=FX(A{#L84i0?`IjH8;wQf$~c zKIK_~uCkhru2$#_4ihciQ`54BO0OQW3)^kJ?MiiJS3%k1Xy44!4W5gvEITv$q3=L; zNqlMX*f4A6%~77^C$bVB8~q6a1W@M-zdr>+ySv|b6U$~f1Ks@4nKu0fEg)kh1ZyZo z)T+2UtHo08Ms{I{bCzG;HW_p9QPaQcEg`b(5$)jR3RKh3^%BMuKMOqzIpZ^+8}^P9 zvu~Eni1>+=0(I4c4dA&!f3&J;FxY)pP?h2Sy?T0jcq(yOV9Fih-HmQn`zkK+qg#v% zg%BmqpSZJkG|I^)!)gbAw}a#k=0Nq69b#4>%ocagsFo~B%#EZU5IFb_(&9{iG?za| z@iN($>Xt`cD69O!i{qY}HhRD3b)Ee7?s&3B}`85hM#8)BR$~?kA;@+0i zIsd#Bmeos6EMtBPu{-+imHra#o9p)2G4N|%2OsmQ4kZyj3IC4~4mFdG{nn}3btx=- zqv$2Q+jeR0kCj(ZUUWE{%%S(z`NO9E4M#g7hZ94Hw24HLilC17<7*W^1A98~382P2 z4x>;=G6F$17<~<&Y-n`=?cC4LPq=5p?+V4*2G)E43YecpHEJ8(fg5w+3KeQLg`e(Z z^>UM@+X~k@Su2erp8m{wb~;&qXY}@$`B&ZavCPqDIC0!rN$DzpkyFIO-uLYL{DNJL znQ&^Q{6FUGcV~F&_egc{?oGiBVUrfuf)2`@sMp_v?D46+f<@o@gvg>Usg~BS%Gl!H z;_yvKOGvN)FNUxv?}L`KCu(AFO)tL7Rpk5*zWyaZ2@hF`5?f(mSOew4$jOw}SrlfF z=#zJOlM?4G1G^dpU?(b3(w?SXm3OCSdAlBSRSL;JHgbNc5=xIVw+z*^v6!0ff&A#K zObe@u1*NRfA4+6#16?^m?aa)5Wk*z0&PlNWbT5iSz;0h8XO6C0iSjQZ&vi@I2W%#j zD=yM2uGx&ePiX}U4WRMuyLTm_{+Qn=GYZxMF^&LCzFOD%A_&q15`W{y4aiDVKrT}~ zWupFeN-p;@PPnq+8wm?>fp>$}g@r_+$ zPb=rvuf6N#_3gnbES2<#yw+ju+C0NNjisvS^qyOa1}QRn{t~*n8=N6y1ba~JC-4+a zu;$N5t6N*QyiiCRSBcX~pri#VgK&iU%LxjrLGT24i1NW_aVjqO`t@nJ1X}@bfQ%CQ z5n59*5N{!RKm><7aHqFEgsPxlMWLuAR)S6ks#m((8(4nw^IwFf4wNhHH^&o27OMTg zGjJlH4+G+XX4}1fC@&2wlL=i+@Ed(K+OZ*24QX3D-szj)A(tZ?C zYt~zTJc9T0Nt%R%a>*zv-^i*$1A9G&~^H@x4Xao3}qGc!Q$!Ap@l$ksO%tl}ME z0NQiMK+=Q453l+I&A#*pAQ)vVCPLs+Lw?p06n@avu6S;3H4}!^Pg{Py0Jx65uANuU z5K|q8w#waxgfnDNF7_K~Q***d)ZobtN>K zC$O&WD4j~kw=qR-DYe$NtAXzwbQ_-BT8mY~wj~hf8^S+ircUbU{6n@o5atnig%5Lt z*Z@GEcp`RxDCFE&es{?&2un>&GF`zODnX2cM-+*hma6a_GH(s{51Nv2*gW_q*664B z5h@zprLGy(pO{1}C|JvAj=&ZGJ8-GEY9TAT0%<8;)spG@My_)5cP^fPRcJ$(+a=*- z%pM^@cjck$eM%K$>U}%c=Un&1r%mmlh+yCIC7$DOY*OukrJg&_%!nl!^6~nXu(v0l zPTu3$JoBpD(3Xd|P^48qTNy(}MdTiBiC8}8D4-&qfw2Lh{F(cc1=vkyrs|TeYY^N5 z&b}KbEF+2?jiGi6ZeTgsR6yGb@hf81Z>VFQ-0lh9aL-%r!%|Ks#jYZhN`xt^YN08rb>K!sdJ})6Yq+kp7T$~H%w_1c5MuHcU_5FQW6CpNeQnUi-{2*0**u=dII$qs0Tp|%mK_; z1Z@IV&9e$-u@;R2ewWP~>tTU*kexmzeqge_;JsAXY0{mh#Y-nWQ9cFpGQ>I#G?;)3 zp&)?uR#s|iDwt;IDVRcK73#Yfb7+6!d0Z*|!uipOo%f~&6@2CgBFUoTA1-cktd#yB zv7ARl(*!H!cPmkB(r73Uh@e%2;D}9odb`5nWGHA~sAGc&$*85@H3~$)d{_-x(S1-v zCz{&08R>({hK60x1@(Au6`8gQO?l`F5ra>aU=zZ?0ZA`B@CZ^D241Sbs)U{_aUv4d z57KLF=;${59QvepCU3vnjTJ#lU!E5}wg0rQTSvC2e;wp5peTxtXhP=l8k_Gk7VN~s zhN%?>rJ}~34cLLPZZY6FW-CkN`L?S0@8nf|H#Qh zKmsc-5%ZhSxYXR#AF2@THol!s`jXU#kc!9t&nmA1`+Cjl}$s_N05KanM1 z+3K|xh-ndnB6!`xbnyMPtA|p5Lurp_fgm*)J;@+wB;`JC6k4OTbaNBK-hUscBE2OZ zoMPf}q{4=VPzlsL}c~~RckHJy_J>2X%5g(LH#H2=EhAElOV!f(7kb zlS6_CnMaP$LBtJM3BE@9Y%HjUF+@U}czT$=^pt^Z02R@ARAd@N)3=|w~NG~Sd=ciQWB-^f7_=MJ4qQ$R;vCu=If54f?VQjiEq6aNb zZJz+aNP7@83Hf!whSz(6P61&0E`3VPH;&V#>UN-N4pJt1bWjaaDhwUe_n?d@c8LF?KCKT>IJT6+2%F#wF4 zfI*qxIMcRPK=?~;VY+ooU_ZF#BN(3p7YPzt(4B`f{5NplN3{cEZg-Bxh+5U5%P>DZ ztfi?5dkUASUg={)z zD1LxQgvIb^C=1lfY_X+7|9zL9e9;AGD&<1eqPajMfwC)_0N--pK% ze7yL`pxUE<2IjgcwDWC9>@-x^J;Yz?oJFS)^V%4>$ELtIkPECp$k-}Ny%XMgCr)4r zz;TBnIvrS|_R((0ONkcjh$ak;28iAd$XkTDJF%$zt5tcl&_Q9}5*P%z^pRD?i&})I z+)SJ@ZZt94fq7ET@p%=Wfaqipx(~M&V1mpBEqS|B-rkEZuF;Q5e}m8*9#*v^%oVN$ z)$~h;4A3{FE?f*zXgHgrRk;7{#JZ8MQ?nHR!@{;h_8FzU8LvM_MNSQ@hD`mOcOoBe;oCDK_T_} z|Grd-ye1(v71izmLMkrn!ZV~b8RX*wD28{0HNV=9h~kY7G$SD#(5yFv-TULg`Nj<~ zrkOowt2cW-+Y-oyNk2Sti1(iu&JTj-Af}J*-o6bR$5a7ShS1hKB{s9f$@=LQnN^h26 zQQ~m~o_SMWPfrJ^AbiN*s$17aZkSUoL&n?4p-4<~s|EM7CHBwa{zcmkZfh2!;|^5h zd@A(8az$XZJVQ|&3ZFAPa^Y*7c)2%c^yU1>gNmIQ3c3Nkjoav*8YFfgt;g0{#L+{+ z7@%8W_H$nH!%d^tf;c8(KjhAVzusUex`TlM!~0&ybw-LUk>B9YGVbGSlKM`O58pXR z(hdKfdPI6Iqlu{sMGAZvw*O>s!5Sf)f^EA{QjvG+hJL8<>9`~HJWhE*fpFuj(@1kk zjXoKE*k5d&htM+NofJQ5M&+XQn6QL_qo8Yt0Wrw;9OGy`d}PV{0&m5x z3L48Q_p97xa=d$Y=+|o3R`G`Z$?w!WD5dRoD1yY4eJ?MaPIN@3I_J$`la zyqXe@UDU`nqEUpMM@D-oco85^zAEFR3xkT}F~JhcmLwG-K=%)HfO}UO9|xy!#2JMC`0ZBU68F@JLBJr$wdhb7ua(*)DLW zUTruNr!|dYF_?mbLH>apzEh&%=No-MxA>eg+g6^LtY>Dhtt*4aFm|mRN2pyx4=rZz z=))kqO64P;R+O3PfD`qHmgz8cV2t@l(%ja=DWx8~{PjZ_G{!&dDrz|`_?T=*jOMde z0z832sJ+D)S7c0#v7zA{a*&sgZ@^Xr7KR|L2)mpjEM|las|VTRFx*cZL_n3mr_6Lh z(Mvq^a+3)hmM05r=w^kDIcaUo%)^*uJ?j-#jZfeAzxM2`_{yIX zk^40utwGiO&oj}vbg3OHb%t*%#r|IMYrDb^Zrx{qPyrMCrF@eOPQvVwq9AE7LjM8t z<%f5AO<&$5`1ICuR?KujZ$oB}QU?rwkqt}`j?eNazzeN# zj-V2qM0SbAuBs73{fC)(KbtK%yzgT%dHLZ78RecjTorvDw+e+(_^MSd5yEh~&z0Xs zb|wY_;W|n|bFlgoAs+!L0JbfMhd@RY$ImoB5qoY7!DgXbyGQlv}#0KY!=vfjGpbKSnAe-Dj;wKFl2iK7?9H96a<7DLcVVk!JFHyq)^8i$f zV<%n`S=lcP0Z2xv0{*||bm8w;=cbOQQ$w#8KndNJN}!+u498SQZOh+SPa!SG_s^02 z{qYKN@rKv0`F8I%D02g;k`>vv{si61TX2fdDRM=Nt966^=YItv%&Nh*-{3eO6CEuB zIxaMOj<$-I^?m?RpV0otBERNt`}fl+#HRyi)$p0qD$h8=!AQ6QF`6(<5DEc!`Lw4M^WZ7dA5TU)3_rz`(0KQ98Q7LvJXj6%S4B zU41L)Mw$ElA}2<=-Mdji6K@N&q`)D{tD1@~tZd@0ddz2|&CS2xUj7%B_+JDa{$suT z@B95HJVUsq46fEnxyK?ELpjLgGhHu;Nhtuc^xK#u-(ci4NIyRx9k*LFL^GG%VBH!m zK~ML%8~=&;vG@&dqxWs?av+m+?U(ncfE4kciI>R#_BH)ml9NaT+VR;5V#GwoS)LJ8 z0?GHA%wjxDG_Sw`T7G?`A^PAeuNTV*h8m%>^UyZ>?dvjm-t$AZer5UGlym+PDZpky zd*4_U04#eZ~9ocL_K!ql2&_WASn($KA-*S@P-$}g1HuVRr~ZNp8j>NC~W<|YG7 z!r~|A;gc0P&vqD`wv8@=98+Zdov5hyNU<{7S%@l~?2>*MJx^4_8>y~f4+2k!Y$Huaj|GTh2=DBBlzYxLg~Cs!)%1W}EFuG(jb z{t82z_q+b6Ke@A=#nE#=gI6|>Z_??W^7p0YSAvdoW&;$h#y0o_K?fuyIYuRU2wb5G zi%+_wPQ9W*rwT}k{NxLIAf|SS?RFJNp&iR7i5cdj)#UB7Z-D?Wf)&fa$Y>v(T!eX_ zet2wb2)RcboTx9n&~ZgY1}Z5A$%Lx@IOFRbZ2ApM_!6dgtA4)}(k6|~c)}WD24Ql! zAbD%^22mFq6~SzGZ`dnx?zxboarVs=vEO~sR-V)6Y(IQf{p*P2+p4sW#Lb}AN^CzQ zFfdws9FU zPeDlT&~YgjoauJMEk<=N51Mnssjjh~D8ux|nB4mGGWB= zkzXvL%jbn-l^D*B4up*Says`4GH-Mn)~@!hTGF0aWY*E;kvCm9RB-C>wgr=T$7g1m z6pytL0gHZHtNMJ>AXF$%Pyjyfau0f44re{ci5H1LzJ`K{a+uzn^HlH? zt1fbEsAYAv@49xX=7puqni)>zh(wT=3>}3uLyz2K zG_$XIcbDIML?W{>JdEHt0|5tQOB-Wy#-?WRRE?WNv`(Cu`!$hcYd9n<=gSZV#|Z=$ z@KFQTO#;M50Y}b5<=9%bf5Wl!dP<^izPQztF5^TP)Z2umM@z`#5M@?!GHSX?5ZN(^ zkm*Y0f;-G5ZHQR3z4k4PFmZp%u>vush$8!2ckx6LJ+t7GkC%zzc(@zo)eF*x;cf2R zz3YbV8rCB@A^I?Whe!subi)i)b;;*md3m|%pU;futYdET*k*efj@cXH1u3 zIsWyoz-(drku-VXYl{=KbO?ZUj_X2gThJ*ZgNXRqm^z`le=-P88brN=c@nsR{N~d? zK}~gKq&U0QQuKaFxf<1o2$;|XJjb?B_4^Fk8)oTd9XB5TA?o+y#WD76mpexrYHKfG zoA7AFmgDZg6LAzRvoj6mbS4j!ezA-v9X^Q~4>ClV@(y>x!oo1H2`JS}_zAKR&z~oZ zr6ip`d~+^A|G>~&Q_Y7V>~D4>!Fwe`z_b6R=JK4sr^`EtKkV}c9*h2WhD56d=bFY} z%ukKM(J)wQXW1c8+cI#&|Uzdg9xA$by*R zSX@&^OYy7eKfbDG=s&o|^dOy#yYMy2O!zk-!XF6mj<9*|T12+q zzEcsFFMx{CBen*j3t01H<)xChHhcN_G>eODTa_sRTi9jHpZn|gU43Cb6rM8n!JvsW z^}4=MUt}e=*+_XRa_xfuBD@K&9YGRIG`;Xq=t#dTOASJx;-RG`Sh!UH_-3XJyytrC z7f}2tS+1B}N&{*DDlKVl~Y8+k04$f&D49&_XgaS;hkaXau?pb^8(N4 zN|L3xhB(9^#R3vJBLjn=ajE!+!Usk;J;P9yTs`v#x&rE@6BvnglDvVIL(4 zivfm;MAIJ;^Pv0gJ$nc#kV*VlN=nM%M~g2kL=AY=#0n;8D|o+5EJ3}+dN|; znr9Ma#y7rLD{lWzIr!Z6eck}FZ>2A$IQe*~AI$rtoG{GVg+g=VE*+vE5vS?xaB zVSd01uD`|@XdBtM5UUHW52(YiJwP&_xsL=^ZC@`p8MWFp;8{#Do=5y56eIzplbs=@ z!h1%GH=@?FiPC+0X`#}pjBJ|Q%-GXC&(^IabkApY)C0C^c-d_G6KV9h@|Vf4ieE>| z+?M-5)4s~&QXtyUXuO0e1~BRWeBD=d&0Ts%dNebia0>)lOxUaM+1??ZMIhN|cA{(~ ztjP%69(k~}asA6LgM&H7WgUZ4kP8V6VV1x2q;>cbNEDC-!E88N;af9dBf?_K@1AvCLKS%iwtmHoTrX+)xRZ^Ej)*eHzmY_9qPIkm5ioV z9ZN9wW&^GPqK&B2elvS6OCAsxZIK{S5wb@7RqX zbX9At9GQIh=6~h>7DiPcbdC0soo5GHN?reE#2|KmbYZEhqfp>j`fvI#!Xd-0q(mlj zDdU$pnVbLrDPX>O0P`$tj+OwbLZJ|;{J+&mUf$}G5;9rx#_v6Gb`0_ma^OA9QpBFFLd48FBf2cROQZYAhmRG3VF7>4|10Tci>SJS^1T zo8n&Z8Z29cnX~A*5iQ2nVsFw+Al`JHf1=YAv<1a5@jh>C}wj}P-c?;v^5heH=7 z%f9j({^x(^F10gKTB|xK-kxGl$9~Ap+&lAQdMUYO;{lM>$a4Ss4Wg(B($>OEU>USe4+gM}C839xqISQ?bySzG_RX8j^mIe) zKl~gq5Qx*_?X=d@5e!$UM&)_UyP-z^vl6t zRno1OMxB~$)c#%?3@W*=0kq2pu!%MeMz%sX24SEB@0W0*A1QEqVPZ}H1)vMr=wBcd zVT^=|Ltq;u0N6oBPJ zdqO4Zzs?jzY}rU9Ywv{c%=})3azK0AACq{F=;UkEp=K?bTT_GBAn{gthtm*rw12Al znodQl?g9Uc2sP^xY6qO*qzA5Ds`Ro={zAx>c0L1u-8xLu4f{4oQv`2oo6I|+%&hT%THJ|a)R1;Rk@BY8tP!vM z?#si>(fpzkNm6a?djjVKJu;1PbO`&Xqn(P%=lS0S>+1vGR;pOe+5b);3i{X(^aWT(%huQEgv2yyMXp4H-Z9HA)* z2?r?ztb3T_t;fot8W#32XHTedR+q)`I4^Z@@AiRv$F^nt3is{^m0;v3A$tv73jmMk zeW60^07{epp3u@z+Q!Tp@`{fm%NtHrw`2^j+=+~=*AOX~JNejJVY6#Y^n*;@+Sj+} zt!7j&OU`_A4G3O2O%)H(DsnOJHLWa1-~nn(5E6$jdSSM0{P3n$ygl7}$fLh=Q)@+O zcGyc1YeLqxbiq zL6WNx4Fc|~1sikEnGq{-7QHM(P*GS)z0g4+tmUGjfJKoZ%C_^$v+sa{0|c*U*>(}^ z*?`VlPejGe_&nfaI3}>~(Y|5@nSmROYl#?T<9zva%m6>%_Z{1*V=^Im7TvzZLT#jdfFN^JA0`HFwEb1>Dc+~8mR7^r| znqUDyGernM280U{eRVF<>ej7*mx_sI%>^s!c5%qa=Yq_Wao1CY(ghcz_a&>Xnk-+L_U&4t-Bp655*2%S&Ab15`#@nKqNmu*& zweWq`)}Ds{cN%*wwY>b&bN>wlSo`iIWkiSQEM3zuAf7qKE7E}LZaWUd0`#4u$Bw}r zZ=j{+L{4WJVh@fQM_^@$ga4*QHrrWR2dRD6ewvzv0%Ixl`X-DLOv~%+Lt~=`G;Wmp zaGMpH2|-V$1PR7(?Ugn-i5Lp|csr`$E6Qg1=Y+j%iu+x3YzRGWu-f?q1qFqK@R42w z#p>6DMvl(P^@%gAZGO62jEM&Mi~Jg1QI?REX;Y)KRE;YQKoW&r?*HcbJ)^N9ZKxfS zgts!;BL7+g!-U=P8>wA=HXte$Lnf!CSwOyw<@#wlUy7w+KF`2tj?xP(z?K|SWN*aJ zitk9ysXY2V_Wq85#&M;Gy3*`2}Goq_)7?A6SP2U)Gf#3Z4E(}BBnn<_dxe) zNb1~Y|LRX*_Y;4M#e+ejAm}fY^`c;;T?bnskk4G?EZoj`zh~Sd z^8Ci%S2kU{Mq;tqMrf{sPuE)LcBY(v`F4t{gnZw6;=@Jdf1715G{LJyx1PBElauXw z_MKVuVd!7EkGAp>7b&i`Y3*ujF{evB*FYs_m%pS>L40romyfs(yQ5{qdIq%{J#loI zf{q|Wc+b|Gf`3K{?3>sZrFvfHlN;>}l*w&wwrmNfTwiwb~H;icJC;Nmj*gEin`|v)(omjs!o) zSSOr)l|#Q$mTwE9=>G&4^}n}Z&X;c@`5I17^!Wf|B_rizoiHS|5#Fdwkn_ZYG&)Aw zP-9n^9{Cn`7ad|!;ZRRWzGwK)(M}<-Ia8Iqy}iNcrX&HKUap#`)LK6q|Jz{V-0;8F zywWe>P<#^uYX#s`a9ToqMJ8X|J$AgWcvlK37aJ6vOPlBplnLm|-d9b2{j2x!sl(^a zJ?mkOZL6LqM zGyL#FUjmUr?okD~T;1{YfOzwEl+!_3AS0CHxx#YVYxJxXkNN`;VF#7Y^#wdwZS(o^ zvyX(*8(559$IzDmxv>p5IAWZLdmyBJ`%rPR&qADqFwrDVEd;E&S5Tnmbh#lYCKiFw zcS3R%UfDB9jYdx5=!Yt=Com=6UP2}r0B_a|GPF0%q`3l(Rf_7r4iZ=DE)z3DLp<1x z@sUENi%5yuWxk@x!R<>${?+8O2vvAx4#mSBF+I2HZR3X#nrROaEoU6II2V*dSlW@0 z0KyXhVH9{0fg_=#n~>*pNPU$Vn5odXZF=*jd?+CpL=PfS(bq@6cB?!JAe@df-#h?& z!{2~i!Mhv@7~E^Y^6mkJGeIdBtUj%jRw9x2vP4c$YsmsI=N;X_Lw2M>P?I|0rHO-| zQ2qsZp97^P?q00eX?1LS7`N*#RpPO33nO@Vqa6a@lCe4t4{Rr?&mVLF;8fV?i$O7y z0-NIyqFdaP8C#D&yxs+uR75Gh-mRRoS>R`a6^{;G*u=I^u0L!|)z_$DJjqu-Ej9HX zprIg?K63aa#^sO!5)zKGf%-^nV6>OrhMEshvf&$q zKWCpT9>*`xY!0(G1o>*RzXs40(V0QgpAmuzicppUZ9)%4=i`ualKVf$a4WT5J2+)>2;P0N1a>f`|1{73>g1h1LRktRaf~qDd~m9rgLU3}4+~rdM ztGaCsbxwrFJg(Gk`AYEx`N$9J*>>C2qk+XzN$e}}a|ndx_={DYd|yZfj^fZx^j=XlR%J z9z#Whe+$1-6hhon~Kq-U|3m)CH`-N2x z+CchQ$+N1;7X!4-|BZTW1oa^^^+wv)t{%H%3mdeTcZDK-N-QTRdUk~Yy-BeL2oXqo zQ}A)@+ESytQPu*r-b)53t#h)?v=OP;J+ad_`zAWwt8jxL$ZRipo_%$jirjkp%7(-u zP~wWa*(J{#xC6h7YeK6qAAL4GE6bzE6T!SPnbAA9Mq?G{b;blhLLl()Qa?aovnxa z^o@3i5^X)&)a=0O_ zS!It^o@#xj_<^(`xsZb=w;u@F5fE%c<{NsMt5m>u#3k(b!{+B7h8oDCd-j-~FiO(W zP3AK+w6?Mp9Z3}v>32FeyHzx?b;x5lbZX(7XQOoN#VgepE|ve{AOtcIZk?b-_5Qu> z{%IOtF5As$GQSi=pJ@BlgCbH=LrF4wD=wLdv%tcp{7koGmhLIJgN@Su{H zl6u#$n{?w8*-%rnxwA9!?%m`QX#uYuohiu55|EXZg-&VW+k&DZjB8;w_cJ~a#pa*g zjJK`?U-n(kpPPAR}WG86SETkZeyhZbf(` z)ZQNCv!okz%0cPd;3w~Xi(L!ahoJPI4h#TQRBjL?>nF3np?qDRZ9^6_Pls; z>@zq~2ZJ8Q6|+w1yC;)mA54G9?*BoTXmkLRoTx`2|B|JflAPRCvHw9>*e5As5D@{& zYxc(@lbjUN<{R9coQgEXN5GK#_%Z(A!?Qnrdcjv79_z-fTB1m+d-LYo@URLjr0VPQ zGvxO_M&hxHa{m0(kPzGV?Tx>re0-KvB9vol*RNlXtitu|S?xyd$HDtG zGRoBC13Ee}*VZE0)zb1@<>B(>^lGH6YC534K~WHBE91d}f`WH1A006>i=SUv2uB~C z@D%Agw@$^?e2^bD;Fi|bcOxV13%i!ZWCuNNM$xyh2H!M|U1!GCUZmXBpTvHaCaFC| zH)G)b>hHAu;X#$&3#Azu{4z40+SfA9?3%i)z`34r%5q<;?bAd}bU-4JXHoA$74q#f z=;_ptod=Hoswov)M;cC5EZfoc_U+{C)agP)c6RnL%Wr5HO?!HIczB@V^zitd>t#~q z9Rp?i*x2!RZSUUk`BQJ+%s$_~hCZg?AY^$}d0LyF6j;YhoP#_XaxerHx5>uF#_Vjt zojZ39(;md)5Ei^Vv2U-^uHVXWJ2sK618EcVfbfZc51T#kPh3W5XcMsNo~lh|2`zSoh=5S*LETVf zW^ZqgA^8(&w>u_|BqSzcWg?i(&Cj1X5d1PcGLqLnC^R%OHrnO%M$$NM0z>d4u&=2_ z9PWTF>4X+iZ*MR1wL|?tfiW@o*=JsgB>m(bZ>Tg@W5^HiHJ9dCNUEyx^72O?{Q&mc za*C5DA}uM2TS1}Eu5iSq^wurflTFCCz;E@qc(Gg5m9eH&ejVvBIs)*L0{uNbJNxI4 zA0ywsm4g_CZxR1g?f!(&4ofcr|?)u+8)JD{wr+zW!fN;+pQe3_P!aJpo`VyK3)0;KXwf z@Rn@QUR2;BqHT6zt3$2ak7jN4n)vNonIiE16JX=w+XnkGV224<;R-kbuRI2>rc<`I z-VMyYTegH`%>^DL093Ogm$6<{QgSA63-#p5!4V*!!3td7z5}?NY~futHa6htTL%s_ z=stS=dNwd;%%1)G(a~<;-0ZDKz_TK+08d=3t6Mym>A;3NCreuefUP@WCl@!jzAvAj zpPdaX)^-BBC%|K3Z{3R0ToIx*84Qkp_G93GHsiHd%*n~I@7XFWSdTwrnh@>oejGUY zvTOHlQz_q^oHZo@hXa5H0FSgXG&Jn{`91!4-zw>bMBv>prY0u94I~Q|EVywaV)u4d zYisNIw$*AaH@0L>E_o1?oV@tUmg^qC6DWWqKWV?0-^{54Mhq}kLba{}mt`G3bf~7b z_UTU11g2N--vbwAynXvNYpa!(mKSirZ>ff^?%#iZtAX_-F#W%s1#~xXQ}l()mxV<{ zM5Ls&YJXMo1Tz#Qo!OZO>_tRJM~8$=`C|EUA`c&*nTbiwpC1=<%-UO8T3TCw{{G$n zKbJvx)@1bsvc-27&Ut=v@msbE9boYQ1(5|DicqG5mCz_aG`%~#<^bh{+E1DRtERKH;a)YOxzt6q^hw zC^qC!t;fH)^0t%-e{8vZLE|0;#ev7<|E%-s9=kz7agajh+!XFCpYf=ssm0bMKGn3ZUc7nc<`#_$ z?l)i3CmR{QEFWL^-G89gz}Wc6q0pH)7qKe4%2W43;%3w)f>XX*iUi{#@S5ec)1h1a zQOv`A>%X7wZ$G#B-w&Ut4sH1N!_|#1*8Th8_`~o2{-oG@#$fdakAwWHKSTm9ki z|LM1RZzYa*{z1>Jl^&n?_`dzs(pSe;a(ymm6faFEDlhnXQ6&x%DE?iC6+u$60Ds4= z%l?jr4&6G60nRTezuXJVZ&P~8eU#rEiElGv%%zKeplk1;pQ~X%ZaaEy{en) zGu8EBRoJ|3e{_LP#;suWxI8(#NA-0Ljq^hSqwVhD!NtWD|EyY^eb1gfy1KgaS^@Ib zGvk}f3d@f~2k2OthLmw>TJax_Q&u}1nzKB&ZG2_PqF}VZ|9A2;vv)0&2_f5#kR#a5n$tvGh9dW)s_jHm%;0auM8$V*M1KP?u2sr z0sDg#%Ga;F#$qrY!k5{8So(^V)}UNzSy@CxM3QcvrlzK;zJBN5zs$_ce>*x3iu;yz z7rD`DrJ2@O1PTute~)%(myTq~c9hFLA@IWCl*T5(w0*x416=z<3yOq3^06@WOfQX1 zW-}e8s5|oS!sw;WojWNiI%sk4?%j0r7C(RgDBhCtaxt5~tsS2qZP>6Oat95~vvnIb z$Lr*%XFCmj{MOpm7CFcyd~2vBBdO-RzmMn zdv|qe>M{Y@DlH9(=?{3)E7SLQnwP8YZVrs>7Jgdx{QVyWrn=PQzFym`b`rmLXGBfS zSkw!a7ZFZnOd8An%Co-m#6Ln!G($SklPk!)LatO0zm@#7^toOIZ)58nA2~|S6h+-_ z%L?X0+!asD>P|`B;A?!!(>7Zc5;h}vlVXbIUn$;>Pe>589*QpD=HXc$`^Lh_!NH-% z$;sK0Z8iAw<8`f6V}h@(gM)*eU1VhB76LU5O^($dt8Y$D4vU!W2NgQ(hkJMKyhyAH z5s%}wsE<`!Sza0*;;@MI4-GAFSy`6z=h?TX`RC8RnZvItZ}l~$MD02hU7t~~Pg6^4 zX0VZ5mTJOWL$y&#xRI5?qPwZTv@ec4T(~Qw^s)bD!yk9amDlA8f5e@Ftl3(BTsE%$ zY46D9gKOD%Ha}e&&n>lk=o+yfx{GDdzZ`54H)<9 z>FF({sl<3Zd6Fg9Jv1~FcR6Xm!pYI`9gQpT#hW*#sY(Qr^Rr zu(3tvJZe90iE+?^SC_YGx6P8VY>2at8yb_tl4GR8{#XIj_%52A6cnc){T>*IEy%Z< zFswhYk)x!dqTYoqBPAszEzP%q>d28JePvS@9~O^_<~sX4ba$tsp`nR6e)Q;#+V=`I zUF*?GT$Tp)(7kFR@|_k2Y~+s{n3xCN5q z%lAoZ>QzchPn(^f`zUpN@TZv+V*-yv)D^1m+AU)R$JWKzQO77#-AOti+i1SkP<(N3 za2Ds^Y)f;)LxEG7q01&{=rxojq`gem4k3kpuZKL1Qr->rO#7kBe@HpLn}~9v-D2Ie z!)Ga@XtS~lUl}^K;K>swPRyGXanp^wQ#s%?QCxg3VY-S%=fHsjOv3p~aq;>F2NPsJ zBqw9r*D@?GFO1ArP?eUJZnaUGoSx3Ft@hH;&?xigZU1=vTlm?>lbo#B1mnwW92~Nt z_l?tmGFSXdSm9NEqO0_b+|A0l_(T0HPIl3coyxwt@Q7q;XyzYf)mmYX zQ%>XVnJ!TE%E-=p%zpp;jufDs(~quSyY{v~Jx0|BBy?ghrteo7GJ_&1B&Gmbx-6bje zSttI`OM4$292^=N+F40u)7(!XM2uW63*S()hazB8Y-9RYwb*0+CE83HlQhQHGOvWa zaXEqSq8`P0tnufHMQ~x6j+n#j$>2(MF@KF$_Hq}Gad~ePE)eG=@Wfq-SSk|?N(pe~ zwVt1dr)M)ud2hW39X(dqkz$H&wNuq>Q(A?fZ&JGpZ8|so@6V=DSNJZGn#?{wvnH?V=FG^ceQY_IzP?z#NGHls;|r@r^FB3I!~7n*yMElQ~QSu*(RTyyrVDHjZz&Z zBS~7tix*!=@MqTUpg8NM*I^|R?3_U)6n}Zf5b8KC(|>$DaMqCy2cJ|!Yn19dqz7DYeKyj72j+tYRCw&2f~$`SSb z1rM|W0z5|kEWdW~k)5(4Mhl4u_&8K<`x{XdT4ivm>9x)H-DuTY7ADQL8F!T0zuqt% z&M$7Yib|4MU>FcSM^6+?6S6RM$e1l@DEz~tw64x(k!>S+mt0QLtzYRG`Sa&bU*GG{ zP?xAuG<`R{5di@KS|tP37}aCPj@4`?y?_56li+fqb~Q_8w4U!lQf8FEHqXlKnYAZ8 z+j4A1F#MKr%Y}u6giv}IvIh@_{d;TeR$*aExh23mm6h{TxAa28R)%?_>-%}y*cHAX zlc~6*oqciM-e%-Ph3EbZI~&wgGI3(;GbeXYd`_C>P+xb4p@l}wL)REbV$HeL=_?u$C!cljt4;gxJ;zKpDFsgA@&s_<&#zvFe@o}LQl&XJa_@h(PH zA@%L)7VY_OmO4U5Z>Lfl+b>-G@{Z|fjZ|jTBkb&CqJV`(jc;H^#@i2RxxKtCEANWp z?4IHu-1e*!$y76zR5Kqey04jC^WHW|Yn%*F^g`A=Gxl0-R(#%;ESrAy$i%+|aTEiG z|6#w5ckkaD8W{R&XlUeIEipPjwX z%PYH;PN=*hZz->=p`qdUnOU|sC(L8p)jqy^SA3k8o_JC;CEUr}HrDf5=kQqF`u@VI zCQUtC)`%aYgLyI94dsdBNlPw+5+XMZOiY&wo=`+~zv<$)QoPudm^ql!l_;Dnc;HuJ zlg}BK%FGvK2G}#tRFC%0$vPd^H`3Q!Y;@X3A;?bVU10Cxd3pE-cUxf`Wo3C5Je7J*}%#bxNzN zt9$yC8ihwVhxrsJY;h~oKRhpQ33znUh;QiU$HU^{c_O^m%p4ZJnPZZf2yE(4x0~p3 z%i-uabKJL#)oNm(-@zf{nTO*IN5zkp!&g6ie$bgl-&GR!-p{aJGwxcZe20X{(C>DG zo38^c5BTedS&R&u@Jn$_^}ObCGB`+Lzhvf0Z^TbC)pFE&%v#%pRZioM1IHQnoF!6X zNR3sN=E7eK2HFfoK@kjKhJT&QJrSLEc2vJ;-^K#~n?J(O8XCSQhTle?y>llfb>TFy z-`MYOp3{Eb-Up>N7k1cgDpK1*q>5Cr8~Vw&RJs28x94pc7J9O>Pw5M5Yg15m3U3y( z!gbWu)rBU|!7bw>ip$Gy)+x6&{wN*_v|+oCaiQbA4b}HDtP@T6Q|-6_(xWck`Q zulPfW*>+vZm$!a#B^-aTMVPWI{Bz=bloW@ReZC6S9iEgvqWZ^F?uQX+O>aLZIG=p+ zB1mh%*t{V%SE*0gvi0)O3(r|3f8{$lm>6wDW5=(k56i}={{5AgGjDO{_gBxCFLx|y zKl0<&`ekDHpwn?|ccxBOf zrKrTC%5Af3`%2pZuHLDcI8DiJziV1It*zY5Cx27a(ae0f$4f!+>9FC*ue^elWsrtB zoq;~fY@qv<#fd64|08|A{{DJdcfWi%7o*CUDC-?vKM?A&JlC9NW-|~K9o-id>Reh< z64TJP(%1_yozr}B9zl_6ChcAzBqigk&4n)c zPwd)l6U!2MNzB4RrC-ngNUOU@Fb$}mY0`#cwCx_6F+8i^KzK3=)%dq(TXEtoSXreDcAlBi z$+k2BQ(9V>X|%AuqOI)+VEy}>*TU>Ky?^!g z?q;sB>$~-w>xG412&V~T9QW1Z<>8IFd-JoCB|FJ`i@uRb^Ur2&9)_%=-BPgyUeWS@ z_!&fLL}`2+Bj*ievZhD!C0d<+)@PVI_Bmy2Qoi&W>KX;b-plVB2D~I^AK&uz8!Tv% zlP#^Y8Oha-$SZsJaG_6`DtzbL3z3P6Dq&I81Ig4YhB}YJbLf~(FBOvc9bW&(hcu+b=%4+L30B89^3a4`z{_H9TvW}f8ajC;nwYj1B) zy{4-U@Fu9|*iQ}2P4pTW80__HX=ynxEp6TRBV1((RB0K#5R;2dDdcADd(X~@5+Amt zD<6qee5Q5L5S9MtU1AQOf1W$n6WCiBEHGbJQGuS6O&;a0iHV7gNqQ{&2H&3_5Zzkl zg$a?QS5Q-<;#7qjHS}*+P@ER`2?<#qN~xOet3F#wBPJ#$u{2pbG;|Y6)~z-X1_lN~ zahh49uG3V#EG-l-5h#A~WcL`Zx`;m4VKedzYhi{ru(V8l#Xv;>-7PFEd`G=j%wj_Z{2GmkI+12BE-OB4 zO4j`~-8@r~?@qJ&w8beW!HPa zMDdJ@N)2zp;@z3jc9)er`fIp2EVx=|PfyRSrerB9zUyB-zIrk-Nz4z#B_-+=EH`Lb zY}&ke$LjV|ru+HxCzo#SmFy4+r)=3seocjl>hchAE!mB`sK4ME@=a=4`@=TorKSp+ z7@gg@b7#@`_wV0Ps#+Qvc@veQy;Y$`3upf=!2o5jVq=0<21XSPVGq}p<5(cs-8|Zv z$L+@dU^J?6jMT?9LbV$n8hY1~o15EH5$NyhYiDP7;MCpXqN0d*?+hR~-|H#A7*~&F z4iYl+qhGTc?%V$c9SIh(s_C~x4f*rv)L6LK4mKoUy%Mk+BC4qf@(K!(2WY+apE~5b zl|@4Pjr~D8EVnVSX@4h|x19ra#akKfuoq>w%Zu{G^GA=p%gHTg|C5?Nu+2 z%FRy?bCRN?qc6zIV<)72{HT$Bv&ksbiM4yv!?mtn$J^A@1c(65mp=fTO=6+*F$7}b*JFawN(l7SF--itXwFY6#- zZI^{;q#9S}jO3eL>FVvxFerI>=F#ST36lDSBwxVC@_T{oNRM4cQILSJ8>ySqE?Wjg+jh2(#COKcaqYy-H?jnY@94PMWlnYHKV zNk@GA@ZrLR3&u^!-R&n%-TiX`%rdS?@-Y|LSffy$0Y8F9s_U{erITZ=mLhZe_9$mk z?jaI8Cug99lfBg&RY_j@wVBYNA69RA_Uu{cKaNgLzkmN8N%jv9$C}Q~&2{(o(h#=o zKlvj{DU@;lKcNWkAI*ftwPGB{O!M)@d+~0H!l`FZEfwTixJYm;xF-IY^|4O!Y#A`BJm;pwYl+bbb`c~ z?f>o1mTd<_>Of}FG|kP;mkMckw=#=mhJ{@PW(I!r<;b0^kpuUOH?&w;8gU7=?b<>( z2b}NY;{#dF%)ooC*VJ)fZ=&=4{CS0qEeahQ_J_ub@xt_Q#Cb0WUw5+>vA+leLjBM^ z3?9_Oe)PnryE$81TTKmu{(G0$%*@Oa=FLCOHu0f^XRLJZvlx~5>AaUprk?O^Z7h@RXl6~R7wm7UcJRh*j?Ax7%Q-h6|EiuKdt&T95 zlq8o@Edv7r`a3%bq`iFCiqV@qt@+KHQ>!Fbw5jyX&4XXPQoSU~_-iK_@#Cd@eH)9! z{$0CJ)*Mc{AiBJ~ECPle&NLfrY-UDBZxf2qm0yyj@=&y2IRUTbN5jfG%zs8%*ko|rS(tYMxi>Sq4Q!- z{Bt{g*$;9PNSX=2r`^)|W*VC*2qXz7^8MZ56cfA3Jt#hj?-eqwLv1~J`0(1bYvhSl*wu9n^FJtPKcN`- zlXBbsD`}mbue((g|H}dtJ;oqCMw)FbSWa_ZvM)N1B^A5faoW^0HZ9Ex-H*0W=q853 z>}V&^9XoFix29O;OzhLOJC;ewz^m)w;Q<#Jwo|-d~@KN7*&p4)Ju#T1LXJY-=B-Un4lgQ6tviSuS(5)u%km+SJxT$1vnOp zanUBKOYh|aPTuJv??^d08ft1xX#QKRnUEZ42!1>|BKDJg&32+^*FNZz`{d;0?CdPu z;k{1H5R!@>(*?eMUHtXy=1rUW%f5N+J3M^p13a(Kk0>vjU(wWLq^G})jRS^$DN3=w z%moGCS@aknXP>(Dy?a_&cW(?=@p`XiB$S&P^<2cSf8C1Jc=zszkx_5#ZWIOVeKh;_ ze5aX__9Wh_^75@zR6x=B`T1jGV?cFkEw_HtE)_rezS2`Zi zp)A=*v$MawjLKhMd}Y!(cAIT!eo7Rdq|GCV<;t-hj#d9&Q86_! z!O6unIW{J9;ld9kN|;?h5VA^2u+8KY6|JG#1=vJejb}5HcQ6G7ow9~T6Rz?nFgICP z#_gJ?Etu`10lZ95U+4+6U`*&38WOwLBTpy>g2~7K<&@>?ThA8ih&j%~<2;f#v)nW~ zxMP(fc3d>n*MAWloKV}3wfuPX^TPq*t<=&xJIN7H7vGxf9)8X&6wR zeP!pL?{CU;uptzq!v_TiFL~*P{r#7PfPUdF2Y>Lk`C2J;;t9OtR} z%dTYZ1X>X1d=|>S$u**;W;3KL)70nM%e}&b^>LR&C7d+%eqmk%!qm6to<2_Y-^l3~ zw7P}4IrJSls*lh$QJAVJ;nEQ%C>L$*AWzSVNI8Fu?5$+@4~iM9%7JT5O-%*PLOYD_ zIj?tqtrgi$o)Qrm5axe)j zyU+TK+^fUu^rPc$wS^Nki?bGSO<8~lTs+FDoo&dyH2G|;en_wFrF zCaLJHsXEL&U=e6TZ@s*fpq&H{z}`J|uZQ&bF*)N?klX>}M@AoVoM(eYZJ2?Z=!xOV zx!{w+w_0Bx*C*QA&b~N&oOP5_*vBU_u6F+zm4`t%xMGm9^ff zV7T4KNI&{5ad&8GY4f7!=Br$m1<)XuhM`JGEDWVUabNx|Y`g1!-t^R|Q@CvozdeO9 zmpR32Ow&+XpoM4Mwl?8oBo`0*%I?N2ee;HK|Ng}<40@COwY@CXv+QeiB34&tnidli zvwQ;jQ+vA})!0OpB%(*zD&3g%m_8;E2vms)03=|)lleyd zT!7`FQ=YJnOUP&$rRg_)ya^i~THcalt6OQrq6{0#bs4 zfmWCg?0!i}92X8-cSLe|HiBpKGW%NoP%M{6FCU;>Raf^HI$?A)yVD%>vVx`Qmc>O! zO3KF&9&ur1jg5^TI$!f$2f1v|yz?8oq+vdqWi9b||FNrj9K-?sfbtKwF=XMqeatL! zer&S?6bDTJ5M4@Ix?%A&)8=%^f0AV#R_wVrC=urIYQP6JMOJ4m@KH`?CKbW3GAKrw zJ+`(J7!|k%V;FfJmg4(NYmDb~aLM=YeF%!3J68;I18jiYvz&m|pq1MN<+Lh&*0wsyL zcbW;?XlXs4KldwJ2|C~cr|#I9y`b;-9`6d@y?e)_ll`Z=d*8H$sp&i^UbJRd;&DJGP>Q%TQ~MG!e$`wa9UFsogwn07tehSn zANUdeNcC@jf559(yP#mQu&n&N?j^I6mdw$?Ixt)?#xeHD>MqRnhKAbp>~m_k zzwmXHwVzI46t|zmJVW`u5w;++B52A;xD`=TyB<1t@F22YU%nj09;~cX;Bc4>z|0aFMljB3TxMs|SS6MIv*BLRXrp zZls5xFr?ETVr4Z%M$S#)I}P*3wP9u2LdoKIF!;%jcQQV$t=bV*+1A7Mi?eqSrktI% zMQkfZIYt#S3I~i`5HJ}T8MWV=>kj@0L3RNihlc8X=l-~u{0NRtpBPoCg}Vkpe{5S1wfOc$T5O`Ia~CMsbI-MD$P=9McaPn{AnZ?-IU z-;R*TJoUWAGSR)e%%5rah?v+SZYTp01@!yVgAMcJpsch9L@c542^f~!dh@PZt5MTB z)U&RAesU1SB-5frPW{bV%2rqzHdG@ts!$uW$4p}QabaPX@e;Nu#b9^>dbm44*ujc6U}i|zL4%a@#da&W z+bxS5;_Z!^osG@I%mM&-L`etmgjSb|vQJw$L3@Cl5yHzRqS_evyb>zhaI+9l$d4aC zK=dPopr-#F8PQW!{WCB?cJ&aGSc<^d!Iw?V&20tmLBy%O2=hoiQTrI_Cpr!WXza9x zx;iWO?OEuu80|9@zvyhvt>&qZD~2n_qs?GoAuHn64ZNoXPY_*{qdpWo$z^$hg;0!z zf^@|xzVydO>7CjZl&0vt9*@-04zL?%XJ>#q6cWZJ(gCp|9sqK1SkXc1JL1Acey-{= zSBsaI7Lb9Bk`H)WMe}D|vVcg2iC72F#JD;G)xp(_97&Nhh&RrEm?mDJbn7~ zDRfeRS8`&c`#g)2YK*UHJGm*}#sZ>C0V{EEbHiYp`1;7QMP5Y%pLpy}Zj8)$MM2F}nX zAnR6E-fD=~z>o%0q$i$}lA40)5>X8?0^wOXT1r~R$>N<#`^D`A+1dNnaG`hvycLd z2or%&49Q(*D(DN6Xh{XjnpAuk6#??oVZYW1oqJ!~KVbiFm)(E-<^H-2xMOT2)YMRY zoPTEoMjX8G5p)C48~~^JyII;2aE%}UB0X+&;+VTjJ*6!{15K@J%1_xyO;QN`4BM;s?LFd`Rem5Fhzdl+D$+mf@}z#wvpwY zay@`g3WD6YPH1a%`}p7G=4w-I-@ErGn4>F^Ou;}03FnZNPrubhRtPj54z~)gmj5Sn z_$f%}69}D(yCLGT@v;f?i z|H^Hut(|y~zuuI3?UH$4`uHqN4f^}}8D8n@>f*op={_hG8uf30M>j9$#j$S)d2Atk zeSQGcTr&o%Fp5q46W0Y&2@R~MsEAB^5w+HIpjo`Ps;1sA#oh-0+RMNYr5^X_(IZ?a zMD)8+v@~iQzR2avMh>8b14o(JMcdv!$@fo)Qx1rX?8Xp^)kE7nb@*^mdHK+T=hSKP zx{a$IX`Ka@3Sv3Y9lf+}>WZ?@+Gbt(4zGcr;tO}c6Q$BEZl^PX=Y&_5MA9Jw!4t#k(FG?$;tvTS9pEA69!hCYF1cSNAZ)L z7+x^X0lmCS4AM@j)G@8u)KkAeO(C9IkNh&f!tP(@O3$Vk1nJ#h7A_jj#O&R%qwCKf zL2L|w4Iq6^7}?Nlwr%!&%)C0r!<;$U*>M}C&YXFG^C?hGFcVdmo6VBA_42i;I){hb z-by`#AdRcqH>{747@%!@-u8%)tE)G3mb=zTr>f8y5F${ybg5wB zZ_bvTtg5Q2sV22OHIZ`I+j#%^HhPF480T+-f^M3a?Ax=a0nFIjo8IK}!#`+FWWG+{ z1^oE=^Jl9Ge%mW|j{HlK)Uk;KE3*3J;ax!&Av>6+X;SGM8cqY7(d|EpRlGet)HJ`e zOs z`NMR&c|{+X2N$WCFkK_O&ckciRl&#Q4x{S?z?dBU=uInD#3nP zc|Yl_NrTMNG<&#Si`pd8UxT~`nY-G5&`S!M8yi`Kj->^U27tbKGd?YCimVZ~wM}^m zGJ0zB_?H;aInVy5Oq@2Kg`o!tnhazr<}tvIA3x5`T~ShU3>>GVM24f$G%Y+loR5$1 zZk8AyUv*!nJ76j9wm|xyazY|%nc))aCjbt*Sc)A6r z%AA~>Ff2I5D=I5>Va>}%0-qw7qFmnt5ez3MplYHGY{83)%DWV{3_N^TkU@cggF{2D z0Kc*3@QE6ZiV6(9Z{NOERaqd*VYJ$&|^ zJ0JDKuT<7!8?NZ@HRxfDXrSKYP0P1qi2k@3~WSiEc?Y8xAy zm_;bN7%oD5d@(JZ_0O@pAUlvx=0Wn(!p8ioaw)3z)X9@LYKZaX*j4-l9zQZW48(KN z($fR=a&9P3RGm@1Pgz87-yXR;BARi@YHZvXW4Tny znY59T5*ZQ<(1g2YK&1>|tW!B=xly6y)VOMV^P3 z3-;E6#(~de?v$y(NWw|O8Y>x@5^uuU{FUW}oH~EjO+oNasH)K+0k|}&wlgv1pkv28 zl#pfT<`&XUIT(Nikc~72XG2y`K|$dxkrZ*bNBx?xJ?3FKlQ?hYd_M_RC>}TRZbdAD<6) z7_*S+tC$!Q)G9DDkT@7O?i2j@moQ0j%2kbgz7NMlc}Q1sZO8D5-FNMroym~!a)Rbj z5(M!=bWgzkp6+fnhoq;QJ^szn`*+|YVWLKP0|o_9fs4OzR(bI^YU;S^A2VK z^s0zpfNfLE(KNnR%?zwFs3R}0 z0f2xR`7#!CY7S{Ep~d%xH*N@BD|RP~iooh=Q+MyvuU)kUSQ9dDx>v4TiE#vMubH%! zvA3TG2E%UU=H^ED9y!h3J9ZrMZ~w(J{J*2Fny=1YA&}8M_McLrss^S&N)A04c?Nkh zU(AFlVPRoWRJ!V)ev;$Od)Hpjf%3HPbY&pXgI)-?p627{ABUO%=hUJux*8!0d`~T_ zi#-pA{>uVXxo^G@S6^ztA2BE~dVf_t&ol>sfC{>c_&P8U7Jxl&C(#`Xfc8s6AkRGP z#>**Ww|=Epa)nP=m={@fk&7!Ys#m8a4FL>I5c>X6IY0SO37x1~G{I#+j+!%DUZU`9 zfR?dOpFMf|^)NIKNY}6nu+iJ?2NSZHRnM+I zA)rGE{xLZoLw|^i>n5~*xY;Up($a28Nfwxq=;i1qTEW+MVe!ePvNC&!^L#%VoA}Q= zjWMrZzy9$pg(zuU`#O*D6DYNI$_+aLcAd56Zfdp+R$6 zoMIG=Tja(7z2kB&+x0@iTRON3%v5@7ZZ{1SMaevz9KBnlOU{vfF|O{e8WJEsY<7|ExA6er4TuwxUm zI$#7Q7!sy?_rhK(Mz%nXQ%_>H;}K#h4O0|M8&{zz;!W@^U%VjvGxcwpo71vz>ts(t z9IKf^&!wiOp2W##9i|;S#-Z*YPOJ}WfH!aQ<*GFXH~0K=g$466WE0@bA`d*no~(UtgaB!8j$w&hQz~ z_m9R#Bv4e<)D&c8U;6tqs70Hvd$%fwQy6n*YTrVu1mm){PS4KH_Vx7*4nAO2nvI|o zB(9F5kZu?yogER?2iHr|$$1|h{(#|2byM zqtBXyq0ntgl~R(bp#=GP4~%d=EDU zVci#BaqryR+_3MFg*Lcwfl5huBjRlXA>Due;N08osr-iU`1m0(zd6h;^fOOS&))KY z>$h&{mYJ_$5JAM|3n)h~VPj<-pA7is!;2mN`P(-mn26?C=Qn@7di=FK>q^Nb4Goj4 zSG_|*o;x4tJ~IWTg|Bfps}&+eTfS4ysX}v~utmZ@b(^>-WrDyZ)Q z0{5_yslp-Q<53}(99UWlTv%o{&rDDEWF<^ZPM)IzDN;IfW*y;OT$}>{q2wVw#C_(L z7Hm4ru_aF2YK=zt%XX{_)4BkEV0NGs0o*LOy{=uo`T?1JlCq*=B@!#P4M>*ugU;bl zJlMJUDZNp6@p%6k09W)cOnn_4r?IXtw&~mCH8t%qLuT8B6l%c6PC3n6l72vE2@$ia z*{Yv$QG4|(ogPGqavwhYh(0+zeR*zzt*RM#?DxWYGc&Voj~_9hkQjIuC;NA%jp4q~ z6OmKV=E;DM3@lz@C|nh190pg^7$0!*B$Wwrgoeh(?s}P+P@sJuKk_Xn#m1U~rg3}0 zpe7lqphL@JOL~lI`J$}GUI`Qfi9?xIFn4NksEqXy{z&<6A z`1$$K*b%cvk{{t=5Pa)7F9suJC!qEd-bUUPqC0&+1=n<7szjmz) zQ3~upOW0(&4P|9{*otwxdoj6~23WvkUuhS7Sa&oBRKmns|8V^M+ zZ2D_lqsYnU@0TXY9l&|%P5iZ#rgv8#ynTBOkfyk}n4XBdG&)Jeq%5PFy80ew@$jgq zZcGC{=OM>rQ%o1~pZ)T!*ejov^{#HGo}%g1+jerJk~j}P+ksioo#Q?mtnt5h;E zHg;T`eZiHKn5bLeEH2T$Yu7HUwzPUhfB+?L@0_-KY%GV4j?RV+k07QB&CwY99K;b2 zW3`j}D{+mEj*f^54*dSTbI%^>`72~`EP?saX9y*qGV=fAo5Am-B4G2@aN)5KNS)0p z#zR$wRq(~X44vk#OJGPyVoZ#TQ$uu244HuRxLowSfp#?Oibu|P8L2rtOH@8VwAst3 z9wbACcOGXr>XvU;g-Ytd1w`QH?C)Dro9UQ6=wEt!UyzggttV%1a8g9%r7H+}rl}hu zTvAf5pW1LtdyD*r2h!_~ZJ;?!M8w|K17ZrkN#; znAL8hXkdp z_e!eqcA1^27VWwk8UY@O07G`mi&@bdHd5S|-22BsEBW>7y;fFM+K0B$&B5X2OZ!Y7 zs^`c7+sNyhMWu4T?XOxfy;eu6XD{#%4^d*@~I*@z|IOVEa2v zrZ!%H3eZ?d-l?gUh~}kiq*7eEBp9Jzy;v-ajK0+(df=n^?#Iucvk+j#%&}2Nn-TYMdyM3*JT?3H zUKqK?Y#KP;ah9sOe-b@xU>xUmd>SjSeZ0+P$LN`^U$lAu@qLZAan^c!@zVKY?CdBe zPF~(99!N6979H?A%$mI`41b3l#NpJsZe)ADv|!GkxL6*>>W#A}i(>-!aH4>zR)4^?(X~kYsS&HGvf$Eb_g~{wy&r7#6o>H*@YgD@>;wj|3>hM zi#gOUgh+@N@LY<5p%r+;w}nZdOM+rALAQVRPKaIKk8X-%Wvz=*rHByN#-8B0@`0k@ z@_HkePiDJ!?Si-;T?Y0bBVyLkdIrZgI?LJ6>gpoS(=9t6MT0nMF8zG}69#A{b*Z6< zZgjp{r*w-GtW!WBWs4p~^grC?l51anU=tc>7*L-w3;$Wg^hi4ZDp)_TJ7G)>cXbh+ zHZ$+u?P_6+PsI`Oxs0i)sV^*k4<8l+WFb=taL0>7S*CUDx!OufN*!)ig$DdMvO!P8 zAvWWVM8-`aBGuo&yU%|Yk(6Yij7dnSxI~iV;n@~ikMYpcRF6CmJrQ;A$I$k>H$kX= z)WQtb(bL*zmLg7Q20-nnY)8X@5b!D}kd%pU&39rdumXMA^V+=g_DPslXQ`}k3+(jP zMQ>kSjQI-k*SddRQ}azgz`iuD{n)&7=+ZybQds-X{6ZZ|P<6 zt8hjnofnO5gK#s7Ma2-fE1GGz4cz{1Z2zgdr0hlPY1=vQ!ss%YYezBlv&qq2_>7p5 zfNW4^@IWqVDk^&Oi*9~6es&I-aKgL9M8)AB;8v>I+VbWlowx00{(81|B6cx4GJpV= z?J(j%Z^UjXi~idJ>rjJ>OG}ueFnsnOIABL@+34_>9YbN`>P(>9QlfnCdr3Myj;_x7 zZ6&;W|DK#L(J$O6_Je|egIkAMJ<6{pMMPYxE#3(8M$C0fT3Q+%i$v=cn*#LwZ#m)+ zS-cHliJ=plxy4X|DE*sp$kK%MoCBbXGa7d9uyS;Iyb_nFGviJi;&FpKunK#K}sqTnEy${=Cn=Zks&v; zyyRfYcADgkW22-)2MGAlL$!VtT(dHs3@u24avk0d2!iC#_`bG;-@^lUD%++(PMa zhGKAV(C72^It_u*G$z92;@rIlqDYDt(N6zuYhk~LgG#E1$;-$b4ZnN7=f^EhSVFdfak~fi%sG=HvownUvXdM55OwvK?U{LCjfjYIagT8QdjQn{u~!N;^#S zC>)k9yn6h$j4NiR|EpKGvsxj1;%yz>yt_7`hZV^IP;Zn7aG4uFdJB@xPxc2dL>7UE zl42^LQ{QF^*)E7v(uHL)UuZJ5d3;J1v8f_nk>c~fxq&7D1#qHi9P$#f3<^%?_B`wE z?X|($bylFQkgr^L1q=}R^G{|0@;!jvw#geXWD({bo0(C^I4||! z>+071eC;C+Vp&|f_ArUvQX~)31XVcp`&jCcDry7{OA31eL~&3|lZ8Cv#7~*j99bss zV8xp!0$t+Q<*$siW~F%3A_ETt65hrAm4&$pBe8?+rKPdVk<`)HO%jf?(+3)Ly)F0M*LOydovFiSRBq_G#HYcd|tPN#-eOw^exo>@0Hm0nHw#2+6Qts2STIZYv3*?juvv z6thMi$37&XF8PCsQS&m?lc+HKj*JN4`2t{dkOK?!f#Vx3FUfh^9~DwC#WDGt|BJW( zj>o$H-@xJ1Oh#t*R+J1Bu$%Q3h`oLae#y41r!+OeCEvAK2^Rv(PHIg{Kc`*k-;x(e@yEe4pY?Ma51Wy!DV`E zE~>QLB7%v-Ebst2MalA`UNa+pwbU4Y09o9+ZQD1^bm-VQZ=Ok63=kI++v4&%IzApJ zLc#EZWub$tnubRH>i4C8X2-Wo&ueCNp%QPs6NQ1qug)iQ-p3zrs%Kt(X#hoKqMU>9 z>PR+G&`_Yi&^}i298EkYH}~A8Erk!II@F(P!L8=-cLc%@<_RN*K!(zVt&EJ#ea;w( z`n5VAi0VcQ;i@lVPm}>xe4O-6;L~L<(rraUi3%|~j%d@|%Yk>*rqUR-w95J+V55s( zx5WJR7RKVZ+d^r507y<9RNN`#Tq4Ntny&P5BnTpD+?I+HjidGk68b=B?P+VjeEEws z0T^>f+CQkUR!U)=BxIt1miv{InAkNW1#|f$xqt&yQxAeFH~N#4o}S({e*={Uz>RL> zPoF>QM983Q%LL1>Uh^s%*Q&k6p$FpI7#JA^AZ=8)Uc{T`4RIQ8Vo22kwqnkvVr6B; zN+tL>g6Zx#paFGe-Hrr|54vf$Aqxnq!J1;25}GP+FY+X6q)@aI^c$BkVNefjM@i#ows<1AntSzG7$|wFl+j$k33BiODx@FW&HjTxc*Fx#ltSh;f3IfyYeNLGu=- z4dDl#<+MonyHF)SqzIq-e|z(f`Lub4tfGXEjwyp!0GG;t10{y zD#+VlJ^_o}kfjF>RwXc5lwzJt#famGCm(GIx-A|ZL@Wu&FE=??RL04bpo1VivDaR49$M6)=)j{K!KO)0)- zj{+_)BO@ciFmDY`VeO+`|HUtr2bg^AbL>I&EBEm;g5RLt3w(X#9@RsYE{r#Sjg56m z%o1%(z~BhTg`uDO)==0?^yUNJnK&vLP}kno)ljnt1m-xK^REkrhG93!q5piUkrKYr z)N`wR5UFC6F?8_Ceop$qTl_*GHiPP|&W$v}r?~@I3+gu>mI0I-vqJXbX`A^2kVN(v zU6IUb+w~;NTpEc0w+SyxS*>${_%^etLwd>K<9AIT;Mo%5kEviPN9g=Sb&S{y4**VQB+|2#p`kppmoB5plhX&h2VBPe;yJT2$PU~CRJq` zRO^YV=g+gA3vmp7S51P}*wV>4R3wTIPU}YZ@An1x@P6T}O_jbT?#u za8Pmn*|~Gj_hQ2)BHl!Yd@Que0A<~lv~UHPn6&!(`4wGNZlAePpQFB9iwVp83phyB zv9jZW=vJzB2Vm%+3e%0>NaZxBqmTF<;Q&AvKK^K1Jg2g^qDh&@@(s^I;sDd`0qzsu z_LVllJ43_z)8JkvE<%uwawSgjz4ah)n!&3=)E5>JIYn{b`texo|Jz77f{8*f zZ7|43utwlcOi4Lse974O3wXo?B2-jsDuw{q7#s6@YKm%l6ObCL!_KkDBiANicoFXN zrpA5o*;CoFCZ#p!l8eb9$7%2l9nJB7T4*;QyZ#LoXGUauoG#wolLjyxYw}l_t zn3W>m13zCxW&t1aag!1=H+T4V1;ORy;_tBCxcU$1WGj95r~S~-lb@kq`{y5#K;WS( z->>Ax06tT^F6{lb`qp<1zxSN<)RLNl=z3m}ph|Ehk*lg-x-Ted+h9;7g8jyn}9UAdi`wXe~PmRR##o$IqP@snJJme}2NCs^lyfsOR4-lPsrd+qoxN-ov2%8dG_=JP{PHp~ z+lO}m0i0E)j=Fo-=cvU4^=qZ zoI9w{-HO218Wn=MdvEt|kZj5roQIwO0!vNce*EMKKDea4cwNO6DNc;U8_Ma?q$i$M z_XNO01nyPO<o@u8v9ceV^R$%1Q;*miqdP(YjmZMxrt3 zgvF)ALKR#P6o5UI$9ae}KFcZJ+n)IE1HFc+6T&8{#!sa;)1obj&br!!SrzaIl(Meo zqN-NV^(aPS2%MAL_FmpGFbvR~KA-U+b zXv_#sfK8^ufhq$R74wy2aV0}@^Yh3v>alY2DbtgaZx33GK;J#{IZ;$_#IYRQs9HOI zWpATCPUy&dOOH5DvKg)*kOK`9Qd(PEBP!kZ(9nd%>xzj8sxPa6VV;^AK>nrtR+hI{ zH_Uok<=m|0eNVc%9p?YB9}vqV-11NciNV_vyn56cbHgEhmn_E{2C}#ARbVQ?Y106U>*;8;|nC*h5g0V>>@`5}?@Z;MV*5 zM>9EEjkaRA&*~@$NHQ=QKP_4|GU7aMEv`jfm+u2hDDKy$hM>a<;sLxEeNE5Agg=$} z80v1JW8y$R7Zw*+HP6VW5YF1xZB%sZBZQ7mgbpCWA=`ez-MbIN<_Gr~Z87j9R4p{6 z(gzOU2IslhrU(7owJ9N%1?^*jL)570B|W{MeM9H~6=moEYR&`$qDj9UFrg#Pxiz^2 zmZ&S!Rxtqgd)9(S7LlGPbciPjZVYMpwy42~`tp?3P z;LDPVU5RmV!2*o5>!Mo}k^ME2<@Tcx1C<-I5!z&n=(ex;(9AVc7&0XxUt&mrIH6(9 z9vl>;%@ebg1}MF?e12)^p&_`bWfB?k199W?jTPX8h4v@q@U39^&p2N5t^+v#j=TG& z!O4C4`0>blptzt&g~tONim7lhw{1hmMoDdX^JWxNMu!y=5bMfqVoX&d9~k}UkhzJcezyvHo^q5&x)Wy^|6b^!{0wBo3V!{oy&52+Ep(3F7oe!O+ajQj?djP&W zP=}{QM9@vpT|7k8QInYf+)W24m3YdXf3d#~*E(Z;xm)KQ&TLk`xP-);;zZmrjB8gI z*QN#zWj9ihtYSe<0oM<{^2jux8zTR~GGULs#Qu;5xI3xPAivC>F9Dp*SKKe;rh;t) zk_9xvZgDGkoF{ya=bZvB0G59CRh1dO-{8%-RW#naz71^3V|;xnm~DFuA=gD@6_Q@h ztI-&jJ02hDz&)s~_1(N$;q^~RSlHH&f0Od_Z>XtJ-cYgRBgSaz>a`rx1jze4q}BZX z{SXW>-q3xrm3{p)HadDF%?>)UrpCswhzKZpXC6p`K!8$vU&7IHTwz$^2p=?wM z=D7^0QEmeprLKw?`A8z5+aq79+*nPeR?;G&$Q#o`0nq&wm?HS`k2|d7WYV*W;UJ><|j=mSaX#881w3osuXQLH!ZRRPb46@zdtA}l;}Q9vMVc$#;(M=((S_HXs~ zqsR{KD693*i{G4x?+(YX28|0HuSKm-)LXPZj0)&xHbU}Ov=6KPKrPe#6)o?|^u;r0 zoC^#^^sI@`&DJu2hDM&V3JllagjUPnk zFS%z=gmkSyG(4>_E5nb}Op%uX?#1Lp=MH2N_GDspAu*E zc7Yc>rZFEObjvIB+Io6BzwiAySa*=JxT1p4>VhZo8KX&%JGg(nr`*d+ppT1(&~17$ zkGaV@uFhF_rigqj?zde+ZTQ1UKJtVDJ~EKtnPA06M^Jr085m2_C4jgm_ld@t!8b)@R!az{jex#!#Uq z@)<0}M(cyhRQOc05jFr=x&!)zI3_Jkz>NlalT&M7?-_8Yo3vekGN*1b>YJI-L*v za~0FRM_oU0WxBm!DM4wP5hr2Tsr~|_p^F&^{P$1ZMWy)Fjk6LBL!cHW<*t(nH@{SD zzggeKlYCNDm3(9Iqa^`7e>^zATkgRoM@#RyvHq#9&aX-v?49)h@)lomG}To*L`A9h z!CmIib$w&wYK(XSQOyowp6U<)lu_43&)7IJ?Hyr3v}%xW_9-|MKi?q(15|TN{e8^H zh}Uh!6SfsqQhWBC0oP$4a4+UpJ~-p+?ydF6HDmQ$D2Eh}@P)!q5~)My3=2@ktqG~= z-bmCtw$TVd#Fd%Zm3QgTtH)^C*RKjpen*80pS5DH4z~)tzP#pS$jr+$&`CR|DU{^W5A!fxS`dfY9#7h`GUkbl19WWOpN_ z9V>C}Yj%l?UwnB5z0eydIDwz74J?6``i3J5JkG7Qn7;l!l?24LU!ji^%FSA)g>GzH?AqpGT^n5ZD> z?1P~z@ST#>R1eZe8}qTBz@CCQgfM37)9 z+20Ez+s?2uqIuf5CIY|>2m`@S=>iBn`3w=`UgpSi!Tj&|3hnA}C}ucDa7`zRM$xd& z1glnDxhKCW)nAs6&iQ2iIb4wKO4bxE@yBS6xXzIFg+)g0ER6s__(szODL)O=2oA6l z!w2W*f4{G*JF2gL8zkoSEmsaC;Ja_;f#Ium*6Z=*wM84pKd0Hp3`1rdg*5MAW*j!4 zm1PW*#=_E4Mh1qj*ViXnSry}$Zb4>=u@Vr(Y42UwJJ8ji;2veNBSuaFo+ZP>J}8(F zoFfgMr=2~ZI%M5xsw3#*H~(s6cvM zreD@h{;z>dbBl|4*Y|V|`(*{11Mb9k93;S8 zoyCpVazn7H^dM8H6D835kMMTSF$7h}J6RI*Lod;fUmd|;wO93oIiTXPGcbVYcmb*m zCh*p*oNn$Co;pH01<^GP^++JI&rovD-CV)gs){h`Ee?Ye3B<(9xViuly1#+|fD7q* z0TG7dbqop#dPYWYeZbPR34cHq-)2lu!}3uodV}!K0&|zB+9u$CQRISNLF&puFcgZm z1R4&f5ovBabTasPnDB$x{&*lX+W*0MTve0?cgMRsJJ)8%Luv`{q{!v8d-t@HTvd|D zQKgYy0ANYp-QL+59vTWUAWKft@yrfjQY+1xNGD^|kP$pJX>_X2BcWMsqm5`v69kG`KDGb^mCwu!JolhdL1LEb&S+oO@ZCNn2x~K6?@!*m} z`5+>d5$PlF?^e@Odt`8$*Ox$Ty<`>utO5}8pe5>2MH{4-yB9#jnaSmb0f8#4OuSsL z90ydD_;mXSF`gH=LYHtp^l=PI!IojVltE39Otw%_X+ti}5YZ_|Hs(Tq<-c=(JJ8xCq`9{$~y z?$6PI;8lWx>Qj9`QF@|iN23S^EUQsyPr`j3GH^KNC{IE`q2w}T$>RNth`{_?FFaU8?_Gs)k7^d)qn>|kbN zlSXTaI5$6RCP<7JXAaiF;N!se*y@;1dp0@z~W(&?Y;^y;^a}7f9K{Hw((Z0({6#cu_B}`gM+-A zE(HF1oPE}bvy5E$He6r^y@`3xWfc`)5Dne-qL}RHV7~Asw>mgE4x_dmJEb9zx8BSo zdfxSHp4+Vo32=f*5TmTkACK8(JVB$tkfxPN6W}P?Kyy&bSoqU0$~+z1_v(`^ z(3B0+YVtM(j0^{0`N}*O+mC_*L>;2$&tXE$B6Nt*559WS*~#(;w6IWf1}0TpBJ*8_ zNYvJ=>73o>0Jv7(7nPKV(hXzaWnpoAXg-WpjFwkdB{doz&On+VA9$LTrI{qlFdQrM zSkwZX=^Q~7(S9)0hF@9Gm5YF^P3#Fd=aGJwdjxch5)3UrD=)C$JsaN-v^h0FFf8t{ z`@M$I5jRODRrC%(E&rDf_BlR29<4R!1;6_1&Ku8Q=GWc}1b&k3m!iuJKrBN;L-1iT z=Pw39V$hUZyD0>bW2nB~zhW=!3Y?rCYpidZ%*x2{cRI~TPyg=iTMVJa4)dW|vR-E5 zx0M~}?q(~+5&PYdxrKilpp@2wyy^Tc5=kdcoH#3bP)bVc%$W$!H5iU;*Ez;4Qasz! z-Hn|g8R_Zmz@LGBTkrNeadd5aKAg180@xMYiQv(gR*b^R*;yv0H5pxp_g?T+x;r)q zs#Ti@BlmcTZ320xfBVKx|Z`r~@9ocoFqt=Q>{x zf#QcR3kL$|#Px^wbOwg}lnjLud-k*uk-qE@iBxnH<(g5s2=r~ppL=b8;M3n5j=O(twh|9sjz?KyJC;iMVO_}hH#tD?`MhP*0 z$f^~Miun`7TOm5g>g@N^ptu0$0)7qpnGDlCf>(ggX=!T{O#aM|TRvUUJkx%$0}Pr? zMlaYKBbs2U41o*y_BuNEfhN^jqNoO>2Bd#;X^O|t>e@9Z=L^4ugRgM09LM0FwKd^D z3~1a=bNW6#2&@GZA(22)&D67Nfe}W~Jt8$bI~PNpfnu|`+4Ri#pFhg5+6|0;{dxn? ze71~27#YG}yNBmnGYwUJMDp(>oxA+jdgM>4%nfvoL+qdr^y35K{yv?I*vX z-IQ|#y=T&Ka)OvEH*covtJqraT`Ho?V_6{RyC*Qb#~sJ?8Z&knF`WIjn0E?yiJ)jp zA}NsSiTM<28^GZrUBXQC)K{VG!uR*xUJmKYXL&lM_N7_+&)>r}J^jmmQe2`RB7}0T#}7I}xba5bZrof##Q%nl>?1*26b% zHO_nm(H|8Z%_Gp7&=QBqCs)jZJ?k>=v-#HrV*^7;F)=(4;{&T#kl6_^C)uy~T^CEy z>2^f*84uoV%~%E^E6Yx>0mm;l1c%8Bqslmf4+fq+`g_>Nbo~Uv0vHQEB$xx>e{1cq zF92IfC|Aj~A@AoR$}Vs*;r*2pMxEWaJ-!VOo6sFGsiJ`=PKmRc48m5DpWjg+`6(Jv z;o(qt;BTD^06BtGCL9P0^bcusuEZAV$#k0SF=rV@6kOJ zM0~V62MI?X8R5PRR9B5}8}0yNUrDiPRxHZ}cJIAXIgx-J|Piz-~bwfaf?Sa^QiZ4%I%{ zO}jtgEGuga%Id&&APTTR5u6O&$g)U{OPBGR3&D>C*~Admp&-nnnnS~RocL&@_FO{7 z0Nx_V$e6H)%ExVXw6`0;^Z^FG!07}{+tu)~@OITRJDzH$<>Nz7+Ix2#KnP4!A*z2q zqym5sHV_}l69)S#l)w@ZU$ZkudJbe-d*PsULKLKZQizmHNPf2jRq{Mxe|00!vW;HBhdUnL{?>bHFP!sqiI4Bl{g_F5Z+ij^*Od^y=y zR~u2p!?%S1wJ^33sw+8YlK7g5wZcqi62gD zpokpjYuf~e5Ck7ip~rc7#6COikS;A`9MrMLX+YFyh2tdt6*eI|Iyp(Jwjkpo-DGUr zQe^r6^TDKu{oeogA}7Ya|9kzv_J`1{r%%J>|4*8U2Xr3kC6FuV`-S4+MU$IP? z&qcf)*X{BdEN{zx24h8ZOuSgNfkX*FCP}_PnSin(P@Af@oBzE1OwxQA2pPS9*M_Ru z%f7eYb51J#`Qrx+o$?M-kbHRm_pyALQ~^=I;NvaoYYe=9I=$S+{rN3-MYubA%Gd3O zZEss#cd$HqW1%_(2+VOBjQiye9|k#C8y0duRo8%>5}y-D^!3A3SCcMNWbNyddHJK= zuvR_tzW?Bh+5KAuOol3W9HG{~dUYI@5uXMIx~z&$MB%YbqMiVDiF#~m@c2i|&Rl-4 z+~S3EJDym$UWBT4{oRWk0THE|tqP9aAK`C_(GK_n&>%$e_Xtb?n#7GwQEGgWFi&;f zCT`#AoM}CXRj^?Uu;C>MGVR^D^LY1u;=4;{I0eI4dwVQUp`br&<>YGS50?%Q+!1IS z;GPTLIw@)C^QxzttVTjpdzUJz*G|7}p|v%-_%MxSReZz3sxxHfHVX^jH(>I%3vZ4> zHG!EF+`@Y*x#%5IuFAgA&PXx0lbtB|!S65LSkAB==PnXTL`R8OiR}Z6bLUCeO=<*DJ3km^^$cRq%>nV5N<=Prw zorgKbSqQ9M&ph1!Xm7y(NnF#Xp5^B&p?U>maYv{59)BvkNbuaAix{Abp3 zY5a`OM0L6Ibp4YEjGmAsjYTZ2G4R5D+F?GCbyLZFzms&N#*4otPWxY)Q1H1kIIXOI zTYcX!kdmAnhn58;QLxJ)v_%6rrYHy(_u5%bAMPuUFiDY(kJBwkQXH^cFXHIiEcfbN zhDiqMTLCFE6^hI?Rxb2I<{TY5ruX0I0dL-IiH``7ua zPumaz0j2a3Ic{`+$=o;r!QWtcwr%+ebSFf)oZWEnbW<`mTCV3c!;<9 zIRo{$CVp7yW6z;cn`77VqoZ?=z4ASM)Ud}Q^Tm8{z(^J%a@q1w=XmYv zzOYl+`^1s@_mRebGU%TN!rP)ub$@-%gn>gu*g2!u77JB90HNePSM0A&v6I@%h&K1% zheMo|chK1CeKZgLc=-D2iRZO_<@u0wp%FZqTH zgqV%bxqlq+S{u(Q13RSmdIMTSd?5vmJ2?0%(zA0v|M2@%xsO-Ls{?FVm}~NQeaF57 z0vsV;R>zPc;88dsfBozia1vwbtTO{DmYn|h-uayja0OJ{&o?=-Y7R(7E^`^?>{!V)LXs^4)RpPD*?F8}?-2futkIkdMg_;vB-V*c7W zj_r{rl3v|do=(Ulj7Zqn)Lz^yZ*C%(55O2vNj5e$ffzU`j(!?|FNhVebBz#JBqbW! z=~9EUK>R10y&WC1OG_J5=p2ObR_ZtTK@LNbv9X4&cM-VL>o;L|1|CKCfoDLz(f8rU zvcm&jPY-l)@Qv|;Wyae!x=QLnjAW&xn1qTD6F^R*-TE73VYH$sD5bg2L1P7;49e2> z_JTNOS|^MvFf$d9vsck8&beRgQ-PQU!8o6g6NrAh#%Q@C&`79SVPGv~yn6Epn52Lo zXoN8T1Ee$_wD&us?)iJD`u}1+2eQ8ummUQaaa!F%zRI;o>L{dxnB<|oD=&AuI<G1u|S3x$_zm6PMojPYw@w2UR z2K*BkHJx>BgT5FI1%LIHg_0X4!{gl=`%D#+_*t&t%zXXYgYt+um{w&z+wLv4B`hF# zt_=Sft}(4}%0c3vIS2imn(WWsyrk$j#Ad<0SRI7JjC>UMM-k5G@Kc6K1i8nS*0#3F z%F2(4GSAWak{^NtebY(AnftZW=)?gbxovJ#*A}C8B379VyQn!jzCwBfN;^Rph%)+( zfL6rhUo>-IZldc4iiNHqo6%DT+ZctvNn4Mi2A&ycG?Qvky|;ducD<6d=K`A5U=WEB zdSE02L1of>d)`?$xAN>`Bp+X7Zgd2JOc9ONxn4MesKN45EvrwKOZO_-9JsPkacolw zeLuk~oQXs0fidiyS?MaD{N~0>pN3OyyX8I@auxN>13>~Rs(KL_-Fq{&(6WyU6%V~1 zmjQz`x73@yJ{NSJV`IWUXy2PjVb=i4uBrWrZxwj+7Pgyb+r&nfB^FJLe3&}4*jb&V zU7#cn@ZZ72!~`xEH#fA%tTYx+nWKt8Z!>C#aTx~MT1nLoa=g|rV-RHkNzo2Z-~pqD z#6AYHjhDMbM7r>mL5Be7gAfgA;cG-U4o)#v>)5bTL;*!Y-*|r?93Ze0v8$s)$kYV$ zIuIkVH~HDG)N-SIaM(i{46&x=2suRtwp9^6-M_z7Ug-8CwFeg!)l_0qs(<0a&A~El z{1s`EFa`!{(O~()HrT_=uyI>&%ti&s`S1>$i6bK;a|*j1V7y^H8BO#2Ud-p`*2&oS zq|PIo1T)R+U3DTn4&i~r+=o5ffK#A=OPmUYZuTKiguf#rtX_*Rwn=|$<Q z-TQpn{%5p+VwQ1Pk`8K+5=~QBU14L{_7!BTo6t_FCgK`K1MzRFcUeJ6w|>sr%8Hl) z25KQLWoBMIHwB(0HX!-MPyu)cXj+UxLv-}N+B#(2kI9Ew1q4usD?)<<>I}x!JsVWS z4+r;=MhF-s5&>3Aqw^lovz1j47srl)V_8v7#9 zjERMVE6D0BLGs<~a@>$Q&KdUT(I}_|z{HtgCpMu2R$KyBWu|vDJbrGt`R%aLutS%L z(P2odc1;*E2h^1zF%I90dHgl;1!LyJva>!U?juKx)eBJy#WdB!$$@9{Dnd4hODAZ8LJ0q1I@{#vXy17%%ixvwBd=yrQ)NQrvVv;r`1#SiYH_wO6$Wu4>KZB4r~|N zvHp{nluoq%KHX!fBIopzKsXZZEdABVi(a6X^ z5s)8#yHB!-{XN%q)fVeFpzF1OE%8n92d)BQMoFp5^2Kj-QrxPq6}cIO)wQZr_d zrRzPr_0|j^EUF6{AtB>nTtiS>nN;zw*k6}UPEI1x3J2neB3}oj5eDZ~(Ocr%z7$<& zoi;7F(iq+vW3%4G!OA*NkE$&MdD@p?nvQAb!gRFE z%dQIA=fj5$LAI~YD6jG4;n4hQAjsm=n>BOo_#VfZ+r{>ulD3EGThP!Fy0jsdi0bUaP_ZtLtWjE*@rV#X1hHzK?Il?|OZVz3 zI@@=^{0RFT78V`d#;c0rSWN2(djNbb9Ir|dt02i13Pgei(;8qPE?NK+?Y3=AQ4ZP2 zsgXWus6QB#zjOGX$b|XghzSY8tekT>^%%p#{4FrLq~!KF3uXkhmxy=*@U{RB4-IE& z0yDv*$Ct4a4r-l%_dy1Ri!!`4F%U<-Uq<``sxnt(RAOt0)AeAtE@=PrL;=y453C!z zBXhupeE1LsDsznS+0CM$+Cvb02dWoDHfB{|2$(^k{aRXBKpX_6%fJ9OgbmOVVHyJ; z^6S>t;GE&5b8_qb$zR9`0{gE7)=~%s66>A7l2S|P^uM?bBY^KHJOM1jaRA2+6Qh5i zy35VA#oywt0{A|4>I2Xn@M;91+dy6ioax}`2+HmAWe*eBkPyQNg!J8aW#M)#RD@sy z+mGvU6A&KTg)+=+@h zNkbG4=z{t8<;ix8bsPgd5UNdp`>^{!N<#?D`RU+rWT+pH2L~Ir=&_Ag;GP4D>$|3= zry33VIbz^p6W(yC%095(fmr?pkObHxdAdf{WLVF0XeX7PIWJblwC?i|r>WV8L*`y= zY-9EFN$%j88U;U7X0<70|2406SVtgNVycHwlDWY}PP$lzLEkgyLl3lVhm*HVS%20% zYqXB}-rAbK*ltgd|Du#A5)bZBt%+KUNbdsH*GHa-5guZFmbXCCx2V(lFRR@T1)$*> zce|T-6pBT3ycSy`)_O|Y<6;xLjQ_%l0CTjQuZwKH%4fVPoUo7U8%k zcsqcxt(*;^Ar_*J_>7R9fqoCC>}^YnE8c;I#y0*emFWB}1Xr_;Mh5sa+w09-!hwDC zEgf#tx6R3k{rGBd1cd{$UGxc6FhpP?fs`90*pz%mw}bJ`N}A-_$_g~Mb&X%+D_-M> zLoSRR77I&D1V`3c56dW!L!f(TJ^0+>h%AaJzy^G&rc*e?s20}mDPuntP+903yMvH% zQTd?I5V_Dyn51IGPR-^9O!x|litvO*7E?YITs{VY974g=)YPo%fhSbOyz+P9Vjzl~ z1x7*l1|LcS{2Z_ju=*DrH=ib>3P@F&njf)=Rg0r{LdV{3y4mkLK!Zv+3y&6axby>>YAteuOI<5CW|-c^#%^EC z&F?z%k6jVin=mF)@VR*mWiFs0D42T2pJ)SPzj^Zyq0OowWO+E*GmDGIi%)2jAoW0- zxdHsfya#wc-22{b2zY$wYCqq(ID1O6k;2Y%JX=!&&wRUA|3d+$g*CEqU|h zs|wdy;a^i9$NB2yXtUa|+{jh3VCW%`y|V&wTc6GeS33{C{2S&=BSl4iwkRoS0GA!p zC3tqXQwWpK7GmV^{LmHuhg)Lr$Nsu$H3t@A$sd+55F~Ue4aZoO%-__$dzG0vjxj#s$VHZjb50uU=TT?ZzO$kn<2c3? z?}y*!@2?6SDO|i@$DJ?)Hek?8(veA3nL~#f(nV}+exZ=74S>5M#L8J+KM`q+t6cYA z_285Tapya1Xnj8&nVb81W~Khahy3Oy3}2F$X8Z5oyLU9R11zhv=RReB$j7viS`Icr zFiT!UC-D6FFSOz~csNS9Bi(&{0tbUXQ2^95H87wdL0JSoe{@U?EYj_)ttWr~21|42 zJ#{!iZQo!c)go;YX&;{#Zyd3VFJ)8BE(NC^1G^dcjE}eGQ!Mwzf>299$hxF3i`XTKbNrD0fBC44&{XAWk;fNQi+^5Jh+Bw~b z3opMd0&tCKH7EH(9&%f2B&wT>xBJplJWL8VU=m`K3@(Hw{Wft!_5JFL80{+H7gu(+9aI`tt*l-lOI2h{v zhxTy|%zK}laV!@c+pM2hg8a=$hRKCG-1B(rBHh9Z{vE>R|tdy8?C%y7AP?>;3O z1HQz;%l>5-1ZgN$Nfniq(5B@1us&8TiCz#etDpF%iLfBS9zN;cJbJcrH;|y7w-L+r zPUY3)dNL;Y2xrvP)m~W6=nqz2kUuXjBO-G3y$Zu+`ThD2_;Po|L$6^(9cs#Q)QB3X z8&VH=XW1H4BXWnx6k(-rtwDQIEc_b`tm60U`(P~%_PK(jbw`pyJeIcfA#99=g{${) zE}j--;!NxFp!*SpQ1@m$VNnEa;mE-vl$U51xJrF+Mc}7={D}@QoaQxYMvhHfhQruq zis_yrtl@f4XwU{ZqI5%%k2FW)b{ZNY;NUnnHJEueeI3M%dGxL6@#9}{Kn>F6B$RLC zxWJc-LDLT>UEo)aq)N zIJWgbaS1o9-kzQ(PoK&wC}2dyHvLbBRT0iE7R}yoodA{VH(V6^jPNyGtb}_JHsrxV zr)iK@JeHeXB0udn@{M?QXI?XCZF9?SGq1_4iz`a7x@IG-~MWNWP2m$58%aN)@(ugN%d>4B&%|SOm`_s>KYoB54K#wa2H__4rc4KC(-Id zr`@?Bp1@ijqj{Ci{_jyKX<#c0!gv`jh%>{U3la+*a zlF$qr$y=10Vk7nH=ye*(u`OF@Gh22o)RmMMRSAoI;@I_b=KzO38Honru=9YeoegS+ z7#k|T4u+Yr&_pCE3X;>;hZYVi$1i9k=FL<2txz$wTj1A_ZYewpAZ6my-uSw>OBjTs zS-=LQTCA{n*r~Rku^v5dL4ZLmxf5?e=g`nb;=$w(^@1_2QYMKpXH+?}&x_}t$^j>8 zEg!bZhyrNn&8}Z>U6VY&T0$)&r0k%RafQ|nZhSwwHHaR9|gWJD+Nx6Pd z>*UETYbOzkUk210-4acg3WRCepuWWwSmxSONv>D;JF`=A^3mF3akQKlj0{gni6v{V z=st{Uvfj%d6;gT`9*b3dQlKirxDbjJNIoQHejrv9$o)c<#npH~5Dmag;rtnRB?&v2fpkEVL*0oGm_&)&{xp)z&0*ME=|IW>@Zu-$I-}o>~%BSk~w6Z7c zL(aSxp(JlW`bP?dTxu-!-Ww77Wtu1sw{(R)u8MwLL)#Vaj(^{s?NT>BYioxcdtQ!t zf^y_!q0haUJU8x*oD@med*9XQ=3lYng5J`U>p_5P>~Gzoka)t582iJi0u6MOU*bar z-(r7~zOQeGg|FSIIs=kEI7KI3*8a0eeEc$U=Ae^>uV3>^#u>Cp3m?AVUrO6f8f*~+aKt=9HO6x`_hH{! zg@v_(WJN{-`~@775)hvo=;C(+9ch%b2iOr4^2)C&4!1A8pA@>p?fVyN+vW|!|Es9PY8N5P)60J z9k2lJ;XH~#6b|&es7N?nWF%3IGrG+smM9#nq*=e+CGkpfG)2t^{cBGET#`gW{ebpA{o#8iM_Sips}lvo z^AKmCeDu~lDadq%+LFKcP)~%#Ku;lf|=3g7O5w?cHw#UQKV(J445&cB^0uw0}pt!K|d zFGngJ3JEklsNxYtz}vR1nG}{e*0P&PWs;mH)Fa^(CHZUsF}uyq?l*YfbbXgK_wzQn z^1?@LWv`zZeGEL88neukq$Hr5NdMxhtO{NSxvGfkGrb$OrdE( za1%Vw;mtOm?j-;BlJ;vGUx5LaVz7W>W1rK`=QU}v7hWd$zODCE*MJ^ z7CSGV@a$&$v-er}oSVeso;_t16(%$aU1u}0)wh-%2!E0N=W!=QxgLE|C{T`OcaqRv zl;b->VT99#J(y&LEQmRmUrCFZaqT7ff^7%@L+;66g3=9i48Bz;xB`_z(S87#L+9Gm z+`R8%5sl@6Tcb!cMyY&;4$jVhv7+SSrAzRY0->Pg3x_?FqAULKa~J!`soxgvN0ov# z#WEz{pdf;k{p-p2D@Id8Lo|-9w-3R80(`56QKMv+@P$SvN{+e$f|>;e)aSg&|}`=&|=dMLB(saRJ z`8wK6Vbu`@Rr-Z7j#LO&ywGCLTq=UyU6Ui{nDnuAU0*7W&_~pq)aW;pVtubvW8D!XMmlZ@p`HkZEE&z@6Dz+ZvyS;C35LZ7B(VRjH#u?ix(Oy zscwA_wNrzl9hgz7c=q67PhV1&?#~60)vw^5O*+{5tE@k!+1YMwV?$TE6Rjd{CDn4M zd$+VZEFK4^d0;8Tk-((StY%^H6<-^=7xOu|G?Z~106PtGaAg4jY7$&gVR1nsfz5|# z%C*>(fF376AEn5m0S`GT9R>B**9PMk5HBCOL+Tjwsp4V*rLjJKmh$F$gL@UYS^BRy zrOZe%E-JWT89?MHTCj{WOikD(0C%EZ#i8k<3&|I4qV%Cd&$F}9k6qi`_)AIt=*bhR zr^OKrm-7$fjIh|R-h244MOL7)xVUFvzyl6{2;3ZlV?+FWz1w_?e_ReF?B^toig|ud zhKo`WVtQ%mwY&m&1aPvkQJMlhpp%u4JIlt;|Dl(p|NeoA+W+@^g2W0+Ss{`crZa#& zyexuOvPc!aJ9q5RdO!x)Yh+@g`_qul(xX0UQ@2NgNAymdu!MFmnHvam+_!3xk^_Il z!??L)FV2X*@94NURSDPw)9#O&J`$GCNu-?u2NVV_9p)0H1!e4}V=Hcuj9 z#IAMdQFb;&#tf&Y4+7eP)y2>8@vfep#+$oVQ2UP7kE0O8wCn2gAE~ji#pbOnE5Ctl z8JR4_<3OjEu-kM~+?MZlyt*ccxan6ho4hm(9#z8Ihj?%|2TB;8(iV!x(cPxK1ju$P z$;#TAmVv?IVmHLbF#ez>rNaRD`*MwX6@~yvl;k7`njxAAVc;o&QkyZdJ80~m7!KFWLN6&b<+zZxg`kOw?x$Efz*roBUQ33O$eqx+Zw zlx3ykL?kyAMW~uN^}Z)1ZxpF!mcfT$5_7sPNl7lmPYlzGie3pchS{mfr)((6T!!Mz zsB;c}yrh)WzdKIZ>K|3Ab{p#GoS2^ekmCpC+|h3lOO{Jd-l{cMKBz=>VX#$fwg6#K z#*S~ZC~B|y2JOz*D?_|S~#qGP*254_Wr26UTlq3L8iO zEeOZQp*Lw)Xz%Fo>xqW*D-9zf(j^rMV>eqgKq!_mQ6aWNXlmAAssvaNtw#xf6Ob$+ z+?nCA5)=_(Wo9Ou&jz$Lj_Ae9>xp?J?u9aXa@c2Lmm*N+yqp{|5-2GR?tWFIwziky z9^iyFsQH4HlA`Rx9~TWHRrnu*e`N{VDBC4S+Vz>`c(?U+cTbFugN2@e5yrRg-|vT!%5(1da>28^(_qN4vSZ*Q?wI$a1yg1`;HiK$0)C zL?0gRr{FiLc85_Tq#7*OpB)xK0aPZnf@(8NEkh^A{@ei&-3=%=Pz?Yk1WQ|d*Dj2x zFrUJ{K;Kt^enrmUyJ9cq3B!rvbI&z>r23l#P%$xlMWb7QoQenV{sFkt!9NPe1U2X`*ystrV7{I>PRvhkVt%dDR4lox^s<{Qe4NRY4e~}yWm-i>$VvEd+t@UW+Ivo=LJEwTBM9#6V9D%Y*$oc!wl{&;XNZBb$2tus zhH3D}=|#`-(@DN7t{Z<1G&|?~Bu3YlbCs6Pf^k3(XDv*+0SV!@--cBh_E^_4YEi(?|M?JEx*w90<2(}uUk50t1X;pR zkrAZ0USdTG+7z4)w6F+h@JpA7%A^Z3>mvwHPz>XZgXNIfg_)m&{TZSv#yA4P9=+SQ zWpgR(LIVOQViGN}D)Q{}I;Zg5_IYbqOOfDd`{;tanjq8IWn>@1`XNI8klRmL z?I;)!rWq+5fjEcXD}rE}!N%3Qsq0Z@bHrzHb!Ug8-c2zWFxk7!{6eRPH!IL=#P$7% zrcOo3OJtb-RbMXYtEI zJV@R@d&nuruBr9!qNp7a1tDX4{~wy?v9(9`kp1G?h{mtFqb-LGDL;|sffL}g8tf+z z1ryxNYy@E&%qew2CUnl8US7r!f79{;h%Uof!B`dTQvz)XX4H`a${S!!pxyBN`T~W~JYL)$qx4pv)Sy~@hNqkuuP)sEQHK^NtSI0h*Vrice-LrISrcdLONXH;_(=YC;%dH1hxV-1cFRVhqk$w-8p=)6b+ z)LMe*GiPQ-kChB@X$$ttG~db6$+>g66LS<`tntvr|gA z{|DjDV?OmMn3JaKuvqXmzC^4(93O9Rx&%%)qV`v?BhNZBQE_^K{s|`mL~Dz|6i#`k zAD|n-2;1$Do|J2i$eTO0$_Es&a4j_1uhD{1HlWL^nf>LtI^px=_0Z6W$|B?h8ur8{|KjS z7+rV!bM8m;Tsa*(Vzgd&?0x1?r7g`B{uXCEJQN1sflf^7y8j|4=O@k*%9@=!pH`n1 zkHuVSE2+J^J8(Z?5N&^{wYN7eJ~R_s56V~-U?TMYVd}l(ss8)_@k3U~C|Sv>lo3)& zHbs)G3L%@yCPm8LWu!7Q(l9cjBAd)aghG;;nN7(2-A~tb{l1^`$928m-FkD*>paKf zabJ&ub1q;wcD-7~?DGyxwg@;$;nG!ceQX$VF=EIJceDp)KK(`Rk1 zt)mmDy^xhi! zfl)6gIF7CwtVV~(DIn~~)rY*>$A=_s*ySJI(g?Z@LK~A+85Xx>a?UgLNV4!HpFsS9 z8^1@>xzSRCA81XkT)}9k=Rjlc5Aqpv?SRX=1LlkGKYs#@4%@JRZV)BH7#@Y**~hR2 z-%3hOrYArLXP!CGJ+zl(z_Vy|iN@H#faZ}7BHTn1X;SyRg$x7|7F#*?ePBUCY23=2 zymNb9ZM}F|2b`$MlE$!5L0G!Cy*LZy!tXh1ZoP(&AE{_*dkXBH6y4_f`fMwoCsGCb z2>L89;{fqLyy#28LlC@is4Wi)3rDITzWreOHDPJ@Z4oS&7Vj9C{~Yg23(ebu&Hmxs z8lE~Tdky0P%V&LNjB);viS9F>l0Tr4nmi)OO2~zb<%!n&x+Xu{o$Jh@;H_OZWEH_s(+WY-jnhCeaJ`sg$lYA@%JLTT*oFl73D-K=qZT|e` zkjhGVyB+zlzjfVP97*Pqj#j)X2+x+4+&3ul*MG&S|C^;ZLlXEN;&F&Pa?Q^Qtg#(i zyprTRk^tub9|1A={G5S6>a*hXw0#_C8P-fGQdHW+7-%UegD`mcmly+i#luDu&}N_m z2*fdq1qO7ak0K)xzwoQS?90v8RHI2|Kh+e&@6zw{-(Vhd&%gQ`();tv0&`l2K%{_ErnfEfk>+5O#z3l9tuB<8~{2CsH zY80{hD9j$H><2@NIXzI=0QI3UHexBFWsqa6vS#CUyNWvxr6ulh0A8ph#%yjdcr@TR z1*e>=IuG9AATOq|ym`}BQ$zNb21vqVT*+_=jX=@#s+*$Vg8OYBc!76?+r3_iy@~j* za^`4Mi@3$60_@IpCf>g=nbxteef`t~uTfXQMJ=6pS06`IEm%b4WMsfT=6;rHFoDMq zppjGN?3%!w5Cji0?%*NdVjg;tA#KTnn)9d6TN&t`F%m4QBXj@_6JM|0MCUbG)T9lCYkQ#@{7}rEKvbm z8rky~E8&*Ks{Ff{^gOAB%M3z4AKdV z76@M#8azy?*$g2GiIv+HE5l(5=llG-oBzhI@!5V4{Y3A8^ez94R&!HRaIHJE&uv8Z z$()n5*lxbF?)^iN`snqgsm374LM2X~+}?2(G9Fm}lY5I@Jb%yBbc`fv^!sF;aa9*e z&TcoJLf4@-KT#o#jiib+csp{KzLzcx2vbDJb06O3bQFaM=qjkNz&2B_54jD0+D#o$ z6(geKeF0@W=?4{@pZF@l&*Erb?Pew;ZKdgVEbQ+$!Ab{6kf1*~(4SxV!6qe?^ocf} z`l?Rk>hfGqy(}tkO1lPKJ20ygaJqXX1uYj}VGb82b^X?%$K`6Rq4VhqGL=!(ZPIXQ0-n8k z$Hv$IrU&CjfkT9o9~gV&h5ckrP-Q^!&6G+Bf#Q(_RI?0J$}TsFvw?ne>Tojz8`b@r zJpUJ!Q)f6Pd)hJ)l*Z&M6FYf;ioSVguci zi0u`zt`5`rs(j^Y+m#8Qu8xPycm6p2y3J2Y6ywW1?oE+klXjc^yyt|<{+%K(pDR(u zsWpGPJ+t7DNKO{P9YaFuL;M_MgT`S1B47o8_|6e?-mvOJ3o`}ci(1o{fGNb}Q1lNV2b8#WoGo^1 zYX02r-geRN1G9wm`=-H(LEnV5W#faj$Go_s%{ikQf$ zqm7Y|uI_MkzN9^*!|AJ={cSmk{j^fS}boXpHiE!nYueSFjM zs9M6ty6RF>p@m#d*%8de^-JvErz3ty?}CCQ2nylH0Hd{p?+E>Fug3YO+Hp~gI5L|) zfA(AVNK8z`^{e#CRt(W9Xc|57D6mSGr)#A{iVwZ+aquq6Z+`mWmA~B5z%Vsq%c5b0Sy@yki0k;p}}(feii`T2ll>O4$sal0n8u2`Z<31 z*YV-1xJR5h&1Re%o6jFB3Fq~3r{sf1!oQVxnhQECEknbePMvk@T>FrH z{tEi~-B^xLqP*ULJqc9upZDd=%2f=Nzj5Pe$mxfee+6Z^UxfEAKsJzg<2BoY_p-Ef z>zZSQ=f;bde;=5v=%%EmGVk7`+S`Pt`R_zCa}L_dyBmA#Yn z=*d+Zn>+Kr&cc@v86LbsUYWAhfl~`_uciSH3%ih(z_6e*RS|@LyW{S@l)t-58!ZuP zF#;}PP3^(g_lSU^d|EqEAOpPM$rIG7@!$^I20%N(pdp4*6LxE8(|g;k{YA)qS8n4{ z`u97C2c(a@BUusc=I5ujy#MFVxEX9KF&wYFfaE`W_CH&>6J;z=MmG%i4#_3yGr6wiyqS;rHjDGpj z65|*X6MsU%j<5Z2TOLCN?MF-Rf7?hgtJHI&xU{sVxtWgt=CUMyG=$GS?tkQ@pojs6 zLm&`Gaw9nP^=Acc_hj_h5Hr=+)QnABi@3phwCQg8IKd+_JRQBXpijjk1~2qa;18}K zC=pETi+#MFB>!6n{(5nkQ-F&G1wZ!YT6eT@7=9iq$;JHLWqy#_JbH8ihcv!$fZtM5 zNO;0}MPCIGf`_FVT6#$MfCa&df_00@PXkWCGyy3=KmcPNptVreBfhQ&?hcGkPlF`A z1IH}&;y=rVfvUy}C8k4f=~-1(ckm~8)=%Q&W7$#O zV`+y1sR0g%lHE)+19&U=6&S+~3kX#0qLTD$dPf=G{XO)NuFe4!72puzBXxD%uipO+ zaGKlBBnAnz2sgJ$!@~oJPvRAy#4bi9j-C|9*qix#6js&whwEd{w>`Xo=!gere}Y}T zdCAh1OQr}KQ9@;NGci0FfS(qm6B(v*xwjp zS~1{jwYG%8QPKu3-hT^~L6E40!exY`Rr9gJ>vlN%aV3NIg1xJ}V0iR-QPD{>Ln!JY zveQ>L^$y4`2q`K~id2-_!A7pc9@YJ=w_D%%g07MF<=OH#+(D`-q3q(;2$cm!&%1LZ z9eDych@lj_<|5kD@Xgw{-lQb2?TvFn_oK5vYfrv@o4kKm`Yf;OP1HnFy=4YW;eG%K zh~wBjRxe&Y)!2M4(Q`V*))k&WoiIoTp%=EV_bk1g zMS2!Y?Bfa|gW-KXqXw`mtc7*`C7{TicW&LhX|sd$&b zxL|;z4mGRiwf`NrkO90l2S5t_ma|c={YbIq_Otv0QWr0Ni}f0NHTQ82ZU+=h%uk7Z zF<7>p>Si~)4xg{?&8mHxm6AX4^}MCsHhTI9pm_^-+!Yn8W-7L1t8R|;$Z4pkE?Wt0 zXs*pQh8unMO#VGS4w>$qysIes4gOC7+NT6wVv!|u!Jy;*PgNDw&%I72;jxqLC7YyFN%FJbJ=d%B zjiJed*tGX;jq6l*ROFm>?VL^7&ZQRS+ryssmy@LCOGZH`fVp=tQU_!LoZ5NgnD3?p z549JG#mA3%?J;&IJtV)@))E;WUiJWEZ2f55%DA+yTsi+z8%B936)YSa*EMOi z_X}oDT61dr1y+cIh>v{T-qucpHuui?MK;+4F{1paJlzYEsxWB9aPRWoC}p>UX6hzHZ|1>Gb3JKe2QL} z+U+J=DI_V&#xQQ*K4}TlRTqC_w9}12jM`(c8J}*>{6Z6_79JXkJiZ(thLCsTScXr! zq+|^QG;zM%Mh}c5l>>!tdbkV$iywuR4+HZMstJ=5Zf9cDGDrnnl7p=(1qi@1fKmqd zR+Wpd2~9!=+Tf*p9yt>H74I0xhp453e-;3&^0;Qer4L|`53>?6_05Uyp8Wa`y*x7| z<0sxL+o^W!z?Q)4b93`_tvxYKWBA;F!yfv@d!8f*SFisr5$O~dd zKT1tnr*)dN-zwAq;sUGU$g*AJrP z^^1sT0a_(!R3;&5rWrCiRu%XB!j-ID2lZ1+BGQ+fKRR;d$?N{LUil7o1r49>o>+}p)g-|Q$`JZNB-m{c z9G-9eO~B5sJadJcp<+LLJ^w;v*_+Gmr=$!#JaCRU_YovZc>y`G_$*VyHHn30%Xf$7 zGM5jFZQ82!4vsgtbvX@EfnU9Np|;^s_Turo^lVZBI(xRp_uv*Wq0q^p$ZN}!oo+_f zA&NDNl#o8oD$ztM0Z$N~n47W%Vje3yI+jco4Oh}XILO$>#Ew}vZdR~;7;@Bkb#E<; z(j)%JC*3o*q2WY*uzzQUMwSwHO`vzkcA3o@WOspiij2vDo8o!8P?YLa-U6a;-EQB$ zq^rA)fUFu6lf>i%%f@KL9)Q<}#E&441V%Jy78d(Oj*BY3)E;e$dkcOrI+~f_jXN8L zJyiUq*IJ*UW&}w|AYdsoAJ%6A;OQ_5D+yq7MDe1GI$ANx%TOVJ`;dl~7MsJ_c+Wf+ z$Oy!+y$3PRGZaEBndY9OKx^%7J;Ec;;Uw%PZF;x=6ROT~w>jTCjlk9rB%!Yn%S(~T zy)EbmyFnPj&{$)RBMB0D0?r9+htgi~9$j+p_*M- zh0}vz`?L5Dx@7_Zz;;bd4URkDCCJ;`LPZP56eb(ssEq-pP9UbW%WTq{3q4DSB8ciQad3Wrv#NIgGM)nujO(;M^e!SHE%#2;A%XJ}%mBoS?&>@rP^r7vJU; z|LJLa^k5AgsTNloeW*)i-I_R`-nIHeT4`CyP?8=iIF5kVjmJP(5E`&I?;pv68>f2vB429W}w^x7c$mb60X9 zcMG77TsLlPIdOb?9P(vf5(T@>XIdO>pisDZe=r2g2F+ZZ1N&9A|E}mD>HM?QLE6rJg0~-fOD8s7a_BJQZ6Px0Y7$d`)Q2p zW8bq!OF1EZ!15WEDoj1NHQDy;5#-GL*A`pDG4yhni9$buarCJboiH}7;b{gmkbfxY zFKGW3QHOlzp?2G;Ne=wk_j1_9;-aIiWUZdX;`E{|xcT65^ngX|As{Fc$j#V!;fjIy z0TT5-(U z#A5f%^HVDO+i>VZ{DEDbhAABO_T@P8S6AKDr@lKQPnCl%Ej^uzu!8Uz*t?+<0Uw0) zBP0bvnNjr7QPy+43&~PoZqThl&`?*WoZDD?ts2HsR6`gxjypR$H5K=mKdSC3_2AQk z@VA2rO~o;T=ZQ88vXi{BHM|iZ3m~zGOfnS5pyANvV~Q2$a6HMWBaB(H)l|E`8oECMxOHSskUK?Zgwg5s09bL{l_34^Oi~ept|_Lx*sx zI$2{Fx4o^nY671r?Hl$eOu^f~^Ku_X7*C=~+EtCxi}te+ED5#82LTKhhwS|wG(mH# zn3klXPHhV(2;Ntj4J-7u+#e%Gpm+mTa{0=Yjlo(P#8P)qe6bX@=@0^(HGSnn78$CZ zF(F9kDj~Xu$NUPs7mprQzgw&=03Y+C{(d47AW&oty*xl>u)gr@d?8XkKmafF-iC!O zG^7 z!hf%J5V|0~=dq+Bi3|2q0RCaIXexXfpcF;)+u%~l)~^*RZk!pzV*$m1W3?+1MF?In z4nv;&Mm$Oi2Q8fLws82YzkU9E9}pQSDWY5#R~wAECbl4ektFGkk-I`aUZR>rvK{^c z_5c#ZvxIr5Vj9Q^0G+IWvUerpjl0r$gkilhtdk-A@(1%-qX zj@z+6vO$Xf0QgC8bSPX6RqrkFK0AJ@pTFPc83_SWBJ}t`x-kB2&npKaYF|OXdwrk4 z+tGBFK%fiiJaQc2{ibX75cxxD^CYAwHrsbBF80Eq$B2GJCT;3_jP1iY8lHE#kJZXL zX-)EyZ8fB7>TTM?Cl2^9R*=L$>DygfUvEy*N>%gPpIg`uOxqq-Rs>(dsr;sx7XST# zH34iQ~gNJt($XbTHRj~%P&5XBXU#)y)D`y64x;Q+Hv^Okw69p~c+GZ*0uW&L&>l@StFK;B5h> z!{K9RW3#ZleD#wWf@{lfjM5S0uUzo}@pt_AactOsI+ZcTNEKp-fYtr>?a_!B8pZuP zkwT6Dh&(hU0I*>$Oiw?gcftasB9YDI=Z`yL9tiQ`t5*|n!v~ zA7Z+PywTD>5dUG}AVxd*v>Adu0KP+f004p*E{j~exjP}8(r%TRwb8{zw8Dr!VRM;k3 zr)XKtzJQ~LF9u(U@P^5q7ojD-*qTJNq@C!$k#_7Sq}~mD=|#^bcAD_yHi_~saQ(q% zXBdl#-iedq7?F*kKdve&AGy5NKcp{rVEK8h-GYKI|BueEfO90haPuz z=`~qG1P@fochk4ebB#DfSG1dh@TI3`a(Fl@{?q$Y#aMOVDDWkR8W-TO*LtpOi5Ygo z!>HULc&Qu$*yNaJef6p<1mrShTiZzy@Om38>;9eB;fV&}1kHTIk_FxQk-y0AF`(e7qQi)T|{1U65b7qT6{3OUomjJO|1C89{xk z2XNQ^9c$h9kBkX6Cd3A&e$jYdA6*vy%zA5ZQNO@JA(QFSw_2N4FU_&E!0Lf6zA=xj z%`17veR|{sP3?AMP2$a&1b#baD-1fo9uWMvPd z=zNANSRyAtk9-Iu0fB(iT73ru-S7{<+!Gu97$=V1wQH3_bGUWP4KHpZfDZ7$*am_; zss=zc1Vp9Z!e%CT!x9eAOYHdO%G|!5Gib|&kCPcEE?={Abv?mh2C+#f5W7lDBLan4 zR$9t>;=$j&WiSdOOPe4Ho(*+N6SA>kXAFsmxO)E8C^>WsIM0uIGT?R;dgpVb(i7kD z>`xp7b+rNn6Jn@*j4(L?M*my^Kj(PEP%y{%5g$HT>*?#;|0oE%F0|sCm#cF9dIokD zOi7DXqGq)SJwtP3XRosr6flO=$QJ1^xG6|ndDlz+>CSZ(nmx@= z`40c3x#qKv!Itrhr3v^6$UzAN+T=P+!Qsak6lseC#Kr-|QUT?n`E}~ zN*`n2k*eI-Nb}p$;^o`7yWAb)3Xa6-y|LJynM@?03Esq0ZkTx&ASa-(1aBAvOwaV+ z2QG57pytg^lRpw4BuDMD(S{&3jKF>1KtO}3PxSyqi^)Lc>%NIp5C=8wRQ`yOWw{iu z_zxWt{X{a`jAegWL~7lA8$nbn5K^Rc<$;+Q2a6iMEGMWE9Z!B58aAtepL0C8eADZg z8t-0Yqv~At157nMb!5dI{EQWoOxkIb&_0K{n$Ry z(wAsG&m`}IzJg{>C6n9p7WxU)ig*=G7S7VGQ!0#d|2(Wcc1$u&W?SL;+B+v_je^vl z=jFp{^C#ny%WNP2E^$YuS6{fIRYxTnscKrn`{VO)lOp$O1~@i$`2FlYlVBgHv_hHs zNq=OK1;@m6qW;XdXpQ3&i#_EO$&dV;Y)h{1FVoVNF;ZA;FH9{bZ8*pbpqWQ$+u7B1 zh?xkO)2NIr}m$a+xnP&yBgkI8gjhQ8u zl!H4* z%mF0sKT1NT%D(Z;xZHeqBv4t5G{W`fJHhnah-bU`FN(#fO~6n2?3tPF87@OX6_&gm z>&t_|>?>Pk#g8lw8_J0%?mvH?#6}obphQ(MEqYT}7bGyO$Bm(wwzRCQNG|xoAtoVd zuu47`-hz+?RL}x-IDs1%7se$S7(Bsu)7tuho#ts~=2|_Mm*`%A5`q!J+X&v_;p!M< zjz%t0F-I6)*F?^=h!3F_4Q`}wf48B zG|FR8!z2IwKN3ed2j&`f8@zsVrP`drQUA4bWZ5se8BQC?M9dIp*}HcG^#lChVsS!U z!G;nyM$}H9CL?fzlLMM=cARLnGYKIbG9(Z{C;x{$k`te;khk#&TM4qyem%f+l{(ux z3}cYg<0yCH9vj!ID7m zR^wZkCO1)AnvR4Ph=g#6iCRQy5*%q+Ss4&?L{WV=Hy2`|F%W&L1bAYc%H`}VRYzA} zAJ@9;FhxXV78zt|A|fI@Qln;vi5`#%NXj5YL)DiceOqjC5~Ff3e-tHGOHU6+<{QDv zv9>muk4t7W(&hbH#lA7K(yWX`6U!>|kH&BJ5yTRKN&#s;sNfOn1fB<>CK%BRD~bnP zA2Dr7rH|s{i>*Gh6TGvtr@#f)IKU~)?XA3hM6yQp=)Yt7pc0CIUETLNU`VQapXHQx zef|1)$^fjY1jqCpB`(~qD@I171koc$Og$QFYF^~$<-9GsG^vb10(O_@u&ru$jcRZ+ zBqStoUKFQpZ|Gdg@r@1#=(iYsiK>P^K=b`G#KRM~q4k!1TFtNx)n(l?8(Wy>B=6>- z4Hle~fV`Tv41+C&mvY0SzW8ZR$)KFY;{3Q)56zCBh}(AidZyN{iH4)CDBf0l`?4q} z&me>{p?4QPZEha=rY8T0kPs3eYsVzSajIE`HpA^;^rf@Y7;_&GIfB{~K0~-HOav4V zms9oZAa7ydBSUK_@Iy466mf(#!Ea1?O zi;JU=BL;n9t`SDojU9L@p)A8aIEt1h z^^Lbj-l?=vm+FESwnuJ`X7o zCO>@ry1Bm4QZ!jf-Hh;aGlOABJ3zw|{fLi&qi_`4Y@YZ89`Vs8eRrs9{sj&Sa^nLDX?0*H6-R6O)}BimLcEWpkN0sKa)iD zxe{8m2K_P;n5P8rQ%_G%^rxSq6(x2A!oth)^0f5zB{B6QV=%R=3D4K$gwUrFz?#9v z-dJfDnSTXeZhks>iZ9@6*lr~&OHjbZy)W;#KHJh-5jKYkVdqZU`Nuf$a-KcY?qUhN z`R>>y78b{yIXlVmU{HIPIFt9>el@;7z$-&P*M!7;2S3@MuHvDX4+y+NWY0fGE$TIY z11}k?12wg^H*eh{CE%pKd~@cA3Dq`}kLLkGf+God4JB!ELPC?}W0YsHE}x~yNJ%c7 z0#_~`lh}kV1EPH@!qbe5?Jt=Np9Ab$)-~OGrWf`I%>yeaQ*3{7VJBPX*@QEUYZ0CsvjvCeJY!g?WT;5(&W3>L&hx zwtkkxut<@g!cE}$gV-$>3R{{1iq_PvI5X8^M7b-_#NZCbPi|voXP{*d1J8iy`GW*` z%nX6pHaV7L)r`7-2kuHiPI5jX=^gwSJ(M>8W8ct=PIRkBrpnRGWM>~vqX1U$C(2U% zWdIQe{nFZY@!?wZqlZVJ#<_X(v&W`N6U46bMyYM%?>G-c-(ke|!_{)&l6cShr}uZa z?e&gwkUb|Lu<-CzDAASqWFHyJ5;UPDF5^21mGJscS^F>w36iAt+!#cVj2~S9I{ZV~ z^aKd7{r^m$JB6Oc&(~LPc?wE+Kso*KaV2W-Wss2MZb8+8PUK%X<$+!a=*>oKa6ibL z+x(w`>xUqVBm{NO^!O0Lwy<4%Y9{)8ps0`nqjiW$nzI64y}I|1iT5ibIe)*Jh6(i% zhSVGCCJL_Tsjmw7%BN^zx*mWZR;OmRJDW`9{?_sf|ob=hn<>k?b z(K7=BDKB0uj(BEuW%*jX>>+U}Mle+x1(=|GOQk`Lc(;ZA0^DJh#jU=K3=I8KQ)PpH zMi(WQEK4Qw_NDF5C_ci=OFAsd>uE~%I+hRz@D;KZkVQRh%X4!BNm0Z(cZh`}c$b&U zE+@)ErHV`?_zaO<1l<@2GB@JsfKUL?fCO)R7+||6B_xPbv@c)&i(Nr1L@)s&YU;0mf5AETXWe2oa|T@b&K7SB-ZKFEAQpcqI-W-a+weXl?}p z`ui0EuYG;1pgZJ*iW8kA_8A~rT@*4PeW1buivfZb7z^GKC{GZ=2z?!V@uP`2gCy(f z5x3cX0F}U|^X!np2ScAgF58!rm_9Out%BeZ>|ym353?jvw`%qHV;Q>cr$7juPJRo; z5io;SB3v%#57&qqT4^&C-7j<**A})ziwHs7Yr~3xa&A4ygYR7_BTZC3cfV``YYFCy zjL)!C0VGPQHH>?^knRRb^5Sj}f#%y~8*K;j!h)Tki;wyAiA|%|klp~@9~ z@MlUq%N00w?6HgvGP!!<4!C^qH*iVP{#tF14v3rAXZ>S zv`88uqN=b9qEdyIHd5sU3MUgYe+Go40o=#-##M&|S_OL22$e0aJFc8mmYtg<>rGaD z%N`-mEY7Li*H$@uPc>6}yjA)7a}TeiB-M8@7oY9q*{`M5{e|zb#dgaRZ)T1ztPOd3 zEx2c!H?e;E^VcT6Xy%5OR{UE0jhyPwfE+fk`~e;iqXeR(+tQT2;CS9E>2eM2UMRg3 zbkg9hKzG2Q{j#NbE71@lJ;a-QjNFH9ftd+=7Z7YSgN*>F`ASQbDn%C&NLY4>`PkDh zGq=19Q|9NUCJ+FN^Aqb_p{U!wZEeUstx-EBhD~74@z0p+6W0+f1zyGjQG*D2>v!rK*aQXA#J{QSm*x?ue(D zng%q0I27zgG%Xck2ZnIq6=HLo(bdRV8I>$~{jIHQR(h-r`+xj%tos`@cOZTb_LiBJ zzk5GON>g@+?f(44;TdPyPH_M%B}GL$tkekiQGj9tC45xW zZbh`g%ea|0Hoit8y$N%>PMlcAw+W{#qUTVA!o-AI1~)cVr-P|!3T~N-CEMzbf%gRk zVy(|2RQ97jlRJ6xHi!poVf=Lvyx8@wxE!ISxIX?B8PQ|QSAOQGvVQEBiG1(?;2J#@ z6%xkSF~|~0^H}ddS`loms!E)HA{liqwy+p;!GJsCaswa(1w86F>vKbAupvBO zT9QIn6cK?5pBx?hK~J6-pr|r7_5v&gDRaUr7H)rdW&mlt0Vs`j#*}LXLRX~6SzNvP z8h#Ea2_Z&?`2laZIxug}%VWeWLC(t)Bq@;b)4Zrr3R=okC`Zr0c!)g1mA`)}2WFt& z^8TQ}8wrKaOpmLG+yPmO<@~{ovL8<-&~5gNMxxw<`YeL9rSoCq_e5%*uiZUvTk}rv zFUT6uB6(6>S%0= zR~2X_5EjT_ovPXH*^%71dgSDES?$opcwcKXGv2Q>mC1zqk2<5?2hg457*|Z=x5JM( zj__nzbO3dLAZlv^dIPr+Dh1GD%K=owuENfiNE~*B;HV5J0qVLwlhj2l3*ydU(0^lb zR%Br`4%(^E(bpF`jLSt1@ikPLN_{$qYI*G*ZYz{vPa=nK&_hX*A=>Tujj>=WZP$bc z_g_ycE3iPx$ z`|=@d%5Foil$b|Bd8?2lZHVN%La(e-_<`hP#IslmJXp$WW^S& zit~VX0HNXx=iuN7RK)hJm%qbCs2l(NTOgdb-^$x_3?d;v)yQ9H!m%nhZi+l zk4>025N>!{cu`CIlEoK^F7${eW-}#&5F6f`c_NX1fQ8xeOzy$=!Y^z5AxmKUVP-o< z9L#m;(y$9PL4wwbjrJ7~TV8+3<5SxRvFMz&;xQH0ArWh*({5sH-5TP7kacOS}gkr!e z$Z5F%vXpM=E#|;g+Cv>tfgtJ4pcvibBI}puJ^HtKo;zRs&WV%W8mYl1IU1BKEV`#p z`{$*6sLfXA8hpMc>tp(T#yI(Vp~__=j9XOK(<`hREGIRv zJ5F*#iJ9qZPtzX7#vVF+_;Zg0OtX;3NvBWwFC@IH=^{y0r24k8f6ZN@el;0Y5m5rY zn!oG214y(hst>RHJh7&vpss%Yd{{ew7BWqM!mf;cWJ zYux?SQ6a#9h#|-GV$%I9pDtf^FcOuys4#NIA?9{#`N1B;D=6foE4R8q4{RWatbJ~1 z{Z@8axx-M)8?%wR6s?T2%YIu%R+kh04xkr8=-_($1UXd-I&XTec8Nq%9{-1Z<=_vo z9z|a$tev9EMLSkdFoNYNe*#@T7{1zZj723-L}1z}MlT_z0Ee3&ojpTjbm!6cdry8) z)bU`V>)c4QnX=0!A9s+Gi8!kfY;R|cyHCPpjDbe(RqcQynh`89gbQ@ucCBYLS4$N( zdVXDEd%YvQZ|S@Da|*g*M$&Cxz63`^ARCVQoG+yMNFJ?hX=$mh9{MSHbPko(Vy;(dxeSgKdjj>#} z?UYBoQ|MI@Muu0v##L+URruP$@fl*aFhon(PhKCnAcj{^~Gd<#UcG~B!|AgII zKvj_X#<>O57zKzi%5lAnNMQucHHWL9*#|oUWEH1#QQ^0U4d!5~S_%L?$SZWqGl7ar9mjEcSKT<_V4T?of$FzgYb$FOqH?R!&z!WN(+AdzF z{@~KyRy(cdDI-^>>mRqgPWDs_wady*!d#u%9TjIEb-fX+c} ztb#P?Sx-BeN-}h0DKbH7Mr@kU>R$?!SBW>0W z;+InS)EYxy8%$^1e;P+(2m{K3H24i9h>?qGd>1k<78sF7)PsDgX5RkP_^Ac)XLu{z zgysp|zzxaT2RC53fCL5q$nX$tF$PmJyvfgxii{j^;UIJocVcJf2_d1Z7cXjXu%0{_ zmmO0r%!ANq2ZstMvS9@;Frr)M{NGQuw6Y>j#{$|7BG5^)@c}}BSvWYF#+goqqclc4 zy}EVyIALYuMOqq0OkLF7GJIoFK78yb|Je`>l_)TZJk1-ed$CUDY@z$N8Jwp$LB6)O zn*QGX!GZ9f(}ndSa9k=L)W*;ssb6K=iCSG^uj!$|;o$%~i4P7!Cr*HI(K@g6SIKZu zG)iH^Qo<`|s@d+zsK`wW=fqsjoZ{kD6QjNB&a(-`39$cOUJUGENF|~>>y%f&TuoVI z3WdQ8!>3Sh{9(M~3q3F{qHE-zmOpjQA;j$0Cv;?ulN0^hzY{%Y98c0D65dL$w2 zNVQpfR_G#%w7Lkcmhbyb4*C6WL2doP6NUB>zX3-{&g-32{s3Wc0U>!uM@h-jkr%i$ zapDC)VUQb4)B*R6^;C2M3{+@a1Py*FH+<#~@rvv*yu*eu&X{NkIZSsqo&FX0h4%>w z3CYTCqB!q5x?h&ZpCLaxuC3!9!{ETck>kg4-z6O}r=ZL{d`cAv`t(?War#%VoS8mT?*)-46^zdq;GX~(82Z5XW4(g zitnt$=~!2QOC1a*?YV~5!OEh=xh zD+&reX=zt6!lH)C<58FqK8w@V+ICU8mfC$nANC3H;i4 za5BrsVVxZD#cTRbcJ~2c0~@pP0}AsQKX|F(f=7Mgh2_4BqHiV(jJ}9Rl@F;e__?N= zse*C%3s{h!iQ2}GgwRFuzha{WVG^Ky_?}&to-%omm2|zLxpr6ZMD+c%>5|K*hV=^_ zd1$0sh}#usU61oVA^M)^R;yI;#KQQ3+RY~qyB}ee3kOKoS0<=WQM1^OFvk^aMNe2r zapZWp?jmhdeN>RZCGMJ--1iL`@df$$c>=5i@ALmT^azAaO{4}%xG$!6zY7@Z*f=-1 z+r*xM7;Nkgn{7uA0dob^ zfg%Uz&o&NfT0|n9g;okt+ZcZ%k%+_tc`me}xNFu)kx2BPp1Ra64{)iJFhUI7FtWka zYQcrsj;&vFzmeyz6EiFaI{?+3R#palDkk$4>kns?(zicq9UFcJ>D(L?Ihre5-)3ic zLf480f7|$1Jq&<=L6=17JoW~e@HENDLoOTjm+#K3O|!wsju;IJ32>qwu_A0eC9W;? z^^|wuFSfI{?`=QMgW#;LNYJ05F|^QJ0FnJVY6=Vl1)$+ut1xeQt^m`zZAYJ_rq+G? zh7rOD%843RAY?*M2*)mv+Jm5}&`P#DVQDXpKm+!#&BhV{&q~Du8||&fw76R!>J&I` zXzV(7E1Fj2*NFIcxA}(6T6A~7a4e=h_@Y#Q7T6gG`ds}~Y%Y|}V&W)K9krIkGz^#% zf_+${<4QaPqM%mpusR)Iu(?wCo19h2JhS^5=94vJ@~sm%FdrJ3C{F81d!fmZ42pa;6E%6U87)ukHNSlim3=`aEbBkNg!Blaku= zn_7@>DY=gw#I_L4p9&;gI+x%9qu>D0SY2>)V}AHP6cA6zJr_pKtEdFSZ;x_0j?;f{ zx!0DFrY2hT+Hr0U2(2+!9g5Q6^Jf3<&9Metq}A2cXPS+w1qEumBQeJ(=0q$&p>|xP zeMBV$NWJ03gGW1Oa$R}v?faVA1wO6_L{7yhMo6R5`?yCfiqo#D`=W%jg2VVy0&$Y0 zW=A-``mDLM(_`hkdUpF)p75B??2cWe^*up zhlb#RYyQ^@6Ih=i=bTI0?WtrfoyIS-`V~dz>KDrF#7T-32Lt{6RnmXo6R>%+57?>h zY3<(1&=93vsOYrg0~P13CshI%w4W3}6iAdE*|KvHL>Zdi$zenlPAFw6Xj`C)#F0(2 zMk^;K)`s?{mV^x=b|Yw}7%*1=$?#+D1e5{M3oG8 zJ1|+9Fy$0YoI{WigC#^+M-;+hcQR1Z)8is5flCSDSh@R-iizR#!H0n}l~EBYLKr>} zr3>sp2kU6*#Wj0-Wh!W%h?Z@hcj&J8GdR3#{U}Td;JuP(8IL$Q9o!iC002CEN&_u<= zss_Tt5uu$e=$&;j$zn6x1r*JyuOrC&lyC@y}~Hy?*5KVsZUO|0Dh2wV z?KCvVT#~*${~{&Dbaw3<{>6mey?gROfRBN`ey+10Z2z6QG}P262tkzZ-#zqx%)2JcbJShBY5;Zw-~=uGxO-7tC@DXw z{Y)wu$!Y1oj{%F4RfG+x5b?^-^PZQH?xl-}>0n=;_$Ih?#dkZlFSvx)yqt2$F&c&{ z`-9dOmcC^YDe+rVa4|8bwUdatt(J*mcElf;AgOpjr$T?^&k(7C3;Q$`hC$WW*5*l@ z&3JCEW8nocXzS=iM@Ehl_YKkNm5~vmvL7S7Zn|f{!H>%t?c+rOJfZ)bv8bQH+%hr_ zOiuP(*9Zbv0YWFyNQ8lzS(yr5IkY3#pue%3WGpcjC==$~OP6-b$!&qiK(~p@8j*&0 z<arE|O72B>cWYgfc78nIMp*e>n)QiLI@2M9Soz&DK z{VZMlyzBx81dR-S^hE86=7^X+ivPH1;iC_S+Em44L@-;9!7e{CMzud{#BVjA(a> z7Mb@BTm@d>mw1-WD34SDRr$NRir-2>Mpg=y2GAeuLurhti&QyHg;`>G=8rz&HUvnG zoSH#LV!#;98av!P*bETLgfpz7OL+g2vLx)hSN_YF2hh@^l7P+`vuE#tP`Y=oiq8^` z(nJX-MJ1&JIMAWKN0Z0HqhM^z#RJ;_(TlClvJ=CdFI+f9wIg3qoOme)2E$aMz_$CA zv680F0hqPshH#{iSw?+l9<9Lt-EmL;j)RI+fvtdY*Mmzbnup5nS{?t0Nj%ppYs-}M zUJNB%;wK$=5nIzTKkw~L2tTmROCL|_+W0u_%buu&n z_k&$};|jo}6c(-kcf{Rrnzt3geYBB&46K4|ChxQMwq83n>E{aVH2|mftE&VgO9r1)L{I<_?1*5|_aM;qiB!!(oIa^gcgd zi3(_}%U)GvqhMGZj!ig#Og7g@@%X*_v>+-)ENq16kC^8RR3VQVewJ#DZ;w+OVPp?g znwM4_{FPu^7lDBZ(p9!1Y$nE1acXt40fSk%!0@gslxm%>7(Lv_aL{=H8^h&pHGSnw zw$}kaY`;b_-_E;X?z*N(>)GyfY>(fi=fBfP%OOfk3D(VsDilYjaQnK0+1{$x4B zzTA*%>Y8bX$G<{qL@X`+o=_3gC;F=VK?j($f1R3~lq{>s$ls111x`rs%2UA(ip{?Z z2Llups6y`DyX78o|31x=>sv5xfc-a}+C2s+3A;2W9rGxq084iHVNtu@Nx`#N-f51G zftJFGp{&~M4Di&%Bot(I9o|4e(tb4iGBY!GT?TFWd)0a-Ph4DT=HO|1QJ9_7MPQ!I zdam$3myWLMDpi>wBbG}VhlHbdJ7cAY37mwC|6W)6w$qXo4DHS@%Wv678Qk65-9D}V z6Q|hM;{|DoR9f9XR`+I=WzP&z1h#efZf>PjJ9Ry2aHf9wLs#$+6UABp$?To6J|REk z7*2w}QBSLL1CS)o4WkT^{My<~^t>bO2#)WHT%x^=4NPvK!NEi^%gvklFm_-)luTQG z?5^z62~RJ1NTN6f4j*m^0Hj34EHyQtw|4Nst*vnqPG)IqrmIy2ImuJzlIp=@stO7z zE$JI=<44z%zR-}!oM)~aaKv#29O-9H&u^JqB3q|i4jV0omxsQ@r0M+jBg7MHHWSk^ zhDJv0Gd3EgY4X2bZ1^);rwv+9#8uR)@7>qU$xdD~RGQ8=cdyNx=>LADML&~AnT*{C z;kbp;FjG==|a(n?~M5q60~+jeOU zr9AAs*rRAvzt6EoQ|4r4)o{8@WqUIq&jc2fIb;n(XTAai1)CBt>@R;zs`5o!g*{PV zo06N$z(bszvVZ^Aset02t3KhwPd>Eisx5}ghP;aj+k?9ib}Rh#lJaBM?sT{xt#i|Vtd{jfrwWTp33=!gi|j&@K_ zLl#=9faxy|F5}5l^rSG|PbzdGEs$OmK%tKE zNk&>aw>tOWo;`c=mME{Z+U)vSHBek&#zx!4Op#t~dp{=^>Ho#w1FwEDYd`VUBA4mk z(I-dL_I`V>VOw_Ez}(K`I#1b=UHc%k`(}8~e*at7XCyDP^H=YvS9G|e2>+(Lel7d8 zsj+~+<|U&*_?2zebZGq%hl9^iW|P_Zps{+-9?lcutKYsg3;ushy?0#B|NlLHMH13P ziuTYn(vlRFv?SV*hG;5Er8Fs26k2FY+M7~oid52+hK7dr)YAN(r`P9w`~AAT|9HPh zUDx$|jQjnZb3fQG>sU1MOj&ZDKN-3zJ<)Q@@S5GcG13w5AUpn2*klK*TUbyy>s>j6#cxjKFy>Ts7l~W$n+% z7MdZsy_fgz0h3Cfpcbe$b6iOG7x zUfi>%AM>tgpJdKlHaUYm+xqdO^y3_}>SycGk}$zB;fPD)%Og(}{wCc%Y7Y07t?E~H&9=;}H{lLu0zwXw0i(9s$dmY;%@=ejgR98MpA&OLs-Q!WYa zg1C86EJF{fx#_X_F{d-m@L12@_8CNiBBdFx1NNA#KtbCjP&fhsrZ$6fkW}Vr$Yh) zR6U*j6e;lxQS4_-J5n9X|C6Y>`G>~&IWh4Y$l#c}-}(r^#f_Uc`ER>G!s<{o_!)2v5>xTUj!LK>0#*Pke01^IvPh^mQI&%#7yeX^F!beJ zzh@SQ)*>yOY$2F9?n%R~keqFssGC{~VsA|!wz0OledlWCn>Y7^gBcvSgs?IzAO7Ok zU3ix-I`1y}(L&3rCe)q&73V$)TQgf91gKhAJi0xUpIMyn)VJI|nq1qgq#c1lHn+Bv zJ^9q|azC~zUY5@jJk*%2P}Ep~gl?-7KqxEN(OoYWjo63PNX`m;gf#p{750@b|A@=V7f03tug* zai_P?z`!u^1Ef}{^tA*4TRUOC^n`mc%I`MD@3j(@<>jaFZ~x6asb9MEVR6eQh_XIY zjOU$=MOU?8^l`>3`Mj)_f*5(xU-uE~JrJL8u{9{Ty29C9o=^%N@yUq8+s zL|%L#EpXLW8==GpOBx1Aw+`nTw6{jDGOfNDh)t7OYSl#479}}`c1yUuxV)&&O^;Dm zoI*X9+GTCKdL%E&iYrWgs$xH6?=%YF2k^p+eclS32oI})l&Eg7tG_j-?3X@m+Ny(! zVpctPA*kZSryJp_a~FZsgSYM*eZ~64*?Yyt1_3a_3x-=dZxLlFUd4D(%~Vx)w~UzB zJk}oYpU7`m0|$J_ZW#A zB1V{^qP9wE!Ji5@?%?A$`_g_s_(+p9e{%50V&(@4reRA+27;AdlToY;3K0DT~ z?R8Y&dg@R3vE8BCXee_RKlc8Zk9i~(S}R)vP#^jM%?lTX(;3QWXa1ArqsCk|Wx(ez zui@b#lgQ;|gsh>PI7;w^w8WK+9C(~yuyD>eCMZ8pvvWl+wj(&KBPBdhJj_E$5{g4` z3zQuD_C){?7(B5P!m)s+j*2-+*euU4RL?ay5b7Y}d*UGIftf`bAJ0N){crEL-h6Ir zy$L@kPE4Fff9GjjO!6|?5kj^6I6T}LLxmt@@c}gJmu*n)*db3TjF`&qYxKlQiDi`B zZ;PWHC*4<1*Ts>iyT5OFvBnZNJP~|gh4EeJZ}6igb?N#<7AgViy0dKzJh?Kzn5p)t z0q4_P+snu^`Kb1YNQ)F>5F*8B1g@M~4t5WyZ8Dl)oNHYk&G%U8zT9qo)e-}{Jrg-P zq_QWQcs5^4Gc3}Plk0;(+eY}#J&$C}=ulF^TUQ?=JcPUsG9=v`tM4gzX%B-t7^sCk z9bB9pO>|-s8!TFy-iFt&>qohnJb0SX3fvc<*Ov}0{C?;V_i&wOoiLh}>5X|ax}D;j z&GjT@niGpRen`7HHlm8r7b%V90*C<1jq@LOU3M)hnRDV9ax)Xso(Nyjy>epW3tJ5G z(1(%0)-X%!Wwa?cU4Q)s^tm|rAOI=0AKZQ~iiNDmu<#aM^CVh6jSNCIa?%qrN{qzf z8odnoXT40Gj%TO-S~We_XG*~&hiwm6huE3ZXUz4_{`%qnRpQeW19PehI*Oo6A1q8v z%HL?=hycK}I6sdlMf>jD8!nrV^7M~1#Xs_sb~B`T^Y)#NS@BBr{>2kK)aT;U^zv+Q zF{>>eABO_r0*-8`3L*5&E!Evtomw3f#Vb~$r=WbVY+lya>%Kpyy^|G6kpwn|o1!VG zY9k`{G3-0Bi6ps2g+eVSFRuiFjo{L7cw>gWwhH=wb!BCf!mi1fH^^+jmcg0l69{D? zOe3lN6mabm`dnZeT3RisXS`p~h11EAAGDQzx{pJ_((?6%4mvq-Nv+Lae}9X@-RQIL z#+{085d4TcGC^^Q^9?-3p>tKgD9KHZiJj8F%4)K06QcwQ{DcK_cl}fIi~Ftaq&|A| z)hJc>AeL)a{vZ}AJos?@;-Z9>w!VLp2-iWb{efrn?p{1eeuh0yLPB&+=%ecq!kMps z*%6numnqqOG*K)?aYr#Fu%$!UtGk?q{||)oFs7@l`f)bYxfe%6+mZ1p74(bz{C>!& zZ$3r5%V}!}*v1wxCZDmwjSN*eG*y_d|6mqtDZZzF*~S=gUiuTOb*Db zD&)hsxv-7|wnXvq^Yg%naAX%HN65_IS|82bpWna3&UQM(cKF;25noNFvP1u)?g=FgC3yt| zHX^w>LkA6X=Kl=!Ze7whJmK7!^XTg#kexI@l2=K+jGJ~42P3JB48=j)U2`H^e1sC{ z4Pqw=$uMa7K+(PV-&{hWC1SGVXMSAF`01C1rT*XerNp6wMwV8#$Yr>TqW8|BZ659# zBL99^ESlsZc!DS?Q6}E=;c{xlmfMNw9zt&}8gJo^wPkvwK|AZrWb;EQaRO@Dv%&-q9UhBWFUPkib zeJI{`Ca_o>XQCSLDH(W`sDhFZ4k)ggGTWOtrS|v$Uqv8t^Yl4yvQE}dkilyFw2nr zj|h1Qcf(T;!vj!QZQgyXRNG;kN^$$_4QJ1!xIJ=783jD6hQA9A@I$`@p#fwIfG791 zRQ5WP|L+y9pFyby5vGKx1F%h)Me`HB zdWI4^+Y&|SK8bH&6F{H_1Xxe!a`=F>MLh_D_aDaqNdwwjK=~*n_gDW>jo0A&&k!K1 z@U>FQ8=j-L_8M5TfB85ed8+>A-OFkQ3k$~~I($sfZ$OYerdY0%75$$ulH|34`so4c za$ICcp!R-Xbkc)7KS}!h`G<-L17a<1uAzJAnH8_w0U|XbSS&GXOdnBjXkWR~j~36} z%?*-k{GZSgTjVe~9E2dj zGk5zI5+!-gWK@LHu17+*E>w0l{*actt1ZlgAc4h28I}llc0D?^pjW)(1D!BNEmV-wL83Y^yvaIy+&5x5M&QDep6U$3qgN>5JDK-sI&!)9hF2 zv+KP$7P$WyF&}31>ZlQ5OjM^hO7LhA1OR0vPX3v$R%^Z2u*~Y{Sa$5owOCAGxG$J( z_Eoptw>8n0`Rwz(3=Ehd(-YxcivOQba{7$wf9Z{zA78w)=0dhbQTE5+Q;mj89#?FrI&taXbt*!;iJ7_;Hw*BO6VpgTm`Vd3Q?D`?rn6LxZ zFH!mhZ7b-QI&zP*Lq|8M7`U?r9k5ppjN-{SIqGBi0g^?CS%*Q5k2TYNa|9`Q+|n-ezw(}I6C*TBzf{V{7~3KX3y`@1V?>>uJJ$C< z3Znw>CvN-m;Rzj0%_5j##w4QDA40d&)(@Qmn2v%(E?GqRntY@fpTQt0CK0|Erw}6s zu5*0w=>P?T8G3x-4o5-;j5jdQ5zYWI(jAkUJ{WqfLScDl+n#;yK0{7HfmU>wn>!gL&~%#y#p!=#QnuoAPlaRaSjG z!~Nu9N6r{?O!$wVJ9n1c?7t7i13uXYH0DWy9QRmdJS;JdgmTiRs^;cmIw$5K@YHu<`u1{(;Zhh-Z^~&nsDn5ELECt>*Dq+a{rE| z7acSaVtm3ZA9V&mU9cTH=I>rcX?I07*4DEm64xcBIw3sTI%^99))(-dgSjp&@i62l z^avMisXrEg`WaHG7p?;6WPLP{2eOhe`)BAJhH-Ul8ymkJVA6loAnft?SA6U3tC!k9 zq%@%f4^u0U#jtVlL#4+FD=$(Rjmbmbibky~mwa%+iH3c?`J68;e&$PbyUMl$H>y0R z6|TM6_HazUPg#0#a(^2F)8I0vdLdf@q#7`^%u5BP2L+v+f9qX;x{-YU;SIX)o?VZ;SZ!k=KYGq=W^js~32mqdkHyswU zG`UD!CfE3>A1m&lrk-4Tj!hjsnSVU)LNe}&R~y-oiDRT{Q4`V)6ug+34d^m}zv8ikV<h3a zepLUOB>w;mHwcx)#351@;XCKx07K6msuzeF%F7bW;?iYbRjbwQ zhMU0|)=XuZ*$Q}UIEOP<{<`d=4iae|(K<9t`3U{t|9k<0J|0U_D$Ny-6sXCCumU=l z9B!}7OgmfkZ!Z##&Ww-DdR6`UCiLR3@FAKAtDU6&WkZp&(Kl#_irMxsGpi(AVB*gq zvch4##i0;0(UX0*K^tLLi0ngIK_`dB1xs+063{0#gE!x?V+U9kNHDUa?7^u+M3%iQ z+K-P0cn9tlW$q?82;j5F7Yq(Se#6Qf3mlWrv~oZ_aklE&e>Ox3h3Wt--GqC`7Vx*T z`16GY)|`N!6msXz)pvKVW7oI2sS;)5jY{xZ(D@`tH~XHsPdk7kyx`v(QF^?v8yRfAz2n<|S@{%YzQ zNtcHOs=tcu1#nW$A@-P&${lJD3_-B_beFh8h}Kza(k4ni-rKze$Tkh^P10jyy=Vz; zdPMiStLrjc!?RZYLT_66`SZ(&2tw0z^0ztP?7pWAfdr=IDA#vh`l$2N3nVhjvo1{#H4i-rPaT2bwS5 z{Xz;cat2P`M`t2!Kk)E<^cJo)Y9=LL-5jU2u$X$K08yuaz(7LD)3akDPiGZ899`M@0eJ@4L6`4U9^mwABsdnpYylE(% zPg24+Vot^Y%)EsKpBw_w9Fa|pp86z#sGFX1l8bLd;zz(cVayx!B5J^uIZTNgVwT~t zF)km_MxifWRDTJ-Pm9?kXMkUFNNi6Hmq|if^HC=bnj5y`(R75lJ*;?NzU)9%%Ori( z0@=%vfz!1S;@6RA3dQggMnbFqX(7vEhH;0X^|#mD^Gh$^oHab__3QFEELof|M^1bJ zvF?%(@<}mgc7n5X^#+~eJ*-k1vnQxrwVzez1c&Dc?9Tjpn67RcGNONtznR*#{S&;a z?}kjfp7mXiR;}oFJ1bh9z=PMfPw76w;Y^;r68gy#cYt@)-|B+t;l|x_s->Q%v6DL6 z+F~!OQULcxcTb=PPm7^Mtgy1jQbBq#bW)YkQ%=__fL3O&2%-j%k?pSfH{SP;{@xCf zzL@P%bxjQ_ad}EKQS&W(=;XQSv#pd+jKxGT4x=%ol`H=03dz?PN*k23CUEFO?SVV% zKh!B>>}kLr;s3f{aXCIIsgCY$4|KnpiRy+RRbXr39}u8#57&y27cbhud}hg(xXz=T zsBUXpLMg#QgN*z4w`br=6OT3za!d@e4lwUXf-|oFS>nF$ z&YS*A@6b(R$fz#z7y}2Ix_nrUz?uWjKy96!Y#2|*lAhy=IdLZs^$~DP6q(52MtD$i zr=6tf_?^oaF9!JHEuW%Qcrw+PC6Yw5(1 zQ^t;ahWEyd%JB1SC%xqCqiFsZ=;@yyFNTR8FR!B2IMwHTEi>sh{Cc!q&sl%L&*iRw zlr+8jt&>xX)!D7ktm4NC@2DEj1Xcr;6l)X9=bz4Q&q-4%V(n;1K&*;Hafpkz8aR`y zGMg_@KlrFW76?4%%A#-ClusiIgA@i4On|cipSgDJH$)9ZtX}CV&%r7`d7?2T->Az2 z+;|s<8BDkV2cYYN@!{Ii%;t-UC(o32&dtu6n)$7OuUz?FK{!hmHFjaD;AvZx^EIqF zOf4uJAT&bzA^MTZY3g z@K6^hEfm6NEGOTl@-QUsVq`>>swF44iDO`5qH99@1t@(C?xkRMX=woKV{UE^lb~_n zy-wg$cbM)ihoTXG2%RZf`$ig^<@QcaaKwiV8g|&H=+}0ZjW?6EVTpl#h$$zCmw_r# zrNwOF6%rc9^a<8ANDBOpR~y9@kj3`_8HJvUCB|&^PIqgoVo&4dl|19!VS%B(P)=nS zyn_-twO8d063fl(hZ9l$$-?p7PY49INy$m~l_1o{sqAUAaXYQ)R zE3IGH+p&(6aeCnP#F>#3Q?3Mkj8!$I@bi5`$otl~H`FA$q(Ut(+AKR0I zJ~_G&tLyH9|NKRTGKHL;73-#BK~H2i#0D`x(DrC#y{5jNu<(_1rf()&zS=}N z*c|i>(I{Z;r6hI9OQo*ynnKQF^3Kcl05gQDCJtoFs}l010pdrF#MxQ-M`2F8&`Ix6 zU?8pvO3LRE5l88Y&Vi!-%&PXXWwBHb-P}KvP8em6BE>l+rPvF}&;Wr0np_@*$0Z@) zJ6i`(MGy1(SS{K1Y7hno1k@77E77~5u<#WRmY*LnwN1DK8A4)-?8fTHXV5NU z4WK^Bh1m=|&EZQP60&~OaukIu5D>j$OlG@-4#4Ja>v;?xA%yE8A9-8}EQ_b7CpdB5 zU9atMGoy4bO(yRgh+?o%`;yOpmu8Me&k$ITk7$b8`s@ z%<;kcG+>$*$X!v_2?Zmgn1F!P;^L_C;?w_50RhmLI6UswbbS!q$G2ZyLqA|7s1BW# zYVWV1;0q>}ygtyDZl6^Vfc7@9pcx>k zc{Z{I1yk*_LA5VA)V-5Ibv?g7zHmxL1_V#L^mB1)6{E1L119&&? ziNTDpW7pD4KTRl)a9ZOI!^w;#c#16qkL5ilKEK)BT&5)`~x z;&x0fsj#r)uya1hHuYx8RViCpDr*SOyw`E^}7S_g?#dzk-UWHf!<5hs}#>|7Vmbo;e;5(krQ>f zLWifJhb$-Zs^v+O)8(u&rHR9GnGMjvU)rdfG=33k~m zJln?e8W8?CraC8uBRTQ7J3Q;0+Ujonm^yk5RXR$0e2{bIn1@1rw#7#S(gP<|*)q*6 zM}3^>Vc{Dw!sg)50=3=nWPl-^M*i!AA>93X`vPzf1Wv3u;aR$mqeyoZd2vZo6RYPg zt%#V|#E)(U{3@vU=LRq1cR*rX#adfaL$tp`e_?rr_#)$=Q9fbE1C6MSLx zwy*?rO#tm^^3=gKkN5HD@QtsAtE(=*khzK$I;!IWA>l_Rp$|mSg@#qxi2WHScKOIT z9E3Oyar)s5#QsN|9JD2PjGmqw8Nr8Ky&X%2Euiae+l=*Y@@qri{|!WN-_J-nUD!{2 z&^B=o&;X0)zhZz>Nt#pZbwkq1N<;EyFy5;R%Re=?k$j%O^$AD=Dm(A9c4ophTMzD! z#>Xrv?LFc?g|?0Olzl!jWF3m!hBHrc)6ugH%c4)THa{rt;rg{zD*c{M)zLL=4ZdBR z-d8)F4&U{{f9md9^?ttEsm%ElNIb3FMpd^vg{Y&)PLeFsc<}?9U8iowZrU!Ow|}<= ztwf%-wXk~H-8=oPj_`?6_%RVJa@ zJ^Btk|3LJL^w3*_!)%xbzm^LHGdha*^=0kO4SDxY7P&J>=HG=Jp)(4m%Z=GPyHj12 zAkwL=-R$LMsND&VVzmLGj`UCj3n+)2w$SGZEjPw=G^R%+fEC1BVp_G+Fb~JzL#ews zLC}S4q9*goyGYU0-0bJOPxuGpTT!zww68v!q=sGtpEj(F zQBI!*T`$!LGapIR^N`TtuIkS4IM=&nCOxRV($nwG!RKdpR<61|0i<$Xi&SRwYKG-G z)EdF+R{~<2^Vr$KdqYA)$zpSq8zN8h6c>Cq6zoQU-zp&%klSn~ujx>`yNdE=m1oWk zxc1=euKxPfwM0~{obFe-7;jmfDscMt*xWlrbk^A6+h$6`F-jHcL3%Q zcP}tTOgHUP8Cy;D^*!C`ArA1<()p%G5!NxLF)@498C9B&mC7mm!|Ibq(HVLgsSa&2 z5_AfnY|uTRoN&O^kICu8WEJ(l#d)}A{kGzm6z*i0K0;3FSWo`lA~qlrhiC!RfSq-g z&=Q~>sI&?J^oO&fG@ePS;;Qnd1I}eTWMuy6K&KJrBGk0cqOwO1mx^)j z$oEed1f=A4Zhx8Le^w#uiO(6-lV&2v65g1+4LiAV>O#uCX;yELdoj|S`O{D_Tf zsLr#E-&iZ^1Q(yK>b3zCI2J~&#b-3uh0*MRb~C!gU5B(;7IpQW!PS(*!E`y zu5wCugd~Rm%^v+Ddymp!KnZd(Dl`Rt|{I7Rx0IDmfeS3{hhueVbM_`2c{^q zf4`0E&27-6*tsQ!BJdW&WaNk7@Nl9pYwlY$S{a@_p?u;VlhNf|7xI|&BYxj*#%!;x z3>I0^TC&SMdL(j(JIm5JCg{AO(qw@e4A3&#J*e&#GC^PX2JT69xDmD&bXP{##W|$C zw}sN~+Jz`}4uR0^BwV6Fj~k_+oyo26Kzr7#;Yzx*)!hin8ADR?}LdV7Vkd1rMC-*jI*S~ z64`7|EL~@B#oqOCwdRK~DNs6O*TH1wrTf^4KBLUL?svsn!`3SnIw7ngZ$t zCudGN!^;R>Pdv!pBj0h_O#WBtw~*_NBeyuWp3>4D;1duqK$}NWgRv$TS3guv5DS78 z-96ODcM1mp4iLB?qe=tg^moa+O8-)9JlBBF3G8~G_dt${AY^ejc^Mga*e*Y;)Lo62 ztWnCJ20Z|*mHF?iC=K)9%gGPIA}249gzwqX*qpw5_@J59n80~ALC;0B+L(m)t9bc@ z2EbDrrf*|nX2o|N?zY%%9U(7hm3NF=E!fUmdI zy}g{EYD5}K;SM_r#DH019EDVNEf><6i+kGa27#d{XrT>{TDVUlp*?!_^>Sy(DGakU zCYyA;wVZfkAgR5%<5lyBf7;yqi2vh-e2DuT2b)_0^{M37=?+WJlzYHbTq zW)c;gst5nztwN#49c`xH)|B>Bo=c97dZ*#9wmjEf*tH45t75MFmxTo^9`|Gs6;m7!(7Yg4Ud~S1V)WF0YbO8(L?!9|{ zJZreda6$~p_~#0iH#Y~@nnbq9L$-m8XcBfY&nU0k>QXjP8indL9X+8|TsSCvEJY1; zJ%te^`7+6rcK2>EY=>7j3iYvalT3EO-8Npe2IM0;} zB2n(`v(C4A?tp$k<8l2j7Hb{k5PrhTXkqDVo;Y3a{=h^6hl0c3z)%=sYvi0UkT9wX zVWebz448im<&kb65DKARXs)0I*;IyJ@1j!`tr(fCL+eK7ZZJu%Bqe3#nb}!R4*>(# z0w_O$Kx2H}DR{ZE{vHyDYd`PA1EHmdFeMp9Xvl{WRlz#C*2o0A$wrkNh;jwLaN|zi zZZG0O^KFNq0Ey3y^{Z{lfyu`+pbzZ<@Aw8C%o-MrQ_$Y;5cOSyr?-k{7esL_EzL0u z^Vx3-tV6S6!nLluL=+$c5_;Y3^kpE$ywzm(g|dI){vf$1P4>lXQrCp?9jC<(jlPN! z%;w@lA@#!GZcTu=>A1PcN${MwWLWUs=m=`BoXuFFz?L|pF*8a8lD>UQPB2(ocI=^I zk!q>0pMoL`!$4G&luHx&JvdC@X^M%$k-k29TH1z$eE7*A>0ZS~16q82^exxwUhal~ z8885*icni4IR|oTr00;8fj)oe;r-!;z5OPVDTg8V;#cMFVLZgX2L5v?>zYfz__kWp%oy=rzR3k7H4KFA-Mv9bj zv;sH^D>4*2go_6>BanM%KQY6nAL$#3#GvACSFK4>YX;(TjGHUj7iKR_$n5FHKQK;ieCD>!~pD!{YFGiEx*LLyUF}5v1 z+eyr|fBvu<0$JfOzrx?MfU)&AKYlAl?~>C>X!kvL@F0@2nu|Z1#wI1*Mz&@Y2)hVs2{n1ycO+aoTdiRq8?kUr|t7S z`3_bJ7`nzifU6eeH>qJnU=7}Im=z#lPN4VlEQv%sI7Y^;Bp`ObzY;lzu$hKew<*UO zbhdzgnyq4CnhM<^x)}(>l({d2*UX|ABGSjAq{Mi6-ylYfkME)6c|ibJGR~8i679S{ zB4Y*t6yoAxb=UF>6Wp*ywr<@@aW5Oc4YY|yvX**kDU=v6!^M`&jf*R9Xh4GGNTn5Z z1-KOifx(2eGl2|k93(CVop*lVVN-^xz;xpc7(viUF_@AE{HT*@+nzIsA!6S3;7_KI zMdfE?sAKSTpn7BN#nZ4bLhXXVP#2fK;EwHnzAx`@-%{CQP9(LUQGkUcMA+gHEc^DU zrYR$)w&tAd+8m$@cv{g$u^V9Y)TZdWC==CZ{6@dc3QIb4xcFMgpzS8WI+)&e%O=XM zo1c1Pn)^H^bMi?z>DA?DUN~;BY{Tq7*~KpMr`Q}{%e!4=+Mtu32iEd z2q6OaGPbChJ8E|I2&0<8^^VZ=H;NSS^`w&)h$BWUA3l7Jclq$kj{`O<9*K47qGC~> zq#`4W#@t(PtUSf;?OXHr3IJsQqKD@ z#$0kL$b;}b9{5X4#RAhG!;iDpW>$a=LwoyQ9HLk%;}=5j;E1L7(}HhY-sM;fY60`c z__`lE6BUJ@0yCsyE6hYLzUvD{?YnblSE;9GZ51t*}!CrVJDUOag*v~WkotS{Wi(FFdOY>EIF(PSaI-4`Q#d^r;S zL@{a0s~!nAi_bqF3aMgZUVZ)csfVF+qQMR&37*8y1F4i98;T_%z0{1gafVS)^f{SE+XoqGCgfM2byI`&~LB>EfM>P@@YAKUPoN z$IOf)!yy{deRUNT)Jo{g(XMPIL92#oEN5qD)9|eUpHvX%D<}x#10JiT{HVwv4m7lt z86J@BO}1-_M?j0Gf8hcrT!kzw+7^sP@f6USsPX1^b|m6zLl_DP1?EG=-I1O|Xxq*8 zQvv?|sPV{2D4f!*M4K$$BL9sv3@EJg_YSNuDhhe{!E3Kj4A+>eBgz+uGY&_{X`#}& z?ztDuI8a$QI-_kYuxo-Yz7}U6K?3jLEpy)G%FyipKP`X{?eZr0%%cUhtO?3He7q?A0}u~HzuB5yE# zIZ5~g!fXy1zAY4hb!=T-`hDtR^E6Fy>%@Z>9(WJBsqN@EYs*)PLmT&iFYDgmYG^#> zQ5_9DreJ=5yVfG&mXy!;pIZAJil?hjYjWK~!ASeA+BFCCJB0o`yu8TiXdbzRy8%;5 z;C$Z~7W!xGDZ|wOfzrgIxAMj2su%u#IM=>CsyuSG>iZCrFBVVw

M+j#Ji5?A^zX zABWZg&>$xHX!ePx6@5I_MOZ8YBEk7tHz~ECS#W@Q z)IRu6%q8KC>01qD-i&NMGt=*AEpohV`nh_B zQMLQ$KFPA#*}+cELXkuWO{rO!VPOMaDR_PPbo z{cPrxJ;>t(UCH{6EshJ@LP6N+CTHF|^%o*nJ7P|GtG=mK$;+jEugW}Jmm9cMR;8MH z+qQByvObzORFx0ZcnKGCi2A|Yd=4p>n1r&Lbn@+!lc;(%&Y{Sh93Fm;ACB^$QDKW9 zv%bJ$c3AV6V0wybXsCIv-lO}>29~zh7ar7vgui`eYJy)`iS(qTCbLLq5!G8) zRHB^d&A!V221I`c$*wCEzmFE;7yeOu$>8HjIrSF`p=J$M!`eK6OI`|Whl8DYJqYHB zj_3xqxCahSP9@NZ;oYz-th!$xp}I1EQ0tsEPimUg=NaqjPoY4*oRKSO`eZobF8}6i zj392Oq?E+P2(Pe018Z7$F`|`3Uk+9iM7X1~5YY!Lv%&rgT=ey}ERMs6r%^~ZHhLeM zpHB~LM3v)U|MEzG7KRLxGOM@2njE#u`mYCUL^vLYZ2pl@7e8?nQ4~JLr&YfEy-Ez2b zfcGY0W9c4MeK*Pmhl6tFS5NeI5)dM(#9Fw1JB`|VbNc8v|*> zbOfDyk(j9HBb47%RE0bO_dAUdXy75J>;R>V5P)`e`bM$Hh*u5)pD z*(2Jn-BHdlnN>WywZ21BCR?y;ptrX{_-TA5)f=k9a>x@<6A68xa$6l4we*}Q(MJ`I zdU|A%k0>#G8W_s}B?<^26;Rg`2>16VPp&K)JySA{O-V~k;S)Z!#q0Am#mlG9s-NB+ zu@iUGWV5-jUKYujlbxd?gg9Byc2Le=0_%$}3`c>1HH5wcT{y7d)2FwPhEr2I;G6}_ z5)s+}s?1o$53#rKJQpFhE&gp>bf6k9jL-nqm3OgFF6SBV0VVP8#nH-5lxb5C-!@8t zh6>xJi^Z2RTQ6;rnhbwPzw6CE(2ZLMIM&8UVhju)N+(a`!$d;m(;RbAz)dnP z^CIhF*#VfdNXbULsOZZ7{brmRL4U-|7l~r}-!H6`u!2O{x#}O9j6X?wAadl$$Rw>s zez~v{@jdjZ=(q7nZN}KSf^!w80g4u&wZoHqC0Zafft?dUQ2dzF?)nA4XNm2a|6V

86+XT@4;aKis`4nDNP6~&*VjI(12lU4Y?ci^LO{6^^io{Br!bG2(IobjHN zmA9QAm&a%+hiT{qeZqC@;&9TK zfZ&Zl{6Hi=G~0=i}p>o9gKS6p4?W$YwpC0RHX%eT=0`0;!ou1yBQXGtkNM_o?U{j7eZ; z_rj_lB|SDY6xS5@;vkSf%m=>3+InSo{u#QbkS-!49e#l}-=@j#ypei$Nwdt*?(Fv- z^T5TmZre3k8k}^5HXgckl%oNn26K*F#GJh|74eXl@55^8EFd-%dPXza;1v~b-zE$| zU`teZd{4_3p*>LYTwGsYM>(mbe>$OCe$e%WvVgVb)!p88RvD>QLiMS&YkCoX1M6Zz z020+aW{ONH;n(yF@(pnMT1;DZ2hjQR>ex&1KJybocIoSfYFi!mztIPTW}5Hjnrt6^3HD#&@L^hRZtR#-_u~&S z|8GlRiJZ_hFz7({4hcwV%bldWwOc$#_t6)uc?_sYrT2BkS0ou5D7WI8!N(|2So9wE zI$jqw6;()U!;h88Gw-~6o+i_?uzbCiEf5?J03@yUEDU1$@M2E8-YJNUHHJzGk1$xP zNsDc^IOmg+K8q&%S}D!r^G4di3x%r_Yoqnq1}|R{uD}is42DWZ-k6-mB~>F5VY~6$ z@=XG7uT6}qKqQTkZLAV{;%&2njG7cZBLA&4rL@CWyOYlnpf9#`CfC~-rPzf2mzwv8mPVL?lG#TX%r!jre&7N!nr7^P(#hXx9cvsYoCt$`a)O#=(P=( zybrS&p+lpy6hZ#~e^Z1F%~)osX$|RScub6uzWz26NVQj!dz~RgfZ6zN)vdvn*8I;z z44FH%^q;%lWJrF)2WSh1a1YNDYXM?`yPrj4iq2%{#$-_2rST~pE4utDyASsts2Vvc zDiRSJXxAgd<8VBl-#RJB@O@7D?Ulo0zo* zMedxAN|;Krm66u$u=UdGXB*o+_q<= zi4i4~8ZO)X%8ju-WdIPN6UKol%8X&lD&Ss-z{7#k+8S2d2K)wDLTn`J{gS=Eel<=W zK?jJ76Js6NzPM75DUa{|^2Gw_fGA&}hUw!`BF?LKrgnBlT3R^2E4xtIL6=R&e)zD) z`|!SWI7YxXU!}RV&SG|Z@0gW;yVl0YxPg<4&W#&cQ1fWK!WlF>Jih>Er-TweYmQy4tg@_29~T+TGBeP$5Dwmjh?{wEEt!A%p$znt_6Rt};T z+y`}om|E9-C53;vu2$(E*k}j%fw{h=y@CAq?DSXmy?qaD2`Y%uxh%lX(~`eX#2gEP zf)w@LaTa5c6*x^W_XKkhA8K55FHTZ`Y`QGHUz|%wB)$vw?n4t- zYf^;KzQ)C!;`2_wTr5@k`lo3*S;?O*q?4iNhx3g+PXrVqCXnJDM@SiDQK;(^EXOjY zKKPWLQ`1SzZ(qGPa*R-ao8`94`Kj=sHiq-qRL}O~qHmpFr9RFt@TheoBWWnV{xz!d z;K97|OPk~R^0r7H0}@rSY>YucNCl2xeOSOZyM=W4x?X9ryfA$JkR~VS|F=>1QA`LK z$>+fX2U&Ju;R(Ef4{8txA~>w}?>XLJ7jyuV@)#i_oK|3UPJ%5dc+vqH+0`t-`23o0 z5ZZ@wfK-M`5#wDwmXX(wyimi478LZf8^3=S zS9l~nFwWM)&;*%_V}G*s(lHMLA-TS3)YfP6RX^)74X9)T(!n{elU@K{x zi}um_^eI{HsACR_(`Dcs-Q3-;&aI3U2{D+lG6^$q1--)#964r`2<;vMX5-R^|1Qci zzLJj&(1#5^QU2C z4ya<1-Xje*QN`&b(#diQue^!ZXpB&|XhMYdBsq{x_Oij{_MR2mOy9l7-!$2Ubi`%@ zYb?TSN{`rIAK!9gA^jZk6oJXd`Ay;d?{*Gc(q!S^{^11x`lT6Bo z#%TvDs2LTlYGkR{ZsW8@DBLzb>J?k|7L{;aCfe{G%pHNJzC_LC#4~N5u6`+Ia~X8_ z4^?t8mWok|305~a<#HOu#>LU?-;YSxzP!O3uJfbsuGWU3*LeoD{=IA%Qgk2nME`Xh z&XXiCS8#$Y*2WeCz=bLrQNgw(Apw!qbzKv57|Z>?n_s>JO3U|!fC7mih`o~s6H)|2l3X7f=^5&Jjx_Pa zedT=!XzM_+r>BdVZ1A@R`i3t`#^z{#XeczpUt{9I` zj4lXil(4BO_$rNB4~R7BOI;mC^LQ2yOH#ARe0>q4N~Z<+D~J4j5-~D?5xbSe5mVOhTi;JMABL^^`&&8ZgE^dp3F9yY~^a#qphv00n@@;0vEo6e|@81h*@axJhjt9SBCb zyHbvd7<2#*dF=9ESMC4riDMGuoZRKp$@x#F#!_~&A{I0nt^_^P7?TF1>?rul&f-TF z^F<8})W=&(%-=f<1>W@wef{ci#76SYXbnBRFYYrrNf;y$ZT*osQg7Z)c}!qX!eI>+ zAiZPj63WS=?oA7^1;;EHyL%iJtGNaOd81ixtj7!#}~$5ocl;~ekemVZqF zW6Ouf=I7=pXz(7u-VrGajyGV_H)9O_$A`*e=q-DQzPZPf$Vxg?<#2Evq^{J7r3Y*t z2vEY;&>T#>i2l;ZA15aN0;>w=AN?I4xI~yKp4Av&FlKdU5XAqv?KSQ`r6&y=Z`1m5 z&Oke`eqTaVl$)1VV18o2$yk?v?@n%2mD1ZYa_^g+l+Dau$LFc&=5xOtuuMbA-;+NH zAqPe=uAgvgg+_e4(8L+kLtcYwafo3WE#L! zg7Z#lb9{fzO_BTsj>a<*(npUnkd{X*DCsv(Est1{NH>e`(;iwZ3q@uB@X~mhZAHLMrZzbVbN1gHtl#=dq4i|iGmk${Tab6_^h)yhY=f4<3 zJ+e#XK%MTx5btNtnw)#wt6UIJ9$;}%@6x58BD$D0RFv*bJ7a;^*v7Y4u50c~&(ceS zVIK*3=0i==^#1?|_Ypu*WL})Y!@j0PxIs~(u0F=>T!KHZ04eqhAFW*^P36gyw;wdP zHj!eLYX7i=_CCD$jQPS{r~O*t&)5(0ENK`S(U7(`UD))wjH^%KuGX+Z53`IW#byes z!-o%hZP1hN#}fWpQ?rTH6(|@tk|7z+scdLFNXIK=aaL)EohKl&UI5jl&m z0Yp_4cw?E3qw*6b)o_oaNv?x(Xovf(XQ|%y1{tq?;sH}D$P-t7@`fVHIQPqHt1UZ4 zPCKW?^|EWu{S#7sEo$Df4mts;yVp%=f0eFmRGH=;J8=3TqgKfo$ow&gyNZSxa6s&Z zji?80p+HcS({}aV4W_oZ7;yt1EdI(^>1DtA9*j*S z-KvR+O&lk<02DIlh>w%g6g*8AN9>`K#NjhfuYF1qhY`tGwB@0xy`uc%XY{fY%Opr{ z{2HI|wA@&K(5Mmry29MJQp!kC{@v?mPb8*Am{X1$CFjZ;9fWecQ!mY&?m5SczEDg5&iqb_UCH6iMRUZ zMp(q1(=#$KrZj@~f$SujcSKTRCqj>h>Js^z-^(FO0N{`wEq$YxG{vKbdk52&meT2^W^X0Yr29sxD zibGDqhU?BHp*WCc-9`d3NGdZEaY=SYbXEZXW9?KO7K{QcYW{;>;%p)JUYQ@$4X-sf z+HBjFR`|gTnAo}^h6ZBVTN*T;@w7ZAk)T5~uw?BilE$Y8+E_Ctg8OHZ-Yw>I$twW( zDx$)i(Ja9;B`5aM6J?Px3x2VkA0PZ__in1J^ikj}u4mNzA>XG^>9}9+L$7Bj83{ZK z(W(LQ0l@}^mBJ))i|?S%`neStDLqY?kiIFb;TNFPD!E#_hc}q8v4&&;R6PkI5@7Fp zNT>(9tE-cnr~jFc?3%JOZ%I0j0)*TP)f`gl)th`G-)`ygr2lt}YB+-rQ6y4uNvBXIH!8T9UveK>*)K7OR;n?v?Kx|K&P#^Vvwj`~T^z`eOR2~KP z2gyB3S#}VLsNQ?b{x$8;xBxga?I70T)Us&OPjZ2A>1yIwhYIG3308OL3ce@ z`cg!ks%g_Kp;W(llybRmy0nJ0e(@}hiVcKHE@eLP&doi#XwQr_100q_0&Rfi>h@c6 zaC?;}HUKn&r=r^o)DP>Lj9p4<8T&u#em($@moE?6oJY|sDk8GU3su=IDNoSKGsZw0 zKExpD2yc6y9K{R)&3ruiOa0<9FJSG^seRu-VqoN5z{NrLJ>pGA#*|QwI!%3_`GP4h znM1xhU(E%}okEKP3Az-%H9nH&y5PCShKFtL)DEo(ylOn>@eO}o$o`!SR_jcEIUZNj zyKGU|6TvdG?y&gVqJi;DY=}2*B0`sg<_K9A(QR9L$H%|Aw?N;A=@vh(V~z}+7%}2u zy|KUxi91w{eKSCoqEGZM2+BxHuL2bRP!hcHdq_)u`p=*KoMaAB(K!%nB!pL}hZy_^ zBO5&d`O?_SC_GO|J;<9l5Cyg%R1AK%|!zt8=6KVI(&x9h&H=ks}< z=W!h8aq1}7fcQq{O+yE`sHeJmp!smz2ZK#5@xkA~@4)Z*kQd*K%*OPHf17&$l@PV0 zjn8H*(KRrk31=%5FKb9R(8hz#Wg1+TU?hMN#L?b9 zH6bA+K7Ix88t}^R-|b10v$I7QizIbQC$hH{x*7;Yh*J+|HmF|!Jit<+ODQnThFueU z72eseLsN#>*uMnosIEOa&(L~u`0~A-vpgah$&@c=Ix{W^OkI}EwrW1j_--4Ee<3s_ z=z+hUX5tYv-1DdF(t{nJa<#oLAXf+bu_lf9-5BJ#5LCXjB|cfbflkt>b=qmRdm=b& zM$qg(T7b1Q%u5}mfH(eni|mSBocnCHkKTl*L{Pe*%c(bcKJ7b5RL#kl-u?3n;Y#bP+k85S_f|3#KFMt%N3=I$8fAM=G zz(@35tVuvE1@H)P9ojkp0`2&<7A-X}Rls%|ZEO68EgXgsa9U=W>qtt|F83tfY3Yc; zl(l2*=bZMz&h=GNeqP?gJ?D?V`z+N-bzV1JT)ScJ#~0+|il^K7Us1yY33mC9WsOtT zowJdOo_~}kvR8g(c^FnJ@^W%yo(D%!<-^s|JALU5NArPQ-m@9c@4p-T64f@MciAdl zM;sd4cCgwvS$xqf>hGWNr<1(VNcu!x_s%D3oLghCJ&v$WC*?*Z2va*;IN7YR&G}XL zgO?4tIS}q_>~2BTlIXP^_Lk^Q25oQ!J%o@o%ScFoO~H%sg1B&DzCTzIw2OblI*7qQ z`E-|Em3sK;=4H*tM}dlfmBuU^DR@sn&4R=hYXRf~RE@dEo{i%)f{gd&BG8ELA#YLCAbD!mpZ5<7#k8v#MomS8|c;S7W zR7H6ZBM>FQ@O0A4j*b~@;AFeXCC{td3o@<+bBOdRYHa8^P}_O|Lb$2`O(Bf52C!Ce zvcL9ABIk6BxX(QerY6xQCkMXcDFvn)MzhNq^ETrGa-Ve*P7lG}cD=yCLufyRo5+;e z&A;1|Zpxg}TE}N&Ek%!ZG%@wZj5BBX{wKwOnd~!2kT9yR^}~mWannN(g>T1!j86+W z&}Z(3$Puh6G?|mWeE*)BlOx)85##27Rby|6!tKnvG%aY`@ z4@G&OP$e|QD=JQT=}(+?>dYyzIA1CvBR2c?(n0PZ^!J}eRFc=`uo{W&+k`qXlrZxv2R$&Kk=4C zgiC9?{}-&=0+hTX4Hcew*_8_?PrrE7ZXsHF+Sc*MzGE??BGcn5mMm=NoNT7+w)v1v zNx7EbJb=de-??-28K=|F5^a@hX(DtC=9c5-zEx4oc>2)NX(1UNy0+#e#1ycuYnPIg z$+j#y?4c=gp+OT=#M=$Q)7uuCvW2I9|3(LP-qQ%1JBA<-ktku3WtrBpQ zU*!tWI1nu!V?D!(Lq5`HKX>HRYGxEhPMs_momPBM@#5Hmyh^m@@n@IDh=>xf^&N?K z=gzWj%+APsE+<pcCi5jqOQSomxtt`c-NzVHt%spJ5VhPBCT0z|GuZu(WO_S|1t;#;rPLrlxm< z_#dMoXUK6yW{qA(2e1(I%3uEWwZWu3RfntP*h{(zZ}s?LpU)kis`~o2J>%zH{vxu< zruuJwBB@lyJS{?f4^aycfA5Qnw{_CAvSvdeM@h-lx*xihq-JSkbJg2&yzYC6CNeGv z;1_>2h$os_v|zwy4TSnoqnn$U2xi%3JII^rd^FV8hy$axn`0(A|JJw0p2k0J^YO_k z$v|Nu#Vj+kc4k)n%^`v$1_j@|iPJT&`wYuX%?EnCdIB7bGP~p%NkF&&dGA95G>FA1 zznK&?u3HtKF`JoAXB114eSSAIVX}bl#w+VFrr;j8eU5%{gvSswSr--&?^ND2Wl zBk}9{x$@vWdMXHN8;B7m2_7nOc?7jw0Dw^tB{&%KOwpv>jk*mc=MZQ3pUZpwA)wxt zuuDa#h$xq4YGR*oIMA3`}uRL=0r0tDGCKOcO(aDe?{|Hf2zd=f^(&360(Bww}j?=sRgM1+Dg8oXjd z%|5C>D=Z{DSkRKsrf0)4>-nGe22F8Cdq*j1=aLerzTn^m1?u7600_2TiLIqe zzXb}wDS8nJ{|fT|{Xw24P?czbLX(O14kmX37KR>(MKkMCj4aXp?$qaIRMwXbS@p1Om0*d%gNB@^z3F52%o8xp=&}kTXi=C5`=)e`?S^Xiy4i54;v52(L?* z;iNi~v;FdA(rOk%{Aa`;%gpndFnJcS>)L;dGQjgu|NA(rPsDNE z|Ghbs4yOM|7x1yux&QkiL)Nk{y=)s{*MXLW;^r`7oJbM2QV@@VIf}18blqnz{hQf{ zUh{|A;D5(3Sq-HUye-9F!^RfOg?}9=2w1eQpGZ@~6&}3|kBOmi<`%XuARBR;NZ^ie zFOwk0qWD$lS*mkjrjOu`9WF6}nuJ6Iv z2D)AxOn^hdE}=~X#uf$GP^AYCs%Ha!1b}gg9_f^snHjRz!h!;7U(kp6m6u(qzasdc z)Y{Ru2CD^|x}mW#xzzz=i`b8pn7P@a!t-J9 zpX;lOpoJ|BS|O+|(2WZL9X8)*?sq1b;n#uLTW|;+c-&XiZm{J|$Oi|Jt50Jb6XTb@ zk3oBU1@*v|z|PMn`S^FJnA-6oBXn?>d%Zysr@%ya!8%gcncslwu+5HfqhD_jzVR5D zMuHs~;eQL0!5~bFPD%0CC*w4J*VyQah8SN!)96xqkrd_PbHveYNE{unx3x}+{CJ&%$&6@=mudp0oet9 z8wNbxxN!s4aRBj3E=&D{85k`ir|Y1(kmW0Aj*RjrwCTb$b{SKbLhgIpmm`IZ^B zvqr)$qgk63g#B$&OHMV-Y(IY!L$1oHycY`Q_y0fy6#LmI$ZPIV_>5UpqqWrG%mnzHyP~*HF!ml~uJ# zNbYtGUEqbs1GId`;rtT#IE+BNoOqT=t9 z)Ks;_Yi@KgO~?hs48xafP9}>Byc&F?;TYgEJ5Ee(_%@=p2%9OQfn#-&QU2-n9p6%S zsqpbFhF?SfcWLQ965#`7v5oj{>-bKBfxN!fVs2r9(5(6_&kN=aCv4Vn{6gf1zQ|iP zZR#y?%PKB5R-agHjv{*{0n+=`9K;+DA*1@?9)IrPP(ywV;jqm?!nA$Y5{J=G(j2!> z@OubxK){hRAaifg2O-{P!|rN)21U2@if)Y~=|ti6jbYdB-4|*CHuDc2F!VaiVpP(Z zWh=0WE{V>6A~ZtWO6* z7EllKa-@5#TwDx<(gyvRBwh+-x7}M-5(p8csmyFN;xMf#rJbF4jBBJ;Cg@eg@MK0*c5zvaz<~5jb7~wH! zl}k;$aM<87-$UZMA*~3MVwo9Z)_D7}tu6FQNObhutCHxKzjETtnO$!N2n@hmd6O0c zIkuecP|$yA6X*ITCUiqXw(orC>Pk}moR1?WiS}e72BN_FQ#fgWe zZLeCAn2-JOo143`BTOS=be9Cn&0SfYE^AzL!+@D!Y^=IYs#X$hy@sHGfWJ_3F{~6} z4gdX(aN$BL|C&Xiv=CI7AtAiQCt98z^)aI$czA|edeZGpu!On15Q3FN?q$&FORq*;;7Q_ z&tyZ63%#i#;^ON_EJf4w=HH^AX}n)YL$ah}NSCaBrCvWz3G zLK;Da5%X%2aROx_*jBvIBVc`?2*38}P#jlvG9ic*fD<`E825_@C)SJ z$R2b1rEmAlMCs7|JI5XsX&XnXb>^AIdZbt@?HUxbm+Yx9tg@ye<^ANOd>tv{651wr zwJ9QQBeo+d5;)|oefY3oCk1o15GX~htYLt${${-`ys;#=Z+~5#{Ce!vzcAVN3OuC`ZrcctC4e~ntd$Xls4#YUxmX-?172YAqhFOv4 zq&tw9;i%O<^D5!|ZFPOxSjTj)zsnOo6u2{>RT>wMS&}fI8kdrI*oahOkE|^0_s~|t zLST*;f8T}s%iV@a$dAtS6#B31`ImuK7!j_8jEr_4HoF?`^EGs?f#)0 z0k{WerlMn(eZ*$&?2N_oR7ZQW*1VofuqC@N+Bo(;p3tNLEh;IPnGhsFucVy>4rIc$ z0;n=E#OFXg^2~$#on2iA_G|pqIHG_ZNnsXy~Sv=-%mbMM;XO) z%pvW?@_``SOF`faF+hwhmcCVx~sgBQMSZ9D$DHklguQT`g#Y=WQ zzhGl&$xUjE*`uqkA39xzGYoAoWD*#oPZ#5n`U8C7!Y5=pk;zERlc*v+rrcu8KYEri{ozv5G(2d1~|q2)4$Vlvum zP-V$R8d<%})V3Sg@A&Td=f1`vp!~6eFBP_+vls0^V*bBgr^U)YF}qPM-xDmn_u$zx zSV+9ZljaNKrG(%HhKGdz7OX)8cb~hb)W=I%$=`?Dge-)Pg!_iF|J-b5eEc@O+G%VJ zKyfD}dNO{SVe0qUo)alu!bah?DAWj-gzC;t@t#vEWOlU^ZloX zefa<+Rb1@sU81Gk8vO8mv4RYtG2@A3p{v@vgKF;;)RY@Zn;szYqw}bwUBzCZ8YXZU z_!^IoiY1Qf<9$r_e=>w~|~ElaQ2)P6YGK6!C5BTyy0lyu-48pORo_eY@fw zA^ETo8x-mwpo)R%)=E3VphiXA)_W-wLG!$M zI1rTv#*@_5*1~p}niN=rr7SKa1h|-};Xd9*Z#L?UH7_B5J2vh_#EGN2A@FR?wNgZV zLFW(ijc4fN#VLzf4Jh-gnYTh}gZNulR|lyla(w8Tqb|neeB8}`7Y8O7TeBN__6yI&> ze*XGeW??E>=8ZNJ>8518-PH-T>FhGHyYk8%6BCtL^QdK?268{(>)O0oull<513vW! z6=ysY8>fFBJn_oznkB=^=t1uWEQ>$cTf1KTi2bX6@v16`Bh~1QH_Z#H32wfwqtP+(xAB z+H|pL;C>cy){oT2Utdkb6I_?079|dWCss>PaB!N_mJU0xhgs?q)*xu4&TH$%s z!Xg&XkMnlRxe(8@##Be-_I$;KA_cKN&PrSc3HbJ_6LS0ZLC^je>jLBJ;9?H~NI;;b zxp~7pmBU$1iMKCbzuvxY-?0HP82;gS1|MzO82T6}0qW|H;IvS7BNIY%l~6$2`}gBm zmN+Y%HW>WuE&q%BosI&d6|1pNwYBz$HqcM|g^3#2MN>n+f%risYb=#~rZp97pq>HcDB#zU zb(xyvtNrGLDu}n$m&1I>>Z};zFB|{=|Isvmb(Gf5D7)lo|NYJ3G3-eAN12uEkFI|7WXxTWkdrfwC8V4@dtGcV z*8Pv4Pj-Zh5Ih%M?MmIrG}i$EQ0!V9(KlUwW$HTfH|VV&A6)nER#NPUU!X5@x-A)A zpI8@wjNJ*(2Q5*4himB1$IFfzl4_^A5VwEVf)Vd5|9*`4J0I`rJN)ne@oDvWcL1WO zomo`&@83_07W6X|nNqB74CTJZ>@qib5=T)tt%0ej-1*-9D(b;J3K)r?r`v$Y0&m?& z=0wO0P&9$j2U(1YZIeor_IDudP~DC0U4;8Q_OGiVq;)g3wSP#RKrlve-1>zeHG_+F z;6?So1!*dh`fV7NWgqlC?~BGmybB!#rV}H*<)zuLaYUwYhDd^|gsC{iPdipFZ{asq zHa!g$4ng=F?zs1)^-wM54JuoagX_X99ai*=j8xYdtc)eX`3iJ3nF1sZ)`BzK9+0bg z?V{MCPIJ9cQU+bbxyG-~ep|Qp9n2E=l{7m)eQH4zV2Jha_QV50BvRY`n3$cT%wM)b zUK#c1kq+lClg%Vjw8bWEZCIdb15PD|lhj`B958n|^X(&I)~x3>c(9MjA`3!2f2Prl z6L0-%V$Oj$kCZII3xkp?#BqYfItH*Btv6T?`AqATdT<1Mv9dv%;7r&_0BUA+zuX8y zG|y%o<&c4al$>1G+qaodB8c7_XXm3pGv_RVCf0C{d?aolNr_(1+VaM0HNm`2|SkhW!f=KiAvxYqmwr(O5tpFe4J;@w>eqP?LZaQFnfVHHp`x zI593~oA(^-YhHmWt*Jqm@*_-1!T}=5FpR?-D~7)Gs!4*)_EYjY@2o>(hiNn`|9p;O zBPg!Y%emQ97&3-l{5Et7h*<`@N7m@9@T~|fFI|d{gRiUtI{vZ~Ltnya94j4dR!}fnX7n{OY^_UZolCaQM-9tZ|RE{P?o)s?Z7QT@z-5T%DFa>!~ll|T+$IT z%1DaeC$Qv@n=%tf5rn-brNkmVaOgwoYj0$^ZaN zWTTooI>5w>P(?q5JDT~wo>fOjk-!>BNF}AD0N8oXCZAu*ql@%TaO#K*4@VaSnT85F zB?9>>>p~MUWQ76D`7n>iVxxQV?wGmxJsmHN`WlCF@SCd<1dIgG7zHU26D^0BHctD zK`j)Jxzqdt)5d8VT@cfsF@;p$z+f+z4lq=Y*^$AaA=B-?obk0i=hcB!o;dLZxx}1j z1sbrBF2Du}8Ruw80CagoQyTb{{XEUp)wWfBbg0t_<42^XbjHN+KIRylVTjj4YejE8 zVHC(!qwzdYD#5qVi<<&p8qC@jSPB7pgURL^r(Hvx{&JsO{PQt9cD;dKV20hRzl zhJ#*#kSg5e1fnkSnU^Ei8{bwA&wsUYX|n6V)hP%?pu{vSbhsa$6siQTbd2^moSDTX zak@FXf1izsUCne{P;J>&LYRWYL359i3i<2Q6+9Xsb7_?~aUzzyc(JrN-3+<%!Yd^w z-m7nY8wS@0j%`vIIyvSS0$bLvwa|8^C#O0O0(0MuQwlo>ff{W+9xyOuR5;!5 zkxt>`v&NLd!XJ+kl#p;9 z>B!iwcK4+t8&=7;eQ-^{Dq%N|Zok=*2+{Sv0qA9reCuRk= z^kr;|CUn(vKAHu*>X=ZSE2~^tCghr!oEB<+!t;O+_}_Ue5z||*$y&qP{zk3W_VTDQ z{DgRf`-|1IvnZXv;NlM*)k}jq(>iX0^bWUvxg1xct;ErVFDu`m)z~SoLe9v{gwX0; z`M%4yghX`pKJ4(Tw)O6r`4JB&?EuaXM;qmfA)eOP0|E&B7h=;v#a?vtD=sBD8|!Lo z-vvev28ZCuzI4;aGKnKlk$S5vGbzQ9vmY1w$hQ`Jpk)r$s{j zb$T9a9`OTq4-f?0h4VHgxvoE8-i95Pa!#`Z(+g{3Rg1D2}}2VrI= zrVqpLALhn+GaqgyB=B~m5l4^J>C?mD9FJsNN`E9iw;`bZj7^=udU)}Lx)@^b*QD4r zUh4CI!?ws~(06a=35*y}mwJjJt-xYaE4-RKuStk}esV}T@JVxL=!1v|h=JdoNlKyA z_PYy;%4i9!bz zDDXMKYYc}ewBDWT95Cw|k^)R?#!Ld}w{)%)H2s)HX%8LLaYzZFjYgr&IjDxzh45Yh z&Vpmr40r7L61YdCk$xc%En{Mr@iux4k}f{+ii#)rGUgV^Up4bNQxwD@^&MK7fvGDn zV}WazOHesZSc;zz=%ao2u|`CY%FFGw#xdg-RKlhKi!ywBEanbIHY`DfhD_{3%U2CV zCkJc^E~dly2JCXgxx_u|X{Z*Cmn0;7K_-A_lI2Z~Y!DR^nuMdp@Rxsa7`-r;^-2;=;5ID+UFEyOz6q2}YM9kws0Ts(KUJqsojDgrS`=Kif9Fd^U#u{=SJxB@#B|oX6+-p)*3~c2@!qs-8KtF>O+T)({f6wgj7)OjxT#HlXAe z^h4j5MHHZhqpUKhfFKHm0uf1Z&pOEQux3o=oJ`P1A;zUdhPg}7vuDpHBYAJUVt#ig z>%iNWkY+sLL7lNYqACE>m1R^5_-Gqd(7j`AW3%<*8xs)N5Up4dzX4i~chNF|%me zG+Zdc#gb7-)lx+rW>Fm~EMywwgW;j$Cdc$OOHj)pE7HFc@cZ}Ju?5DAb=+6CugjBt zhODMQ=&iP%a^vp^O~RuG^+yw@ksG?g03_TC;5+c}p5|Lt=!pO1bZFgyEgSYAaamEH3`Iu{2 zs-`O$4|^PE8yh&e<2RwO*-WN^sRSCI`TdY?LJ-U;d^gv;z&;2gXehQ=JxB-{<%=`i z(Jo1K4RF56a#n?wj?Op^3qpYK`}Y&Cgo1*LL84XB*P*dzIiQz@l>45yakG8FuqclA z8AU79AY)^y`#DVE{KioslBiksssZ$4j?;?cu2MhNfV! zA(D=QqAe$`4B;u`Q5isp7eJTa%G1ozGH}T`LlO#E&Hd$z!${c!^d^p4(1tO?KT|lx zmyF29#q?vRUMu@9{jrbtS<%}0tLUYWX3s6fp|+3-x1hsp&HAVA zJilR(BBY;HvPCJ(AtGEE)Y1||_p4XRw$ylpCA6=g0&twzY!;`3NV_U)DqDE7jVBnr z5BXSZwYl_i@GFv^aKs!trJHV6wcx&%513P zHMSu#Q@Z;HYyZ4FAu*)46=50BqvF+H$x#{WO1hNYs`$jJ{-X1FU?6ivJ-0!LoZ-|O z0B)dVPcuYrA#=djERck)a{7T#D6M;V@Cd?bDO5hp2+A z31cusbWCz{Lnamy5`r32c@gK!Z6pqh3!}NX#rQ(fG!sq}LSX_(06#jiAZUL_GrFx> zn6z`3zJsl;p~+S_zo4}Lx>QMX`%coMUe077FyEv%z5A6uTB@b>Xb%~XQ5)Qi-_+F| zKKk2VfAi99)1%SIRm2AGLgl&?lzv-#>Gt**e_5Y3d!Hf{5rIbSl2Hh@gUn4xTob`=4{Z*F!yv>e7v< zl$Ff#ii%{Gx>yoU%QOhxXlq;H=fr%d;~%b_+s;gO-0(eP_i`+1eFQdHhn55!SFnm5 zLH>i(9qbIwX{&r&|2N(18CClt3c7z{hM;@HDg>mxBkWOcAHRtSTZv=bQ;|og=3qwb zMPCkQKU}%YkU0TcF8uj`h$|3tvhxiO;xWwj5be+`qpmAe-`pG=5CHzGKSBA%7BP!1 zuIUP_Hr(3P$u58CsIq(|BN<(Wh^`)-rCZh6DzE|Ji zVRp*UNMJD$?%}D0lL9129^j6Ao2woUEiFa@KCxzi2CdHCSWv-9Fob)wbskyUFe2EYE7n~D1!-D5z1b0llNx4 zmlv;Y|F#s2uVtpE<81!?{KAb#_8QHasD71Z&F?l{a7*rK^rU!r{Doi3!r#9TmLY8c zuCBi5k_|M<5*Zk-1veR^S)V(75Zk@sOcjq%032A6WZJy2I0xYzs1)oS;;c6|z69C^ zHyo+3W*OfN^{P{UVX)y=^mv^=nVv?|S)HCgdr8k@SkwHVfeyk`&Ldw7(5Dw1ZzNs6kb_40Uwu*1=So}#VT{h#iBgi~wIf&Iqo zdy3DNUYW8+lYT%-bxUz3hmjGT`1HN|C;uXM(vrfQLgaAm?bB*{!zSxEvzzA{^^NDD zkV)AT6@tM!xHlj&N20@W8cyi@4g9)_<#(;O7eY3DCR%fUdkqc{E(NB$#3HkjlMO%k zt00n`Loh(;I!4*&c}x18OB`SrO^cu>xu z!$Jq+u8{?9;Fg!Z_+5J{n3!>mD1xansQib&-DB*W<8grgg7C7cwTHb5uuL54$Yi{s zRKuAP^P7=Xr!UhHtBOMyw4x00xWV};iuiGL;;K54TIC9`AFoUuL`4?Hs zKlB4H)gxcaLv+vk_U(h$uHJPP)u10^V@vJ2isfFH<1)_Ibw~KtiuTd4#3-N%fa?o{k9aL2w#IL@%k@p0vsI0iU=uVBi}_s(4&Np z;)66c`NiWn&A3rB_fvy$;zGZF{R-8%ISkR07~nsEeicS}g@usRJ(o^PRB~$HwP};- zt}R|Zz=1^a-z%Z#3hvCYu!~<>su?EEWY@1tI2QuBsCUHP?^T}(x&ZkyK$9T~E#Qh7 zNe`7H-fpw-@d56-Z)s2c$B(58iSAZ4CnUga4cUPFF~M-zmIAF$2cbA5q+aOp^JpT2 zl!njgf*W9pg9kI?LBf^ud<8%ROBJU*a+v>anfU>xE4aN0C@@+KSg_C?)0%+}!3ShV z;B(ySijydX001a}>ePKAwlvnbZm;V@snJNV`WR57b#cMn4c7>4&4p*8y7^v)=KiLo zD`7FSzA-#aS1;d+xp2yP~8@T>v(~)%&UB>DPZ}LSo!+hPhn(yIVg)#Ou3w zJ0hY*X|-F!A-(Y2++2;wC!6}bKE)dxH5zp?GTwa3*zx;sU7`;;?4*DRZV!?Wprv>L za^C_X$@oZwWCDFLed~=Pv@4*C(ZJ@R!h!foWSzMDa?g1{cD>(RdsCZyYHxIUo4&=t ze7;X7(kII)TREs}q!rwvyVonk$@ZHJcs5R_?#KKd837Ghgq=r>sO*F~j#D!Hl2|&Ai{Dp`+7V zaB2eun#~^&tet73sC@G&jDCQEBqnAn1)a45a&pfX#F%dP4-R&!e4` z2RsZvpcG7$0!)+7sBz@TS(IyliVIHZJbQNT)aTWlKq3qo-AD#|CsjsP7ErcNSMx{X&8{l+hbbu9ZdqF)&buObA}-=-5t-Dfd}90QT7Z z^P2m4ofr9bgzdF&jKaW7I2M-=R z2o2c3UN`gx#irQ=&nvh33p8H71$`X_A;AM^*wU+7?j^LrRI@Ajm zP}l+HgnV)+WqlS_Zyz{?8pQ?>6{*?}QBdK8z$;2Sb&}~4Fk7I)T?MCfv4H>#s|E9n zp%K*Q%q;t!a~96d5}&W4tz?ArUT>j^i6RVKkZGZ!0niMeZYH?&F0zooavVQ?9M>E% zx3_>s0m3rKLZM*H@BT@E%U}f5pai%9x^F6LZ$L2GH{_g8v?i(|-ve@um&|XX7?e@F zui;F-Ka|v&4L@hhC`2-kw?uUjtbBx4!&xOMfX1xj&zq%8%mXIJbF&#%`JS%L(K>Hfw4REvI*LAiowj5nX$QfX<6@R=W|Nd?D$yUd6U<1pbk%WrL&)_tg`XhIlp%^zfdQ^!F z-$VW5OzZLazZ|QxmAo(R`~I$`hQ`K%VSpY(`cz1STx;YgOt-@@vPfS)5gp^mmp%M0 z;kZ9{?g{dl`}g%M|FprMHC2lRh<3+C8v|fFC`_1cx5Ekx+}77iVv&F0GsScp9sbA5 zcN`h(@?#@h#{L?IFo)t`ijUVN55LceksCZ)4YwO-Ij$1vI7~po<{3S|I8eW7VZ0D~ z2Iny9930{Ne(W3^U{6>zxFHg_ML6j-+Q0`wzeYzP z7EEgbfNK;B1C@~${V(B{jXVTn5M1_BUsHl2=6+;kT0%k#E*R-)?ya7LgN{Cher$Zd zq!tGo*h-$B#hUeN=Q`xgIePUVnSxUkV=i|PJKLX&4T163@{$LPmJuh~PJ+$>h6K$c zHm~>W5faJa913s%hvm`H=1VdJ4uu7S%3dd9Ev={~yi6^tG;r1x7p#yH1ai4)n{w8G zigzG>#u37`~UwjEvgmQMUuEMK^Qx3+I0k!-W9D!t+OrVfz-;eR&LA*}KS-wuCg zJ8mYWtXtvAPPfb*NGr5h>4=Xghym(m>Se$OCTpge2Hiazsz}B0>Py~n%yuKm)&cvM zRTb!@`;{v#n>@)BC?avSmPL-6Db*bvt}tel4BEK*BNe;Z?MRd7TX0RdvEVcJqm>j! zUhv%7wIz_pLW$f8tpCNuQ%lsotAY`d<4YlGUmt%&SnjAr1fTRrkB*z0XC@`J0|a-s)L*>_-&-ngNniTZ zaHe6b;d{N+e|))T!zSFG)t3@YGQpApXxV z$289x$s%wVtF!(xR^|l+Zq6Zfi@6P-$gGZv)Z(rOx-kFVzmG;TPsg~3dU=`hKn%>4l>@_|NYJ-2lgKh?^X00oENm z@audHF-xEp_Y-JlP3Cl~Dh7^(g|*{RrEn0J)ZzQa@lxs2{`=Ga_8+z06Sqfc z6hsBIA78ct^SxbG2B`z~Hr6v%DM@Lkz_`#2JiLHJ)I$pHt_n@Su%QCfc!utnox67N z`#~Aob_}=(BG8CpE5S0BH*`NeN$sVM%D12vA7{m#NaWne zlZ;)3rwvxET1I9&C%jR~dq%rhQ^hnvZ+h>}9bUh#?rscoc07IB=={q;7h<~Ipo_o( z)qW3$v%nxPgGKaYlw&sTssdaDhda zufPG&_YOv|B8`cR`~e3>^o$X!2CvDcDXCJk6IQ|{>8k9p|(ckA0?^}2Y!i`{m ze}GW%!a(sliphjGTJ=Yw;S!YJeFpMYvvqtg(2ND_4_We2D&=)+_qx&cZ@L}RJcv9^ z+~WBp#FZ~itQ{1hdF@_)b%wFFD>wj^I~a$HGtIJ+7g_)GP^(N*CTb*JlExur!z2U& z6wx>*^jJGvF3MD_3%Lul9Ixyo;<7?A(PaTk9sFLLkci%Y#y&>Y+rE`eh5;Cy+*TDm zDp9}u>L`a!I69W#bbuClZrb`|+V}Uw@9Mj{zQNhl{L;;=tWk8Cucf-C zO;zgkw-|Qbw}N~G>>~_H6rvW&HO)E+HDQ1DDWufMXZ$^p{D{;4a-DVO_$jcPm@)k>GO`}MT9AHG%b`u0zKHnvF6zQ=ax zapMF+4-kXs&b>B=Z)H+WK7}&WTGFs5pW(LT$C)02oIDbfyp3>JMQ*z^PakQwKQyB+ z@NuiZzLd4YF{z+iQm!6ca#x&DAhrc-QlaMoesv0)O_z6!bwnke4=>rd^O3Zaw$Gn) zAl&ttg25$8qy9oQr-LF6#t?vHxaFLAx8&aZzI|0W05t);=a^Nn`!@0LpvYP7Oafk` zwGt{SA`*HgD5dt#(bw=;A-sc_nI};wAxl62K|%(e7EBkEkh%jDu*w(Q+yFzS_yC%E z4#E(X72E{jjp6?L=L^gVz*@qBhbJXm3LWs=6;~E72I(Mg0JbCVIXAhQ$ff~E1jq9H zxg5YEdip@Dik=@2zJx3wZGZ#e;T86%nnTK6{2a zi^*&SAP5@>Nt&0Bw(96tccP%hs&~Cbe$e?Vb!GNhJ+`1VlGK z&BpF7%P=Mu9?MB#eas%7D0{H)k^aPU>zV)vK!tC^a`QRbNN<(wE;ypAa!C7~o#Qdd zq8z}*LdzmON3J&v;zs9$iZ`F>i+}3aIGM&Coywr_5jD=+ORl$~U{)9x8CU)~J;$QF zJzkV`FtWH)0SXEzfReXt6-Co4(k_iZ+s?Fg_@8M%kbmSa{HKLC@cbVAp!;@Zyv1ET zO7hFp6{M`F2zF5hN+&AdHM&XAO6f1W1BN+{V9Cn)ESJ%oI`6qbg_ulJe0FPmGn}bS zi_biSb^^N*Q79uJ;bs36TFdl3u2!KP1Jon9DHMeku)@S)f@LrxhNBz;19WBRL`hKO znfir*tcSBomb)TyzF$*Q8_6^%_8_Gm#oJ@wN?2Eu7g*7>7mh+JMb?%FmJ!|gjI)kl^CyAEGtB@|^9N(k@*_6`{xsfUa z3Y}OyE=lJvN~qL8d80Hdi4P5BLCxD^asdN2Rn$=@fiivp1_f*m;z4yy%@Qzr>qmr& zH{l^G8v*1$(3eUKXLOvfb1-AsI}6%Eb8jXXhs|E|RcCBWbhoCSyUY~d1Lm$HkY3#sRa5pvc{`F5L$8?;xXTLh(Ai=(!^}&YG!joHA7cu0Fz$)o9-fsJKWk0HBtoC-rOwhas+iMQ# zbpUfA*0q`0UZ3SfWNq&Y%2cFgc@M2<{u>C<+1|eC9Keo6R9eq1&Z(=b2MyBAdmad@ z2Y31%weXNAssM!>uKq{R6a|h|j|(wV=mf-+x7-dl!i; zW$Yl6+((336pg>wia5WquCz_R4%80aI50`$!|6ESQ1cIwKV~6 z{*9~}*o302EHQTuydzeCmDdLJX`>FF^(IqrFo6>UJ1*?frQ&PX?!>B0tEvhYJvMzi zD`WkXU1V%KA7AojR*D}iS>r+tQdm_zJ6RJuf^4j<;X9}5z5Of&%Nl;``|3=yeGKeq zUn?68!vd^{+sF-EB+ielj-o=2l{fDkq@oH8WtJH>tW18rfoLIp@cR3NS4j+4_V)rg z1~#NjZf$Gh^MfB3&W=*$IGi4feJe}bCLJPU7@hO6&zBx}t*zydqfh;mDax|K?#4xc0E3%*@x*ek+97Kz&Wm3-w>Hz3@ z$rR*Uif$u@Hcay(I0ivF8Cr!NhPW=$%KNcZprRl;fe|CI197*jv`@`uGP_EuVi*+s zv)v0hTlcRtvJMljZCBeNa0aLgj&6iSGS6$azCh?rfu(5 zl2cPz=5rbLqz-h_P+beBb`mO)j=B%pFc}X@|(p$R_adW6F{>%0ZbeHPE0XA3iyGWxu-?mXd`97a;^~ zs;*AHv;ssbVIN{}arNyx{Rj+6KaLm*{;Yfw8dP-k%9W1e&Tn9RtEPzT5xL2Bzed7{ zIOTi%NtC8IGa=6<`JV5D9?F)R%99#3?h?@;qZ^MPuQ}g=GLv}?Wpew#%{oYTc3ON^r z)6TD;wYCBTnv>J$szwgDBGDC_&}o3S1|`ssS(hNk0$0x%lsu)ttdgo5uR~}io)#7& z#o7j5auI-7u9!|c5HZeUem+v*BMeKuf+~foVqJrTH>eQ%s%|3$yIP)ifUcgw#|@DojT`6c!uy670eczKJC~ zvM>|)rEz>3e4<^R>7Q;sW9iDeC-A>i@OUp1L#yNx%3lldIpL?gFq^0vc#DBUg?trb zLKF;?JdsVA7dmXD@S}|p4&5w=+U9tQ!OtKzqY#sg0rHSxxZOEOsf1}jXKbaZO>nSGEQ>1rM>+x@uVJXPIFnAN|p_3pxd?ck))j_ z@~vc!4TUU>Ivg{jA28flYi_%$9^vdIxJZN}o=ajCz{T7Cyo6m~+PdC7hTA>BkwAZh zva1{M2_JO0^%qh+#Pp~GUhcq&FztX>*>Lvnh!Cy3gbMVoDOmeS8MNYhvri6gH-ra; z4>dz7QBpiKfW8P502B5fJM>=Z<&PibM^F3$Q^+@%P9)C`4sV*Ss*Eg~ziGId`6N{( z@_A@9!VYHq#7F+UKH0^$b#l7z=qLT*+})IG0K9ue!~(@v7CsCw#nTI2od*!4Ny!{R zWzhQg;t!7by=zixrnoNczs-HreE;^9iyrj!(0>W9qs}>W!+^G^;0Baru3zO3#7{t; zp|Agk_lY^EPE!Gf_X&%4I5^-J)H>YAy@p=XZTjRlt1>-ErRfLn|7o9J%rU4ic7knN36pDY%>zqs^PX^~(b>28!{zNm1Y)eQKGJ45O?4b?e%MV`sZ zeECs3l|MdNFus1hRS^59KOpju-GytYL-8sHQvs?ykzwu+BUdz!n(=-yCU>cpRUOjl zF;Y7{f}#ROPAS`>{Qc{JgL=5`{$cm&d&=SI>2LG%bY(x;$N!GHJa~xJ9eIW}Zw9lj z;*p*eTyING4&K(C*idLGD)R7tboco$FK_9*JtqQ1JNnU~#|uJ+J&w^5p6s>_o$Buoq96qKk&-e99Li~eTiStn zDY4Kno8!ngw0k8;wF7Bko44>n$e#H{2v#HKLbjyi^qbMoLpu=aahcz0s;X%Ae8VS3 z+@y^aXc8gjH6$lP;D}li+J&39Z)4ou8;N9;`--@V&<4}*ktVT!KFHNmVhgkQC%V&5 zE`f|Jgvilst^K)k%P5$@kOps)X)z5<+iB9#koo!T;3IrK@Xhy)3|XL5AVNc++eZek znBP7e@%?W__EN2(4A2K(PD-Ci8(;`7%s#23LzGW!9(!xQ13>6OJV&OjRe3u0e)A z0~5*9E2?XW2^G!p;-#3pL?RuMLJI;2c34LZ)!9g%I(hN}s!A{;a8$v}gdNZ?3JU%} z8Buk9Fy%>9j}v|4Z_ zI%59C4NL)TK@)&;5>w7$1LGKIR$zb{QCaEZ?Y)d0@3OSu2HqZ=hO_e|m^J%KIh|o91#m0i}hcwE;#zqR0#*ZEQ zh>OKtZ=2Y9;}ve=so7aJemOs8e4xW*f4tA#yMRyOIfV~%#Cz|z7@TR)!hp}ixKxZ_ zhN2GYB!ciqZNG(;722~&0DykX;OIDL>2UK}ssNMG->y~(!)is<_7V9zp<_j_1$aGn z^u=~}quN$||9Fl1u}y60h!ZbhzKKL1K?FI36hw|w!Ptir$j~_r74oJOU`gl-)BNrbteJ9L*yPR_h0&wdKd&FU+YO63 z90C$iu=oG`$psBJ8=IiT!1Y%r=H}<&f7mWe4aVZ%M+|ousnbDb< zBj7NH)_umV^Z5HaXReOW^e_AhVhKrD2V4h2GTOCkgE(c7&VsH`MQPC6+xz)5Vd4f5 z?o379XWU!>e(>){tqC#PNYeI{KFvIW4)InkR0j`$yz9(~1{N@)pG5#XAJ z6zd|0YR*y=BZ&2?c+MCF+(*?un4v({(?J59cWD%KtBQq zl_J3$D64Na*>6%oz~&2F-C^L;wgI!xh{hDMk`npbuQ_&GSEF{cLfH;MBt4rLOy-bacdE*MwpoM-F`FeCEEc3rMu(=Kc2r%-6%$yz#qt?;S)!wrGW1eRZtE z`0RhL|1XZ@e=sNEiXfRu832|A{0xna-xp{yp&iirPz#Ij&YkE0+o)o?%hPHtDTG6l zm-)?V)2D+fvQV_7%yim=dOi+lgY_FK9p94w(Qo+_IuJWx8;YQ|_67qrI zZuP~N5KCO8x)FMYP>=2s6-9<6GHRMI2s>GH4V+)i1kqUaU)0Ack-=*O`2xPigUymn zeQiq)@&Jf5{g~Z9<5Pstt$r@0Oz5lpR@SBmf~LibK&u_b{xzo(zxojF@_)VlcmH@o z!_)To@m}!RLm$up1+j5<7IgfBSR!;3kT~#q-&nAM{evT=&o z-c^&SOIfIX5hp5ov^6w_QS73IC}>>?%J{wY18{WrG_FjjGGs(Q@ zKlEDt#6xs>@_WW19wBb0-bs6fPmRO1e`EwUbVfc6sf=9>4Lilfo6*a$JI;5G9mP?K z7Q}qz<>mO~s}EHvi}&PPSey-`jl_=`ShITrWLGh}(tQH%-P6es0BOH}zb86>aOU}i zV2drx&8driK^Tff!Sw3YW8hdUm#G+K0E!}&fH`LSYgVF;$E`Ngh>~Q!S8D}jp@Jqc zO`MAk;(BT>2+Smg;@WH1H058Q=o%=RaJqhHZy>lIU*MX)SDn8xg3wg=}>ifr! zcLSOwHP_2 z-BAx8Vu%`x3brzcDyKaTJ-&odEtvyb3swR*n6Ly;C7OAASA>S@1Hi8Yg1^u(H#NTq z1{@jCg%=i>mkcA2H}&;)_V#W4!ro|WbJtf>0QCScQCLuL4;H10I$GEe6v45qHU(;| z3g%!k{?LcK($%%h`D+!z9xw&Vl|kYJlGb-|`32Dnd;tFG zsR3#V#SV%bq`C%7L>}PE&YkE(JrDW`Pr+XDVg9{96i5K(F~vR^6QQwWQI!rs$&h^` zlq;sG0-_7Z6yZM#M-r$IF))mGGy(pO2qzG2P$6Gb;3; z*N69!IidO`fg{10K&ZsOZh`Ls+Dn1EqQ?W)!k<1>L`wppg!?#}hKPnUa0f&AuT_Bh zAdF1U%w#XEOI2Qjr2yXy69BznGmu*oISHIKD1JJ1WE-4R^8}(D@PE2{^M5S+ukBmI zDN02eq>)OaG^nHuNr)npiYA&6p%aw~m5L;dlp>K(kqQ-wie^)&5E_jkDXHXm-g|Xk z*X#KM?jP>k59imnbU2QE|LkjRYg^meRxcei*rn-S={tAcp%8^*zATJ5jz?C_J$>Gu z#yZ=VBtD)UcP6cr-lh> z)9LQQ;q$iMt-`0I9TpnK+?I(%sZPR_9Mr0&SI&q{V|;90-TwKSK~io54V3!pt)T(! zQ`?*FbupU0b;^Dj7m+7x>ga&;051P|B}f&tyAFY{)YMWl<1pz>6UNvR87a9=O*b!g6kk_+!QkN@(!&~Kb&QQCC(9H_MrdZ!R7B2o?mA2d&-pK(kygvShZ?F z>Z}6sfsEU-vcl#Hf0Q|MI9ukyBU^sPvB^(G#YEzbvl_(_d#Mef$^vGy=I$3FwY={g zm5z=+z4gkfJG)S#iT^XNxuxZN^FNeZ!i-eKC^!~acRtq?%~e8Wfnp7a9Uc*3V{Lu* z{CTBUS?`+G<%U7dY*0FCM?AB$n=AUTg~NkljUwV3Vn7ZndE{GlK1+@Lq>qG!QJJRq z>(i%5%|A4B&>T}R;;3Ch;?1t2nMh0V_2|U2t`4K-8yP;?|Ln@>_%+z@G(sd_-M>G# zN(5crbFk)l)u*FF8;+eH5mk2l*;S9PN_L!dhpAQ;I{}`#Cnmo8*Lr$XLFluq=T((Q zFCP$LBiFn47v=Gr7h!t9`eD6w&s~=9UakIPTjJO8bxBsyX9u~|mmnToBe!JDn)iIO z*ZgVT)cPK_*QbYr1k1u1F}L^til2+-#S(-LmnUc`YgrPA?0b*b1M5XwzBcRJO5!fgJY3L<;uJ_L7&! zGolZZP&x(x=j+!u6Ox5L@6*Q(krzE$D=RA<1MmYCh5cy*wigu^9+UpeW3l%(_6f|s z(pJOKWQJ*B$6_OWle!cy5yg(D`9JzIXt%{%(hOClFrvZ59i{grOdGMFu4@Mh znjd>D2J-x$J#*BFHM5-aFY_n)XJOx7#Q{Zi1_u#1IIewz>d>Lyn!|?<6;_9Q`PfNA zBaI=6ysVD$;M56n2cS_f@?Lx+|Is7AoLSB{Uu9-y-tRnb?C8;R4GrPEw=DmlKxl{G zji%8e5=wJkzu+<%0tq6^RcZtfhB(6{9S|O0)<+|Acl&kWKG<%87zVFKEwm44jvi$= zSJ?URMRi_Hx1K#mjvJwPdFj7hj7~nhXylcl67b+13Y1<^Q++N>uRCcr^>tILP*Toa z)r%h<5_|5_$_<)Xo!2gM6Q6C-*bG^NlWX*a7*o+JW0^^d<|rdJg`S{5XfKlwnlx(s zc&aERA9kX#j-=c5$tRzp7?aV#0EmQAuy+ehtP0B>KuvH6v@uDMg7lgEe%Ws>%bEJI^fxC*rmXY5`m^!~T%6yKRfSH3Efe1d*LT|R9b$xcoh~mQ7xkr`U zpn~t~A>013$2nqW=MIajYHRI<85^new$I%(;%CJG#=mq!e~VboqJq3OXK`@v>5_NZ z9W8z2(4hq{ZUUi3M2>t_v~pKJZOrIE!g+ZMl$!6?JTCT$9c44bXzoyHMyrgb4=ue(7h=z~6g-emZ`bk0P{*$p5nvz`}BQJ<(!nzK-SeJ`7bYaZ2Zs`gqb z8|0f&ZM*hs2XC+Id!wY_$n<*J2(xEbj4b|@Wh4#lZ}ly0$N2-Ct*sRT9}M$B8L=a2 zqL8`$!&KjV{5bAv^%Gy2VeGq=RG$RydLAyu0nk|9fO&vh%y^0vb5*4I}q zrhnItonGgvyvFA7th=hTZ-{~!8%!~JkI+Zst!CQolmMv;c4p`+Q!W8$$V|_lC;!|g z5_x@eIo0`?ONfMmy}e^t^X6_qy*s8dI%@MZ+(J6}XW2}U+tuk^lSH6$<&fMVxcde4 z8n3^~R5G~0e8|4q>nEOUw9=jP^U;pnPjjnZ`bm<}BgYHYdXA?aykV)`8mtJ|fI=+9 zA$WM7x5UR%%~ZBMdIdpG}t-Da3>WY(k{x5)jpr$#qJ8A@os?Xt|1#~hFLi)a#!TyAMO#%6^8>9nha z9i(?wCDa+&8per+znjtloR4KYQ)TVgn5CTpWE@KH(y?1_0(+9xnE}jWeZ*|c>0DJ)?4}!xDuF} zn|F)5n6$`I zm4d>1S_xct;Oj{(FV83Hy?WkAOgxq%J^Av}Ggp*s8lu9&%Bg8vkNVP0jOo@MBC_xq zG<?=oAJgzyJDHpsN@5uvv8XO_Tkmx#mT+ zMOt4Lt^y}9fAiSmjGp*NO}gRvOa1qwWox@&+vlXa>#oI4tRljn3!U`( z6pC;-Zoly3^}TwY&|0+OX(xx6v`%yVYa|^_=KzWdjoKS;CTO^wOL<{Dvg1ZSy~v~; z=JFvS?V`kK6U`Nb_&X@c^VbhNx)HD+`k|=!L~-U|y9?)B2D}g#@48I8M1vjnv|_Zi zwO6!{Rg5-XbHb-|p8S)dqJ_w=ip{&pN+@7`tJU`D9&(?TYyEs;^=v2kEH?_dK&9mI z$=lC(@{}nWRDWEl^Fh70OzN|+W>U?^$`kiJF1G&?CY>F6{>Q*m5aSVsfHE@t9|`JGhdl_AYu_jVm0%u-%URD^&t3de>=O0_jL z6Xm3)o?6blYrXe(lU4*8S$;y&PkES=)7N5Oh($()iK&T6V2ZSR?|_AYF+36)yUt9j zd39PSb-mqrYy`+c3WGX9+dQ`_oPQ%zT>Z zEYy$GQ=WKQ6G;_(K=PMA4E7`!FETSz^uYj=?cSz!En|OEDgU;$y0q8+N;Vf89wFOd zvsUfT=yv7bZwGJoOnLWqbR|GCA8GVG?wc3A$t_F4G5jJ%2Wn#v6Ud930zZkS)v91j zdbv4xVTPly#8wB2J@df)MT>-KU0U}K-k}12e=S$@Urb3boV$G437aJLL1sl2<@htX z$LccK-FHwAF2B9~CQyrUmB`4|3l^~AsE=3Du4C@)b-Ed4jeySg>7u@W-rmp=Hc?VB zJ37zZcC>ADTWmWd7g7Xe|1C2I>z~VsTg%)<@OIfS||Hg$s4#&e9ww;KEEJr;6LypEt|djIHU(3l?7K!9S%r7u{n6zQfOEj0@*F zMYD0yUZqoQh0xsP>zwYT`kth{bo-()IuCJtFNtIOVg{5GD{iE9s4Ji#dFEnEOV?Uk z-$@Tswd<8MQst3$5pGemrt8A1%Ju$;^QK&(gxYHhv-*A1zTpXkxtQ8WLGM~ zhQ~Kt1G=wVU|y3s90nTD1}BNl8p;9!nqrVV(dW-kIynz7DEnj<$FRm?bwla@L&(obT1<)lbnYSo!#8J_vjI% z*El2{TCk0`P3&p@`nA4B;3y~KoFS}yrjx@j4?Fme<_f0CAmo&M9LjIqgeKG&)FUH3 zGN>sU^uQE!1aTVc~m~ksZXmO^i2fnxyca`=T*OVtXM=MNo0gldy9;G*wK@b!6s?4fOH@fTZUDiCLHi6Vg5l3D7&?_0L8wA#nfTL-q9`@*n{;x za9C+&tA~0-(PW`MB_SY!PKf@?;#L2e@FaXPK=k^?GE1~a01LxgF7g5HG?i$;0j%g` zq1}E(NrA3ZumIYbmw*L$KlO#QhVVmP4t_b zb~+9C{jS1KS*!egO)+UP=41YR{r|q*CX8-qU&j|HiEzi2d)J#Q)9TMn?a+ zeAOEV_83VBPe@>AXF6#Wj#Fchj9A74iEF=mL$50or%l^T53;hd5^|Xy3WOOBu|X{9 znmielrpL)L=^`Qa$>l85ZDD_gVYE|TI=FLCU{~QgbQcO1+H@n}XH%6Yh)6#IY|AbitR$A9-{sGdsQ$nL1iBQl8*q|=)}e=+uyzmNWIdiKyo16gf?O7VUxy2r zH&BJrH!LjV30Qo(oGE;2ct*}ac!+Ch8YYDBqs%v*k4OA>Iy5x4juMknkEUI6S`^%$ zmKL-6&yjJ^vpl^;Oe}L>eNTa14-ekPMs^XZ>f*T1|M*A~hUtNQUdeuIhB1;a{7VW1 z<6@8BQ*J^=aq&`iIx=iaEaNX^pF0uc8FRtr6R|eZrpni^^Vt3Yk&b5j__1S&aYOp_ z`S5)ueM+B0jLtYYInnh)_!%^%*rA1Y$4-%R_;W%RZP>uP{Tf=GFv0jGyQKFM^KMxc z@H<_8*~D^~whdEHDJSIMq+q$OuVurLhaWaAzO9_^p%k4caSwRKFPQ=mJ!v0L#|K)5xm` znh~ea&HaM8>CvL|=8uU`F*;D+!PxwW8bh8~BvmiZQR{5aI~DbXglejFAB!UXPk&z^t2 zDg{6J`t4iQrkjONkl5q57UI>7#X(f0-MXa`+<7mpjqDsk<#FoX8;OtX+B$YdCA>iN zEwBaNrn#A=>SITZieVatCyVI^d^kL`CQfW()kxo8p<-gbo&G#};lb~m)lfhng}6Hg z(~X{(5>kJ`*i4=@$$n`f-4J~7{8FY)oQQ=Zen#h3tXs2YiIr9JkoJ+oha*Ig(Gk2R z*5?kcov$8>-KHkArKdoiFG+P*7Ogcfc!<_DrY`83l!O9_ir1H57ZY!C#|{nuthbwP z0*&c2F5H7O#_Ma*;t{oVS5{T6o~IPl{cU4?%f3eald!-|CY)I{~mzYPI z_}9}n4dwYW-Vg_oL0EbQ+mVvW2Ru)f4}L<$mVnYV$;bw|vxP<9bXVd+TrGyY@o&?C zAM+$)FI~c|rhED>#3~o9s$G8&p}wokk@{$rGc=q|kB?UwjW?QGU6g^U0{2ibNzD6% zGdm#oYO~@DJ>^NEUE;$Qk`N?8sFh~&EYRy9&$rnNs$rZC1f@Q!l*-HPvsq~TXiaj+ z&Ai&a?VeqfSxwh`nYaAU-U|^C&o=3G8Zm8Ju-7jNIE#@g$%?{9ZL(%3t?=sxu+Wa+ zf+jpv%ZsV@Du`g^szHEx866%q%W^PD$;NBSJzaZkaxr-J)mRXXQiZ`W+xy7H|xwFIWJK-%;h6-k5=NCPGP2;QW*FSm(lbL#-kY>xN@KYgB$dKA}fbU>k#lI6{N&h z16B%C#4n^?zWu|{!Xn6Pv9WOuJaDTDo~)Uoaiog2I%s1I;9*jO`XEYTvwCZjFdST= zCZ=um^6zDx%w?oIMiv-8oTmHoTU!pF(FJ!{geR=rC zxwUZ!{!WZjwFQ%cM{1>>jgDT7HmKzqRXO%8$DVvJQ$eM`faI*`0)95{v-1N!cwTd95|r?7+xX>J4P{Q(Wxo$FW zEM#4Db|Q>|GG!b~)nniwHd#%6ZG4i10?R*@2)4GPH0T8q#M z_Rn!_1zj6DNQFsz_ufa~Feh=@iWQ!;U}=tU%LyL51|21&83?(XZc73V{?{43mxzWUv<1#O~d* zU0q%E2jmwO#a+5o`0N=mSspmd3=uLl^?ut~LP&caSH+DE4zK(S)U(-SKvDxL*5S8C zjSleMSofz$5+u+3$xuC#R9(-RZH@n!wr(DD@awV~jq zW5TVcg2U??C(OS7QTQ`)Bv!0g0S^h2aPs7%H_j-&vGc_ibeG^~J1h*poBEem-Vvo# z<+HgG03~{$1Xlcj208ABaxebKJ3#HNwXNmS)vM3o?qOHZ@Ji`*8T^tz6wnNd9nLTT zg{eDV`on5ekwGEmC6IxP;UoW3iscO;UJxEW5z#1ri2;&NvzJj5%fsMbDpOP8&9JE9JX0jac+Sq}L<%r?b~R$jl@yR-zy0CJTTU zYmch?{H-A1u(LxSQe9hXI3}zI9A(<&%PIkSv;Qi~UKa$NK79+C8ttv!h7A}qmotID zvv_&{4L&FgiUF9A3G@Vb`sL;142Io>#2b&Zn3B?c^48Fy8DwbV#*7>f3I%RDzn(=E zVKh!nw0;%x|Hkhn@V==Qc|6ZwE-1V8xr7&teI zjSo)cj4%>xj4SVi386Ko;+%OUk-Kam0 zT*c8&|1${AT*auA&v;qEWZ=g$x;~}^LDJs8(MUU(JzH3S-e#$gw6Hf6n(*@FinGzx zp-0(hlhtpfVEjYwU^->Q(MKN*H}LQx;zE!k7=Hum@#J_h?9zn`KUk7{@9te-brS!A z03UyS>53J%AxJq7fS+H`x8$8cj%QO+JdnpyOCkU@3t5!kH~2{z?Kn6e#2gw7%E?UO zlgFJupG@9ukeufuYOB)v1AJhUmVh|ua=?X9O7g5*cE1Fo#l3Oa^5x8xSHV!(-1Lmj zx_{p|M3ue<8-|wd%6){)c?*mV*B^7{lP6BNM#a*$r^4pUqjTlBm``eA_ZpKL{Bof$ zK|$Bfdp@{M5fP0Sa2&e<%cV=_PPpKHrT8QG-t@Cf{q1O6SJTf|<7u zw=TkNVPsaQ=coF;i!|(Su)|F-8lv?O9e?($HOvK%Dpd$0a>StrAeE9qZ3VWf%*d0> z8!5z)_>!jw;W5ZO<6=dO9hl=~(2>dZ=wkw{0OH2;@+{%?#f$6AMMhr7M2RhvTTn8Y zWm9TlD1W3D*vG0_h58j3 z=#;&B#r>Fs$vBTP?>9cOOV?3j#vlrCW2%QBi2%96^QU9g`E3AIPL;)?MI?sVrlwb9 zm3>WCuJl4wUf5yhpp=O$OXu0=(>ib3bi~X-Ih&|S4j|YwD74`^p*{HIyz?ktrgc`5 z^3M{i5g{-=CWtrvhe*yG;LOvh!rVKzynF>)I_|6@QE<&TIq+D*gT|0|%;n3$s{$b% zc)!e%5=*|(lwiCSx$1|lY95xakwdGGzRQd`@5&d+a!Z# zH}M8>*aU`#1?7gVDo-7LVhpD+xava812jW(3%9nQfMa=5E%$Wk@xzCyd5T^!9@e~$ z6A?enATl3~`6RkG2w;5;Di_|gjAJ~3Uylg}ekn`1wI;*~(^K#4jp7^6M!`HR7 zkKZ)`G91^fYbo1Y;kWe#(aV0r1|;Fb?--Pf7&h!0gb6o9_&i}6R<0i)xN(%{Lq_>W zPjrt4<`k>1|%T?f>6a!M!2x>xB6CbL8a=4$K0GAx%Sthz%J5$Wy7 zOB8{-@!*d(H|RB7MMcZuWy0WByG*zLO#>MZFxFr|M}@>#UM}Eqrc&NIse@f8g@kua z^@c&&AnY9@)Aj*Me0+pU*MvuRtv-$-1hc@H(=Im)a z)eQK+`tmRU1nIKUwxQ$I;L#7D0n{S*f!w~6m(fei$oCBiDWOmTKMFJca86B5mo8qk z!djG`F-F!SfAo2g6VRJ(2agtOWwUkEc;AFOg#6(8^i;7sr4T)!1NQgS? z8#el1=p!FcSzj-xrKx4Y_MiRs-*TzU<9IRS@Brz_lZ1kv4h)$I5GSicP9^X4^z!oJ zUPFw^G~dg*!rBK`olFk`T_t!fE>4k?_&a-$-~dl)@=Oa4!poL~V{VTxx>))@_3 z$)|?k=3TYv)9Id0M{B%94t)kUm4IJ1aETH3799nD1d`Q|({tMO_aVv?(jjAtL?_Rd z;`L+*D1TXDT%Fz5#U&+}sBfU&B-!vloY{VCQ z&SJdlo@8eanqq(K9EXR2A3DBlggfTjrIi=q{cEH;Rd{2L;OgPva4ExVaG=l=2z=jm z7r4;k+B*%2#P7#@=wpHr!;FwC>vB%xPW^C|@03Nwn7zZb@j3);VOdaX8It3J#?dAx zCY-(2)KzKhSbkd}{0yBg-}wHh$!Q{Eqf{)W>+J51=)RWu+er;&CB|bc(tdD1j(>G$` znn@=+)_vM?3$<@aaq-++n`K}KAZl1g$S)qBprfa^HzA^7&8k%x*eN6sJN8}3OOufd zzkGQmx0dGIxpRdDSH6h<4LaLPSQLi1Wh<}(2J@LM8}dfr2>~;TAD+4Sy$_o}Yw15~ zFS2(Op4UC*1L>A2;;T!>;m?^9x>Q>N`xvZTs9=)-+Nr6j)sJ~A)L-2E(7KDuVVMy( z-*l~EGvt|!u5c+#MpFZub=4lK9?I4k1&5#xfe*$KNQxIp_9kyY)$g1`5#S?@zf(hi zff$!k=OHh8Xwo5xzw<|$)|3^$YA;^CdhHtFpUcb^0?Y9O@or<1lr{u}%}<0X5K3P@ z1h3p*(aP1uPMlLxT(iAH7NR8RcAO0mb<(F<0vEFP&>?9wiv9bajCUQm3$}ckY`_H)(34I)}__tQqCe^S_HaS3tm5*BT*4LknHH+$B6F zhPY?He*HIkKLCuCr%kJ2(eXBclOKB6HugMwc%qqTvv#Aeeh!+yKC(Mn2ml9%N)g#i z;;}57d|TDn`+0qj2Q#VRXoXinjjIO}mRvaefp;f762|;|q^!8_PugXC z24!QlYf4nqTK&>~v&d&?e<+*onu&8W%Mui|kv=l-%;d?c(Yx=gx>o$`;8|sR!}Nqs zPh-6f{Q$)V$406(j@wDd-sa73n3?qd%_TdD0^Ck zZwzD+ikz`cRrNeA!WN4`Ilg(XsqspK#VWoNPmn~t&(byNTl7*4pes^mjG`gPJ zRo(}j4+}ut=x8*3V2{x9LBo2>2Pir8G~m(XliG__gmSZqv`LAHorBOx3yS`Z)AT=1 zh0$Aktr(G2AB#I#Spvs2W48T88p%_p6crcWTz{{6{$J#OD1!SB2!($~QR6SybAzod z%{dmR9T+ez{_0gT-Q7Sao*w3$m-}%t!P^ZWDB&#`vymd{Z0H(O$IAEbCB`Apf_gc& zCE5{))9qA_cHGy8NL}_$u;eJ$RivjU>=;N)!V8BCm@@rB5Uel!tRcH0kVAy@ zF=d&Jj=4FKy!}J;tX$RUIIHj{tC%-Y-goct{qf!lPu;ye8%BsY;qW~a)UP9i-oI{pdp~lISF^=;8gdiU|`lxry>>>?HwAE|Z zj;Q}vU9{-$8XH`RtcGsYMH7)IpSbS$`5cc6~LbQ zMGB5occ3gfU453%m)ClkCifT4bR@OIbCE=u_A|jwg!%&48~)2WXZ(GOi?@R1BCLD^ z0(P)}0J2uS@G?g&)ELp=jSRE#!7$U|r1-N_|1n#*5S1iHzoS1_y0)$^wcKbd_o8yy zb}$@C@>%(gLzaCN-X3npRT!n1(DEyqU`aiN1<62W`FzzWVpdO(6NHz^F_tVOXX;+) zxaclM%e$3k1kXU~$O{&j0T@IV2&~+tj>j+dN)DK_nN~5x>QS}lf^Dtv)q$MWtR-sJ z8rRndCYjF$2H+U-U%uy0Oif*gfUur@^6%2_p@mUcSg2m8LLAP^y8)!mc*aaqkA1@q z9~Lh%AXb+u$_HT7Fg~D532h4>X_N*#qo~U&o3=bFchlnWLj|!!%I6S51XlMk6l63- zN)wY#pgQds`W!Mv(ClnO5==`PDmqVOL_|qx9h7u^`)iztZlt83Y>4gVWSMlKEQHRxq7U*2%i4)aSjI6} z!D|UCyj*HoX*Loq8A634?yKS$$MrFe7Ua5$wF_=0pg!E_ZzwlL9QUfQ9_M!a0g4&v zI?Rs&E;IJkI_}_S3w=7uxRG=D5W4eJALiyZzUr~7aCt}lkEm%0iIjMuw#mmsLgYb{ z)`4qa3(N`s#Z^~k4pt#^ec9N8C!I0D0<*$Z>B<^--`%{q6~pd`ix6l#*^GFqPGJ_! z08Ss43C!U;UBAjGA-0dad|9ZKGQ{%?QZf4jZQ3WW#54Qkq;_Zk0u2`Pl+;g>`{UNd3xNYid-dTBnSlrvuJ9*KdF@lZKC0U1eo5n{eF6Qc`G6p4<%e zR3?2wLZB_!rQ9!9qh|1*yQ%GjdDT*!Vhf1?Ox-n-h)M?MCSAuh+ir-7AXjs*w-n#)^5*V8E-kGm zcy#yf)q~Do7}-l1l9p-?!Bfp0xy*fkIt5=WIZ4amJxjYkBOzmY>67ir;T-0ZS5q&F zo!8wo=7-~SHMK(4{@FZar7Mo7V;m}UX~uA`IRFP46QycY(EW09D~w|B(WBIjHHP}z zf2(r$FlFFy{XE`{oJul<>{{BSRBUn0Bw$gcR2Z&JMn3X(Lfk(%qkjfsl zL0w(|unTp*2WnWZS8Vsu=Y%!`gSZs>sN5sIt?m7=sOT&6?ntQkp`$CFhhMqEq+}AD zHYFq#&D&QI;o%943)9gtDrwf&#kP0|Hx70BwlUs4{!%9%aTJg2QS3VI!lg^X+;WB@ z4}oI&oBBe7BNr-y*a37ZyYCJEv(;0zwzp2eR>isxappE7y+jM5QIDjj9PML3wbl2f zuveEUqW#UW`_9|seCN1jQZ#=h>6(P9FFO6bp3w$1wG&x3G_Z_cYOT~~F*khH0lA4b zWbwBZYaJcQZr@?8s3#t+>y8%(kZskvb$X%QUgnnyT-}?yd)VP9bdu!PTQeLkY(wQk z(CrE>kI1d45HatJ1g)3@qiQyQ2b)&XS7H8h*-iX?$F&ClU2v#_N&WZRkUDLNn_MG~ zGAzSADyQ^s#{UTp<2dk}k*FS>cY4Y{g-@NWx1E>{f-Wtss;as^#I_pPhG)GMCgEK*6JO2w5I*jy`J^YS%nb=h0W3D??$Re05$l<=I9HT96YZ~bf61E z8Wiu+W%G{ZEaJ_lzGia~OAOULG^6m2hJg~Mu_-%^?45<>&EPR4zfjcIBiB2B#%XH> z+cxlFqklmAu9xHiytNaNkr0S9Zf@%|v!C-x!9+zyW#DNb}cM}@W z{0e4W88>k5H-PD29Ix?PA#Gvwc!L!3VgNV_GQO*X!~#=OzkmQl_J<5rL_76dOuT3j3A6 z*{O!?+I5!*#e+9z-r)GlmoHPv5avmM3F^RNdVRiF6-_!>f3O40gSna6fq(!)<~Z_J z%2mPp!*8y$v-8%iHz8uxdgk6-)&N=|I)1|mLfC*__M?=S58C~}6(pi;gz=-ota>KB zZ2Yt_V+2Py_=pPdCFh;OKXvfnEVc_!>j4mfy(r^&Ya73f(zTuisn>YQ>Gn-XAdD*+ zr%`{=BkSJ1$lJF)X>)P(7|Mh64c%xsken=nC*pDuc`u$ltB|q@fwHb{CR5y*qUA@) zqxUm1wEv2VUVyB+NlMCC(9cz{HYusEuLos^U{ybE1BYw@TqO-;h~e3;QbG@4{`?)S zpA>?hV3^Q%s`w}s6)((^!opVQ>iV3Byp1FoWGjM)qFSPp5wS0voJqft+YFz@64C&* z`eyoz3`enFWF=2ABMDhH>;>LG_$f7op1wY=a5!fw&z!leO}2w2k`OdoFy?J^K;hg* zQ1eDb6>ao9cm8}OXORMu*QWUW#V<{5e+r?zjabUH!1^2Ygzo(L>~>66``K~R@403U z$-cdNTWSgf(JV_{VmrUM!q9}t$w^$!cf5aOEMA}AONJU_MJ)ZVR2$C|7@fx!@^1zq zHyy-*_o;fy_Q>Vq`U*bb&;}%=KP!JEci)+ys@hxYAtBE5TiIsvnLLsW9*`ttBk?^y z^YAdz@`=#KvYfd<1K4iapN5HJ*=<8hmD|od)@_$}d)3UBgLSDw@rt84Fsf-w=4P7T z0IQJ1o@u|ItLo9L2!HY78_~tlpRMo1J?wVCw2^E*zcnlezH#l_%|DPKC9#(s2|V@<12FndQ>!o{X% zMq$X0*}sP_Wgv-z$^bi8k=BO*#V}mykyIhre()Q9GV@71prj){fT`Q3<-K|(Tva*^ zWK#_8G01@JXZp(E{aia5*F<1W?vpi>2<1*2H{Y?%aE7Fknpf!-uTs z;=3^f9A-MyQ?NJ1xS_0 z$~DEPm#wfg^h1T=vJ)rd2t8{aO6yPD_U#5jx6i_k0R0DOVUWxshiOXJW|(o|LIy8R z9y|60s18FVA21c)GeTmZ+(ezL3alfi9aqbtBZh$Q-T(dfT5__`SvEWcqM@hDU4p_s z=xKX7c|q!nu;PFJ3y4RthjmBaH+E&Ota9)rM*t))Bi6NTt}cq5@dh#T^el) zPLS}A+`BljNE9=p?`Rq!)NEDd1N0*0Cr+AFLe#+!Rb5pMI`uoA8HCt{D_5FC=9A@b zEE`|+n(j}>PMrW+Gc-~T9yl-)p*5q$NlS+we{H*QBQ+|Uf>?(}7nu(e^l)||_?GEg zVywTq6fSL~2t=0l_Y4qXA>Ttx#Hdl4?6q%mw((pLAyI#E)pgPY2a(8pwShf~X6(L$ zX#}0_Mv^Ub`0&zgM$}<+-z2+t7ZzN7)mTusR6>CXBCovJq(RohYT+%vQ7)jFI*zA* zG))aAIeu(qevP7M;b>8KcMdDd+^9Q%y|JE)J8~naL#Lynz*68ximhr0^0JJbosJ$k zVkuq&fn$BQGc3u$bp`6f@t8)TA0$0 z$yzgMMq!VA_lijZ#2)x{`YoI)K?a7Y0H>KzJl=5)Gi7uBj)bIxFhSbzJ6~%GgmGk> z!EcNi%0^w?M2QJ&2U2I%-mM`>r3U<05d)Sy^eA zaKI)%`GB$3m&OV&WIfBbuNfnKDq9feLHocU5xOaTxx(OE=2SC=gc_P4$pc%U!-o-| zl?Og1j(_`r}C z8H_t8#1wn`aebe>e0c-L4H)q3#J&o@p?n_-XyMv`w#JTq@?q1`aTesg*qY&G{f9&G z&zm>T(C~3?Zt&s5Sh3aFcAKYU4%b3><#IfF6k9OTW&zX`+9o2y@NMNjwnRjDUoefJ zca#3x51{Ao9hN)hHy4jY1?u|`m&4xk|Fkv#&wT5h|9dqzAM-&BJQMPYD_2+;PSs~_ zmK{bwjfr8=>w2UaN9<+A&UOAfkueRXw}+Gz8qJ7bFX&hzf*H|t5Y`_<=72qQR$YiAREi*KgSH6Za^chg9FlDe|MV-$Z`Hu1MHZUN1DZ zQHRksut_F!^6|bBi<0Ls^i5;~meiYt4;{Epn8_2I)fl14PSujq z9yu4Xfh-4mlE=c^8Rg~elqcZZ?SvGbVbH{AIQ7Bni@B{ z{VfR1_PZz4-<2y96@0R6z!I)$!>A1|M8d15efUY{mJ(<56dYqb1DPvLSRZMa3+lI^ zIeaWI^FkGhvwDxGcMWQfp&-n01hDdH&0n1`;QyIjtx)YoEQ%MLnXU zlF#<0tbUHdlmX9{qym*^$Ia`j)g?WHg1D@J0LmrO@b>`i#`_`#yPwx|qYF@~&X&Ld zE*-Dj)cJ^;7xaT2bu@wij`c^K@2YMo{om!<6EpISkF$+wbYtp|yk2i-$LEG1LlDjI80mF+ zpsc26VJ?nagS`wYj_ljl#Z4h6_XuRZo8V!P9Mv|jL%O^{-@i3?H-Nr*KcSjlVh!x| zIRt_muX!a}{Ro5aYN~J3Rh$zG9#hf?3hsti)9u%kvzxD%o5Hy0ygA&Y?NB4M;T3%7 z;<2K`Nayff{eXLKs2Yy6c>eU=qGbfiiNae!VGZ{gK1$i&X7y_P33}@I($-J79quou zF-SP&V&3o3zL@m`KzAG~*T27MKM+b`|E|kx9#TfV+!{clp&A8lJ4`)QGHbyJsuKTE zIFOuuzK?;md5GW(I`|L0ldD4`^=xGnJCOz1_mP0UnwE$U3cL2RPT#>35B?wp^4j&u zSSh8W)EKwo7Sy<~Ed;@!9D|;y#DS zZtC&5k%%>H%S+R10)7jc82y+Dtnk&cJv+75$zSXH zO2yHgtkVq6Me-~#r`k%%MspRuZzc=O{ zIg#EQ{sEvsb7!NK@DSqAJHEl7qvHR3KChCQ!B6@u*_pmOJYjC@pjv|^D$74s10BfW zh({=Od=Ak^{+yc_EY7pQqOL+h#k~2wy_R6 zAE^*@-ZjVPu}%1>$f5qa%Gs(am!xMbb2WEQNI4YVZS1jw@`EJY&P|FbR8<-iGt;L_ z;@-xH%&W)b=F6I!CpOwNJ8pM8bvxU0<&Te|RLe_A>n#`H)_J#$GvBC@j$-sk@QAfhyfLmdS6H(=w?2Q>Vo!?!VFbsV0%^i zyvs=^vMVu42E)QpY0?vLKI(B~Pmw)*Osp^Ni$8w;tedc{ZK}A|j*vn8ALdin^fp;Z z*OXV8GaSYcoN929vf%M!td3dcI3IVHz`*O9Yg;=g2&nA9tXc&L>cU#Tjk~8zojPU@ z6~oKv3*6k2ve!WuU##>`oRo)$mEQNAP>iPJQzxg(z6h2G2=+G;n^OulC_f(Zkl7#; z_G!hN5U}m-FZd3`xq*kJ#duKqQ9+#=s{R$REx#vZ5Srqck4xp6YRr4~Wf$b}bzLI! zvAbTfXi-#)&+V7ONUit8QS3Dtjn>-EeL*c!fCGAw<2x-{yjb)SpQ-b=rUZP>Yeg!9 zoF45i9@0m4K0%Mr3#Tl)Al34G8P7_t3PK> z@$~EIMwgSg2yN?$Wc>}#@Y%*rF$~f@F!6C(VL?HpgI52DbLVtNvt6vcO&w~@5M#x4 zH#CV%if>u-y}>*yS4J3l&5%Q48S{P)WXo0%#G&T^nNbyUm;>P^K+I`td;2a+^H}st zf1w-US;ocP9TD7sCNqk3-nJrn;5OpL86#V|eX;bX3w_!ef_oI>iQA9KXU~&u^|}rm zMAGNyD?i)}5dv19GD~S9_}YzQ2=GXM16JGR!-B?HY640gxv4RmcNTFOFUri{;j+*oomYx*WWW6LZEAHij_*Gfq)2 zl2s+o@#}@zq5<;j*Dw4jfCB|j543Kka|Y5tI^p{eD1rP9u0^@8k)2(vFXS-$18oeZ z-XY{tDlKmhY0I@$h4sQH(33`>))2x@VNP!;(HG0TN6(zO>~I5od`%?Vvn|JAYAL?J z@TMab1wQDC%^aR&Ug!7$Ike|DAiEBoY5ne~4NtMi^g?EESYrcAz(7uw+nJ{6^c7 zc-hk8j+nP}Btb8J)$Vtg>+X-_!pjR(NMZ*R$ zneT1iubEAjrvmu#)XM+YhVPOnj-##x2M6ag-)~$GKL`;(m?Z# zT(M?S_KAtJb%E|(UJQ`hOFBdT5Pa+y15qXRNhvpO5bkjVV07HRJSeZ*fIkKu-r{d3 za?B|yI{l7?jP&n3^rvdg(|-8-Z^Uee3dw{oRq5X&>SAK@zvBmg(%t8eJkMMF_x1Qc c@G@_3Sm?TCNPlx};T_DKW2_smvufA>2RFLNga7~l diff --git a/results/perturbation_prediction/index.qmd b/results/perturbation_prediction/index.qmd index 5f3a3caf..b0223217 100644 --- a/results/perturbation_prediction/index.qmd +++ b/results/perturbation_prediction/index.qmd @@ -12,7 +12,7 @@ toc: false ```{r} #| include: false -params <- list(data_dir = "results/predict_modality/data") +params <- list(data_dir = "results/perturbation_prediction/data") params <- list(data_dir = "./data") ``` diff --git a/results/spatially_variable_genes/index.qmd b/results/spatially_variable_genes/index.qmd index a2f9d7e3..62aecd62 100644 --- a/results/spatially_variable_genes/index.qmd +++ b/results/spatially_variable_genes/index.qmd @@ -1,5 +1,5 @@ --- -title: "Spatially Variable Genes" +title: "Spatially variable genes" subtitle: "Detecting genes whose expression levels vary across spatial regions." image: thumbnail.svg page-layout: full diff --git a/results/task_denoising/data/dataset_info.json b/results/task_denoising/data/dataset_info.json new file mode 100644 index 00000000..bda7d411 --- /dev/null +++ b/results/task_denoising/data/dataset_info.json @@ -0,0 +1,189 @@ +[ + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/dkd", + "dataset_name": "Diabetic Kidney Disease", + "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", + "dataset_description": "Multimodal single cell sequencing is a powerful tool for interrogating cell-specific changes in transcription and chromatin accessibility. We performed single nucleus RNA (snRNA-seq) and assay for transposase accessible chromatin sequencing (snATAC-seq) on human kidney cortex from donors with and without diabetic kidney disease (DKD) to identify altered signaling pathways and transcription factors associated with DKD. Both snRNA-seq and snATAC-seq had an increased proportion of VCAM1+ injured proximal tubule cells (PT_VCAM1) in DKD samples. PT_VCAM1 has a pro-inflammatory expression signature and transcription factor motif enrichment implicated NFkB signaling. We used stratified linkage disequilibrium score regression to partition heritability of kidney-function-related traits using publicly-available GWAS summary statistics. Cell-specific PT_VCAM1 peaks were enriched for heritability of chronic kidney disease (CKD), suggesting that genetic background may regulate chromatin accessibility and DKD progression. snATAC-seq found cell-specific differentially accessible regions (DAR) throughout the nephron that change accessibility in DKD and these regions were enriched for glucocorticoid receptor (GR) motifs. Changes in chromatin accessibility were associated with decreased expression of insulin receptor, increased gluconeogenesis, and decreased expression of the GR cytosolic chaperone, FKBP5, in the diabetic proximal tubule. Cleavage under targets and release using nuclease (CUT&RUN) profiling of GR binding in bulk kidney cortex and an in vitro model of the proximal tubule (RPTEC) showed that DAR co-localize with GR binding sites. CRISPRi silencing of GR response elements (GRE) in the FKBP5 gene body reduced FKBP5 expression in RPTEC, suggesting that reduced FKBP5 chromatin accessibility in DKD may alter cellular response to GR. We developed an open-source tool for single cell allele specific analysis (SALSA) to model the effect of genetic background on gene expression. Heterozygous germline single nucleotide variants (SNV) in proximal tubule ATAC peaks were associated with allele-specific chromatin accessibility and differential expression of target genes within cis-coaccessibility networks. Partitioned heritability of proximal tubule ATAC peaks with a predicted allele-specific effect was enriched for eGFR, suggesting that genetic background may modify DKD progression in a cell-specific manner.", + "data_reference": "wilson2022multimodal", + "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b", + "date_created": "20-09-2024", + "file_size": 50805568 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/hypomap", + "dataset_name": "HypoMap", + "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", + "dataset_description": "The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalogue and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here we present an integrated reference atlas “HypoMap” of the murine hypothalamus consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from SmartSeq2 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity.", + "data_reference": "steuernagel2022hypomap", + "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36", + "date_created": "20-09-2024", + "file_size": 16024072 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/immune_cells", + "dataset_name": "Human immune", + "dataset_summary": "Human immune cells dataset from the scIB benchmarks", + "dataset_description": "Human immune cells from peripheral blood and bone marrow taken from 5 datasets comprising 10 batches across technologies (10X, Smart-seq2).", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html", + "date_created": "20-09-2024", + "file_size": 50923456 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/tabula_sapiens", + "dataset_name": "Tabula Sapiens", + "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", + "dataset_description": "Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects. This work is the product of the Tabula Sapiens Consortium. Taking the organs from the same individual controls for genetic background, age, environment, and epigenetic effects and allows detailed analysis and comparison of cell types that are shared between tissues. Our work creates a detailed portrait of cell types as well as their distribution and variation in gene expression across tissues and within the endothelial, epithelial, stromal and immune compartments.", + "data_reference": "consortium2022tabula", + "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5", + "date_created": "20-09-2024", + "file_size": 129380976 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/zebrafish", + "dataset_name": "Zebrafish embryonic cells", + "dataset_summary": "Single-cell mRNA sequencing of zebrafish embryonic cells.", + "dataset_description": "90k cells from zebrafish embryos throughout the first day of development, with and without a knockout of chordin, an important developmental gene.", + "data_reference": "wagner2018single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294", + "date_created": "20-09-2024", + "file_size": 78080928 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/pancreas", + "dataset_name": "Human pancreas", + "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", + "dataset_description": "Human pancreatic islet scRNA-seq data from 6 datasets across technologies (CEL-seq, CEL-seq2, Smart-seq2, inDrop, Fluidigm C1, and SMARTER-seq).", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html", + "date_created": "20-09-2024", + "file_size": 273053808 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "dataset_name": "5k PBMCs", + "dataset_summary": "5k peripheral blood mononuclear cells from a healthy donor", + "dataset_description": "5k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in July 2019 by 10X Genomics.", + "data_reference": "10x2019pbmc", + "data_url": "https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-v-3-chemistry-3-1-standard-3-1-0", + "date_created": "20-09-2024", + "file_size": 22470440 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "dataset_name": "Mouse HSPC", + "dataset_summary": "Haematopoeitic stem and progenitor cells from mouse bone marrow", + "dataset_description": "1656 hematopoietic stem and progenitor cells from mouse bone marrow. Sequenced by Smart-seq2.", + "data_reference": "nestorowa2016single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81682", + "date_created": "20-09-2024", + "file_size": 140227444 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "dataset_name": "Mouse Pancreatic Islet Atlas", + "dataset_summary": "Mouse pancreatic islet scRNA-seq atlas across sexes, ages, and stress conditions including diabetes", + "dataset_description": "To better understand pancreatic β-cell heterogeneity we generated a mouse pancreatic islet atlas capturing a wide range of biological conditions. The atlas contains scRNA-seq datasets of over 300,000 mouse pancreatic islet cells, of which more than 100,000 are β-cells, from nine datasets with 56 samples, including two previously unpublished datasets. The samples vary in sex, age (ranging from embryonic to aged), chemical stress, and disease status (including T1D NOD model development and two T2D models, mSTZ and db/db) together with different diabetes treatments. Additional information about data fields is available in anndata uns field 'field_descriptions' and on https://github.com/theislab/mm_pancreas_atlas_rep/blob/main/resources/cellxgene.md.", + "data_reference": "hrovatin2023delineating", + "data_url": "https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070", + "date_created": "20-09-2024", + "file_size": 115102144 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/cengen", + "dataset_name": "CeNGEN", + "dataset_summary": "Complete Gene Expression Map of an Entire Nervous System", + "dataset_description": "100k FACS-isolated C. elegans neurons from 17 experiments sequenced on 10x Genomics.", + "data_reference": "hammarlund2018cengen", + "data_url": "https://www.cengen.org", + "date_created": "20-09-2024", + "file_size": 16473280 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_name": "1k PBMCs", + "dataset_summary": "1k peripheral blood mononuclear cells from a healthy donor", + "dataset_description": "1k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in November 2018 by 10X Genomics.", + "data_reference": "10x2018pbmc", + "data_url": "https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0", + "date_created": "20-09-2024", + "file_size": 6204096 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_name": "Triple-Negative Breast Cancer", + "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", + "dataset_description": "1535 cells from six TNBC donors by (Wu et al., 2021). This dataset includes cytokine activities, inferred using a multivariate linear model with cytokine-focused signatures, as assumed true cell-cell communication (Dimitrov et al., 2022).", + "data_reference": "wu2021single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389", + "date_created": "20-09-2024", + "file_size": 91602304 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "dataset_name": "Mouse myeloid", + "dataset_summary": "Myeloid lineage differentiation from mouse blood", + "dataset_description": "660 FACS-isolated myeloid cells from 9 experiments sequenced using C1 Fluidigm and SMARTseq in 2016 by Olsson et al.", + "data_reference": "olsson2016single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70245", + "date_created": "20-09-2024", + "file_size": 19665956 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/immune_cell_atlas", + "dataset_name": "Immune Cell Atlas", + "dataset_summary": "Cross-tissue immune cell analysis reveals tissue-specific features in humans", + "dataset_description": "Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. We surveyed the immune compartment of 16 tissues from 12 adult donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of ~360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of finely phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. Our multitissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis, and antigen receptor sequencing.", + "data_reference": "dominguez2022crosstissue", + "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3", + "date_created": "20-09-2024", + "file_size": 69103776 + }, + { + "task_id": "task_denoising", + "dataset_id": "openproblems_v1/allen_brain_atlas", + "dataset_name": "Mouse Brain Atlas", + "dataset_summary": "Adult mouse primary visual cortex", + "dataset_description": "A murine brain atlas with adjacent cell types as assumed benchmark truth, inferred from deconvolution proportion correlations using matching 10x Visium slides (see Dimitrov et al., 2022).", + "data_reference": "tasic2016adult", + "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585", + "date_created": "20-09-2024", + "file_size": 1211812848 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/hcla", + "dataset_name": "Human Lung Cell Atlas", + "dataset_summary": "An integrated cell atlas of the human lung in health and disease (core)", + "dataset_description": "The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung. It consists of over 2 million cells from the respiratory tract of 486 individuals, and includes 49 different datasets. It is split into the HLCA core, and the extended or full HLCA. The HLCA core includes data of healthy lung tissue from 107 individuals, and includes manual cell type annotations based on consensus across 6 independent experts, as well as demographic, biological and technical metadata.", + "data_reference": "sikkema2023integrated", + "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293", + "date_created": "20-09-2024", + "file_size": 77918688 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/gtex_v9", + "dataset_name": "GTEX v9", + "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", + "dataset_description": "Understanding the function of genes and their regulation in tissue homeostasis and disease requires knowing the cellular context in which genes are expressed in tissues across the body. Single cell genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are focused on single tissue types. Here, we establish a framework for profiling multiple tissues across the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei profiles, and benchmark them vs. scRNA-seq of comparable fresh tissues. We use a conditional variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory methods. We highlight shared and tissue-specific features of tissue-resident immune cells, identifying tissue-restricted and non-restricted resident myeloid populations. These include a cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and the broad presence of LAM-like macrophages across healthy tissues that is also observed in disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the neuromuscular, metabolic, and immune components of these diseases, and biological processes involved in their pathology. For common complex diseases and traits analyzed by GWAS, we identify the cell types and gene modules that potentially underlie disease mechanisms. The experimental and analytical frameworks we describe will enable the generation of large-scale studies of how cellular and molecular processes vary across individuals and populations.", + "data_reference": "eraslan2022singlenucleus", + "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470", + "date_created": "20-09-2024", + "file_size": 34214816 + } +] diff --git a/results/task_denoising/data/method_info.json b/results/task_denoising/data/method_info.json new file mode 100644 index 00000000..3441c23f --- /dev/null +++ b/results/task_denoising/data/method_info.json @@ -0,0 +1,80 @@ +[ + { + "task_id": "task_denoising", + "method_id": "no_denoising", + "method_name": "No Denoising", + "method_summary": "negative control by copying train counts", + "method_description": "This method serves as a negative control, where the denoised data is a copy of the unaltered training data. This represents the scoring threshold if denoising was not performed on the data.", + "is_baseline": true, + "paper_reference": null, + "code_url": "https://github.com/openproblems-bio/task_denoising", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/control_methods/no_denoising/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + }, + { + "task_id": "task_denoising", + "method_id": "perfect_denoising", + "method_name": "Perfect Denoising", + "method_summary": "Positive control by copying the test counts", + "method_description": "This method serves as a positive control, where the test data is copied 1-to-1 to the denoised data. This makes it seem as if the data is perfectly denoised as it will be compared to the test data in the metrics.", + "is_baseline": true, + "paper_reference": null, + "code_url": "https://github.com/openproblems-bio/task_denoising", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/control_methods/perfect_denoising/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + }, + { + "task_id": "task_denoising", + "method_id": "alra", + "method_name": "ALRA", + "method_summary": "ALRA imputes missing values in scRNA-seq data by computing rank-k approximation, thresholding by gene, and rescaling the matrix.", + "method_description": "Adaptively-thresholded Low Rank Approximation (ALRA). \n\nALRA is a method for imputation of missing values in single cell RNA-sequencing data, \ndescribed in the preprint, \"Zero-preserving imputation of scRNA-seq data using low-rank approximation\" \navailable [here](https://www.biorxiv.org/content/early/2018/08/22/397588). Given a \nscRNA-seq expression matrix, ALRA first computes its rank-k approximation using randomized SVD. \nNext, each row (gene) is thresholded by the magnitude of the most negative value of that gene. \nFinally, the matrix is rescaled.\n", + "is_baseline": false, + "paper_reference": "10.1101/397588", + "code_url": "https://github.com/KlugerLab/ALRA", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/alra/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + }, + { + "task_id": "task_denoising", + "method_id": "dca", + "method_name": "DCA", + "method_summary": "A deep autoencoder with ZINB loss function to address the dropout effect in count data", + "method_description": "\"Deep Count Autoencoder\n\nRemoves the dropout effect by taking the count structure, overdispersed nature and sparsity of the data into account \nusing a deep autoencoder with zero-inflated negative binomial (ZINB) loss function.\"\n", + "is_baseline": false, + "paper_reference": "10.1038/s41467-018-07931-2", + "code_url": "https://github.com/theislab/dca", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/dca/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + }, + { + "task_id": "task_denoising", + "method_id": "knn_smoothing", + "method_name": "KNN Smoothing", + "method_summary": "Iterative kNN-smoothing denoises scRNA-seq data by iteratively increasing the size of neighbourhoods for smoothing until a maximum k value is reached.", + "method_description": "Iterative kNN-smoothing is a method to repair or denoise noisy scRNA-seq expression matrices. Given a scRNA-seq expression matrix, KNN-smoothing first applies initial normalisation and smoothing. Then, a chosen number of principal components is used to calculate Euclidean distances between cells. Minimally sized neighbourhoods are initially determined from these Euclidean distances, and expression profiles are shared between neighbouring cells. Then, the resultant smoothed matrix is used as input to the next step of smoothing, where the size (k) of the considered neighbourhoods is increased, leading to greater smoothing. This process continues until a chosen maximum k value has been reached, at which point the iteratively smoothed object is then optionally scaled to yield a final result.", + "is_baseline": false, + "paper_reference": "10.1101/217737", + "code_url": "https://github.com/yanailab/knn-smoothing", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/knn_smoothing/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + }, + { + "task_id": "task_denoising", + "method_id": "magic", + "method_name": "MAGIC", + "method_summary": "MAGIC imputes and denoises scRNA-seq data that is noisy or dropout-prone.", + "method_description": "MAGIC (Markov Affinity-based Graph Imputation of Cells) is a method for imputation and denoising of noisy or dropout-prone single cell RNA-sequencing data. Given a normalised scRNA-seq expression matrix, it first calculates Euclidean distances between each pair of cells in the dataset, which is then augmented using a Gaussian kernel (function) and row-normalised to give a normalised affinity matrix. A t-step markov process is then calculated, by powering this affinity matrix t times. Finally, the powered affinity matrix is right-multiplied by the normalised data, causing the final imputed values to take the value of a per-gene average weighted by the affinities of cells. The resultant imputed matrix is then rescaled, to more closely match the magnitude of measurements in the normalised (input) matrix.", + "is_baseline": false, + "paper_reference": "10.1016/j.cell.2018.05.061", + "code_url": "https://github.com/KrishnaswamyLab/MAGIC", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/magic/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + } +] diff --git a/results/task_denoising/data/metric_execution_info.json b/results/task_denoising/data/metric_execution_info.json new file mode 100644 index 00000000..e05b1a0d --- /dev/null +++ b/results/task_denoising/data/metric_execution_info.json @@ -0,0 +1,2858 @@ +[ + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30.4, + "cpu_pct": 162.5, + "peak_memory_mb": 6964, + "disk_read_mb": 867, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 22.3, + "cpu_pct": 141, + "peak_memory_mb": 10650, + "disk_read_mb": 989, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30.8, + "cpu_pct": 89.4, + "peak_memory_mb": 9626, + "disk_read_mb": 234, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30.4, + "cpu_pct": 96.5, + "peak_memory_mb": 9626, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 12.6, + "cpu_pct": 146.6, + "peak_memory_mb": 10343, + "disk_read_mb": 198, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 12.4, + "cpu_pct": 175.5, + "peak_memory_mb": 11776, + "disk_read_mb": 156, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.3, + "cpu_pct": 189.1, + "peak_memory_mb": 11162, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.9, + "cpu_pct": 170.2, + "peak_memory_mb": 13312, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 36.7, + "cpu_pct": 136.9, + "peak_memory_mb": 15156, + "disk_read_mb": 263, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 49.6, + "cpu_pct": 137.3, + "peak_memory_mb": 15156, + "disk_read_mb": 2868, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 22.4, + "cpu_pct": 143.2, + "peak_memory_mb": 15770, + "disk_read_mb": 160, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 27.3, + "cpu_pct": 90.5, + "peak_memory_mb": 14132, + "disk_read_mb": 127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 34.4, + "cpu_pct": 205.3, + "peak_memory_mb": 9421, + "disk_read_mb": 1024, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 33.9, + "cpu_pct": 178.2, + "peak_memory_mb": 11162, + "disk_read_mb": 1639, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 26, + "cpu_pct": 132.7, + "peak_memory_mb": 15156, + "disk_read_mb": 315, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 42.5, + "cpu_pct": 131.7, + "peak_memory_mb": 12493, + "disk_read_mb": 2356, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 20.1, + "cpu_pct": 177.4, + "peak_memory_mb": 10445, + "disk_read_mb": 259, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 18.7, + "cpu_pct": 182.7, + "peak_memory_mb": 12903, + "disk_read_mb": 205, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 11.3, + "cpu_pct": 157.4, + "peak_memory_mb": 8090, + "disk_read_mb": 233, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13, + "cpu_pct": 210, + "peak_memory_mb": 3687, + "disk_read_mb": 425, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 12.5, + "cpu_pct": 153.8, + "peak_memory_mb": 4711, + "disk_read_mb": 114, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 24.4, + "cpu_pct": 76.8, + "peak_memory_mb": 7373, + "disk_read_mb": 580, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 8.9, + "cpu_pct": 207.6, + "peak_memory_mb": 8397, + "disk_read_mb": 95, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 7.9, + "cpu_pct": 203.2, + "peak_memory_mb": 8192, + "disk_read_mb": 82, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 38.3, + "cpu_pct": 200.1, + "peak_memory_mb": 13415, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.4, + "cpu_pct": 155.8, + "peak_memory_mb": 8602, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 34.1, + "cpu_pct": 135.8, + "peak_memory_mb": 13415, + "disk_read_mb": 308, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 44.2, + "cpu_pct": 102.1, + "peak_memory_mb": 16180, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 25.5, + "cpu_pct": 110.4, + "peak_memory_mb": 13722, + "disk_read_mb": 236, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 23.1, + "cpu_pct": 111.6, + "peak_memory_mb": 16589, + "disk_read_mb": 187, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 36.8, + "cpu_pct": 205.7, + "peak_memory_mb": 13517, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 38.1, + "cpu_pct": 229.9, + "peak_memory_mb": 8807, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.3, + "cpu_pct": 78.7, + "peak_memory_mb": 16282, + "disk_read_mb": 433, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.4, + "cpu_pct": 122.5, + "peak_memory_mb": 12903, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.9, + "cpu_pct": 68.1, + "peak_memory_mb": 17716, + "disk_read_mb": 363, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 25.2, + "cpu_pct": 104.5, + "peak_memory_mb": 13517, + "disk_read_mb": 282, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 46.9, + "cpu_pct": 154.8, + "peak_memory_mb": 18944, + "disk_read_mb": 1434, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 52.8, + "cpu_pct": 219.6, + "peak_memory_mb": 16692, + "disk_read_mb": 2663, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 43.7, + "cpu_pct": 159.1, + "peak_memory_mb": 18944, + "disk_read_mb": 454, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 60, + "cpu_pct": 194, + "peak_memory_mb": 18944, + "disk_read_mb": 3482, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 126.5, + "peak_memory_mb": 23245, + "disk_read_mb": 384, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 24.3, + "cpu_pct": 141.3, + "peak_memory_mb": 22324, + "disk_read_mb": 302, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 51.7, + "cpu_pct": 180.1, + "peak_memory_mb": 16794, + "disk_read_mb": 2560, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 53.8, + "cpu_pct": 176.3, + "peak_memory_mb": 15872, + "disk_read_mb": 3380, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 44, + "cpu_pct": 96.7, + "peak_memory_mb": 19559, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 61, + "cpu_pct": 170.9, + "peak_memory_mb": 16794, + "disk_read_mb": 4404, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 44.9, + "cpu_pct": 102.3, + "peak_memory_mb": 23757, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 40.9, + "cpu_pct": 105.8, + "peak_memory_mb": 23245, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 19.1, + "cpu_pct": 170.9, + "peak_memory_mb": 6964, + "disk_read_mb": 306, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 23.8, + "cpu_pct": 141.8, + "peak_memory_mb": 7988, + "disk_read_mb": 952, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 16.2, + "cpu_pct": 138.1, + "peak_memory_mb": 11572, + "disk_read_mb": 133, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30, + "cpu_pct": 175.3, + "peak_memory_mb": 6964, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30.5, + "cpu_pct": 66.1, + "peak_memory_mb": 7988, + "disk_read_mb": 93, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 12.2, + "cpu_pct": 205.6, + "peak_memory_mb": 9012, + "disk_read_mb": 82, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 22.3, + "cpu_pct": 101.6, + "peak_memory_mb": 7988, + "disk_read_mb": 757, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 15.9, + "cpu_pct": 269.8, + "peak_memory_mb": 5940, + "disk_read_mb": 610, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.4, + "cpu_pct": 182.2, + "peak_memory_mb": 7066, + "disk_read_mb": 202, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 20.6, + "cpu_pct": 200.3, + "peak_memory_mb": 4199, + "disk_read_mb": 1005, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.1, + "cpu_pct": 192.6, + "peak_memory_mb": 5940, + "disk_read_mb": 187, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 9.3, + "cpu_pct": 180.9, + "peak_memory_mb": 9319, + "disk_read_mb": 151, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 9.8, + "cpu_pct": 239.1, + "peak_memory_mb": 5018, + "disk_read_mb": 120, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.2, + "cpu_pct": 173.4, + "peak_memory_mb": 7373, + "disk_read_mb": 333, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 20.4, + "cpu_pct": 81.2, + "peak_memory_mb": 6452, + "disk_read_mb": 81, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.3, + "cpu_pct": 175.9, + "peak_memory_mb": 7066, + "disk_read_mb": 131, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 7.4, + "cpu_pct": 202.1, + "peak_memory_mb": 4506, + "disk_read_mb": 83, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 218.8, + "peak_memory_mb": 5018, + "disk_read_mb": 79, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.7, + "cpu_pct": 181.1, + "peak_memory_mb": 4199, + "disk_read_mb": 345, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.4, + "cpu_pct": 144.9, + "peak_memory_mb": 6656, + "disk_read_mb": 539, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 11.8, + "cpu_pct": 229.4, + "peak_memory_mb": 4711, + "disk_read_mb": 280, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 36.9, + "cpu_pct": 58, + "peak_memory_mb": 6452, + "disk_read_mb": 749, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 11.3, + "cpu_pct": 234.9, + "peak_memory_mb": 6042, + "disk_read_mb": 299, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.1, + "cpu_pct": 148.6, + "peak_memory_mb": 8500, + "disk_read_mb": 270, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 32.2, + "cpu_pct": 144.9, + "peak_memory_mb": 10752, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 32.4, + "cpu_pct": 121.8, + "peak_memory_mb": 9933, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 26.3, + "cpu_pct": 150.3, + "peak_memory_mb": 10752, + "disk_read_mb": 568, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 47.9, + "cpu_pct": 113.3, + "peak_memory_mb": 13415, + "disk_read_mb": 2253, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 30.2, + "cpu_pct": 136.3, + "peak_memory_mb": 12903, + "disk_read_mb": 564, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 21.4, + "cpu_pct": 89.1, + "peak_memory_mb": 11879, + "disk_read_mb": 490, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 14.6, + "cpu_pct": 77.1, + "peak_memory_mb": 5837, + "disk_read_mb": 93, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.5, + "cpu_pct": 263.8, + "peak_memory_mb": 6247, + "disk_read_mb": 117, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.8, + "cpu_pct": 187, + "peak_memory_mb": 6042, + "disk_read_mb": 66, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.2, + "cpu_pct": 180.6, + "peak_memory_mb": 6247, + "disk_read_mb": 162, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.9, + "cpu_pct": 239.8, + "peak_memory_mb": 6042, + "disk_read_mb": 64, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 5.4, + "cpu_pct": 246.8, + "peak_memory_mb": 6247, + "disk_read_mb": 60, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 13.5, + "cpu_pct": 174.8, + "peak_memory_mb": 4096, + "disk_read_mb": 273, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 14.4, + "cpu_pct": 187.2, + "peak_memory_mb": 3687, + "disk_read_mb": 475, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 18.8, + "cpu_pct": 105, + "peak_memory_mb": 6759, + "disk_read_mb": 132, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 75.5, + "peak_memory_mb": 6656, + "disk_read_mb": 680, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 10.9, + "cpu_pct": 194.3, + "peak_memory_mb": 8704, + "disk_read_mb": 110, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 9.6, + "cpu_pct": 286.3, + "peak_memory_mb": 5837, + "disk_read_mb": 94, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 40.7, + "cpu_pct": 157.5, + "peak_memory_mb": 11572, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 42.9, + "cpu_pct": 194.4, + "peak_memory_mb": 9831, + "disk_read_mb": 2151, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 48.1, + "cpu_pct": 125, + "peak_memory_mb": 18330, + "disk_read_mb": 377, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 53.7, + "cpu_pct": 223.4, + "peak_memory_mb": 15668, + "disk_read_mb": 2765, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 120.5, + "peak_memory_mb": 19456, + "disk_read_mb": 296, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 24.8, + "cpu_pct": 115.4, + "peak_memory_mb": 14848, + "disk_read_mb": 233, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 38.1, + "cpu_pct": 226.1, + "peak_memory_mb": 12288, + "disk_read_mb": 1229, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 29.9, + "cpu_pct": 103.8, + "peak_memory_mb": 10957, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 29.2, + "cpu_pct": 253.4, + "peak_memory_mb": 12186, + "disk_read_mb": 329, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 44.4, + "cpu_pct": 175.3, + "peak_memory_mb": 12288, + "disk_read_mb": 2663, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 20.4, + "cpu_pct": 139, + "peak_memory_mb": 12903, + "disk_read_mb": 258, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "mse", + "resources": { + "exit_code": 0, + "duration_sec": 16.1, + "cpu_pct": 138.3, + "peak_memory_mb": 15360, + "disk_read_mb": 204, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 22.9, + "cpu_pct": 213.3, + "peak_memory_mb": 12186, + "disk_read_mb": 850, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 29.2, + "cpu_pct": 90.4, + "peak_memory_mb": 14029, + "disk_read_mb": 973, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 16.9, + "cpu_pct": 159.1, + "peak_memory_mb": 14848, + "disk_read_mb": 217, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 28.8, + "cpu_pct": 103.5, + "peak_memory_mb": 14848, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 24.9, + "cpu_pct": 78.7, + "peak_memory_mb": 13517, + "disk_read_mb": 181, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 17.1, + "cpu_pct": 278.4, + "peak_memory_mb": 10548, + "disk_read_mb": 140, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 43.6, + "cpu_pct": 185.7, + "peak_memory_mb": 22836, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 40.7, + "cpu_pct": 150.3, + "peak_memory_mb": 20992, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 34, + "cpu_pct": 166.9, + "peak_memory_mb": 22836, + "disk_read_mb": 246, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 52, + "cpu_pct": 145.9, + "peak_memory_mb": 22836, + "disk_read_mb": 2868, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 25.6, + "cpu_pct": 214.5, + "peak_memory_mb": 19252, + "disk_read_mb": 143, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 29.9, + "cpu_pct": 110.4, + "peak_memory_mb": 21709, + "disk_read_mb": 110, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 35, + "cpu_pct": 136.6, + "peak_memory_mb": 18228, + "disk_read_mb": 1024, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 29.8, + "cpu_pct": 163.3, + "peak_memory_mb": 16896, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 25.2, + "cpu_pct": 124.1, + "peak_memory_mb": 20890, + "disk_read_mb": 298, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 42.9, + "cpu_pct": 127, + "peak_memory_mb": 18228, + "disk_read_mb": 2356, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.1, + "cpu_pct": 183.7, + "peak_memory_mb": 15872, + "disk_read_mb": 242, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 30.3, + "cpu_pct": 141.4, + "peak_memory_mb": 18228, + "disk_read_mb": 188, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 15.4, + "cpu_pct": 134.8, + "peak_memory_mb": 6349, + "disk_read_mb": 216, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 10.1, + "cpu_pct": 197.7, + "peak_memory_mb": 6349, + "disk_read_mb": 409, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 32.1, + "cpu_pct": 52.8, + "peak_memory_mb": 6349, + "disk_read_mb": 97, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 22.4, + "cpu_pct": 78.2, + "peak_memory_mb": 6349, + "disk_read_mb": 564, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 16.4, + "cpu_pct": 108.5, + "peak_memory_mb": 8807, + "disk_read_mb": 78, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8.8, + "cpu_pct": 219.4, + "peak_memory_mb": 6042, + "disk_read_mb": 66, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 36.1, + "cpu_pct": 254.4, + "peak_memory_mb": 19968, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 34.9, + "cpu_pct": 147.7, + "peak_memory_mb": 18432, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.1, + "cpu_pct": 153.1, + "peak_memory_mb": 22631, + "disk_read_mb": 291, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 46.4, + "cpu_pct": 131.7, + "peak_memory_mb": 19968, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 34.5, + "cpu_pct": 85.3, + "peak_memory_mb": 19866, + "disk_read_mb": 219, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 28.3, + "cpu_pct": 114.6, + "peak_memory_mb": 19559, + "disk_read_mb": 170, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 41.2, + "cpu_pct": 129.5, + "peak_memory_mb": 19968, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 38.1, + "cpu_pct": 140.5, + "peak_memory_mb": 18535, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 30.7, + "cpu_pct": 229.9, + "peak_memory_mb": 19968, + "disk_read_mb": 417, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 38.2, + "cpu_pct": 126.3, + "peak_memory_mb": 22631, + "disk_read_mb": 2458, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 31.5, + "cpu_pct": 107.2, + "peak_memory_mb": 20276, + "disk_read_mb": 346, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 29.9, + "cpu_pct": 98.6, + "peak_memory_mb": 19866, + "disk_read_mb": 266, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 53.7, + "cpu_pct": 191.8, + "peak_memory_mb": 28877, + "disk_read_mb": 1434, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 47.2, + "cpu_pct": 120.8, + "peak_memory_mb": 26727, + "disk_read_mb": 2663, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 46.7, + "cpu_pct": 192.9, + "peak_memory_mb": 28877, + "disk_read_mb": 437, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 61, + "cpu_pct": 150.2, + "peak_memory_mb": 28980, + "disk_read_mb": 3482, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 36.5, + "cpu_pct": 110.4, + "peak_memory_mb": 27444, + "disk_read_mb": 368, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 32.2, + "cpu_pct": 112.3, + "peak_memory_mb": 27034, + "disk_read_mb": 285, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 45.1, + "cpu_pct": 202.8, + "peak_memory_mb": 22938, + "disk_read_mb": 2560, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 45, + "cpu_pct": 189.7, + "peak_memory_mb": 22016, + "disk_read_mb": 3277, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 39, + "cpu_pct": 100.3, + "peak_memory_mb": 25703, + "disk_read_mb": 1741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 50.9, + "cpu_pct": 162.3, + "peak_memory_mb": 22938, + "disk_read_mb": 4301, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 45.1, + "cpu_pct": 92.9, + "peak_memory_mb": 24679, + "disk_read_mb": 1946, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 40.6, + "cpu_pct": 108.8, + "peak_memory_mb": 24474, + "disk_read_mb": 1844, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 20, + "cpu_pct": 277.5, + "peak_memory_mb": 12493, + "disk_read_mb": 289, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 21.7, + "cpu_pct": 158, + "peak_memory_mb": 11469, + "disk_read_mb": 935, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 16, + "cpu_pct": 150, + "peak_memory_mb": 15156, + "disk_read_mb": 117, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 28.7, + "cpu_pct": 125.7, + "peak_memory_mb": 12493, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 12.3, + "cpu_pct": 144, + "peak_memory_mb": 13312, + "disk_read_mb": 77, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 12.3, + "cpu_pct": 193.2, + "peak_memory_mb": 13312, + "disk_read_mb": 65, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 20.1, + "cpu_pct": 94.7, + "peak_memory_mb": 7680, + "disk_read_mb": 741, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 14.1, + "cpu_pct": 224.1, + "peak_memory_mb": 6656, + "disk_read_mb": 593, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 14.3, + "cpu_pct": 179.4, + "peak_memory_mb": 9728, + "disk_read_mb": 186, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 18.4, + "cpu_pct": 147.7, + "peak_memory_mb": 7988, + "disk_read_mb": 989, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 12.5, + "cpu_pct": 286, + "peak_memory_mb": 7476, + "disk_read_mb": 171, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9.1, + "cpu_pct": 224.6, + "peak_memory_mb": 9933, + "disk_read_mb": 135, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.9, + "cpu_pct": 296.1, + "peak_memory_mb": 5837, + "disk_read_mb": 103, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 8.5, + "cpu_pct": 274.9, + "peak_memory_mb": 5632, + "disk_read_mb": 317, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 23.8, + "cpu_pct": 72.6, + "peak_memory_mb": 8602, + "disk_read_mb": 64, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.7, + "cpu_pct": 237.9, + "peak_memory_mb": 8602, + "disk_read_mb": 115, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 6.9, + "cpu_pct": 289.1, + "peak_memory_mb": 5325, + "disk_read_mb": 66, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.2, + "cpu_pct": 200.4, + "peak_memory_mb": 5325, + "disk_read_mb": 62, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9.5, + "cpu_pct": 207.1, + "peak_memory_mb": 6247, + "disk_read_mb": 328, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 10.8, + "cpu_pct": 301.5, + "peak_memory_mb": 6144, + "disk_read_mb": 522, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9.3, + "cpu_pct": 200.5, + "peak_memory_mb": 6247, + "disk_read_mb": 264, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 10.6, + "cpu_pct": 189.4, + "peak_memory_mb": 8909, + "disk_read_mb": 733, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 15.3, + "cpu_pct": 125.3, + "peak_memory_mb": 6042, + "disk_read_mb": 282, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 12.3, + "cpu_pct": 185.5, + "peak_memory_mb": 8704, + "disk_read_mb": 254, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 199.2, + "peak_memory_mb": 14951, + "disk_read_mb": 1127, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 29.1, + "cpu_pct": 144.7, + "peak_memory_mb": 14132, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 24.7, + "cpu_pct": 210.7, + "peak_memory_mb": 14951, + "disk_read_mb": 552, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 30.1, + "cpu_pct": 109.1, + "peak_memory_mb": 17613, + "disk_read_mb": 2151, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 24.6, + "cpu_pct": 93.8, + "peak_memory_mb": 13722, + "disk_read_mb": 548, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 18.5, + "cpu_pct": 133.8, + "peak_memory_mb": 16077, + "disk_read_mb": 474, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 9, + "cpu_pct": 175.5, + "peak_memory_mb": 6042, + "disk_read_mb": 76, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 3.9, + "cpu_pct": 297.5, + "peak_memory_mb": 5735, + "disk_read_mb": 101, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.7, + "cpu_pct": 136.2, + "peak_memory_mb": 6247, + "disk_read_mb": 49, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 4.5, + "cpu_pct": 199.4, + "peak_memory_mb": 6247, + "disk_read_mb": 146, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 4.7, + "cpu_pct": 237.5, + "peak_memory_mb": 3482, + "disk_read_mb": 47, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 3.6, + "cpu_pct": 387.9, + "peak_memory_mb": 6144, + "disk_read_mb": 43, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 11.8, + "cpu_pct": 297.6, + "peak_memory_mb": 7066, + "disk_read_mb": 257, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 11, + "cpu_pct": 189.1, + "peak_memory_mb": 6759, + "disk_read_mb": 459, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 14, + "cpu_pct": 126.1, + "peak_memory_mb": 6452, + "disk_read_mb": 115, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 21.6, + "cpu_pct": 103.3, + "peak_memory_mb": 6452, + "disk_read_mb": 663, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 138.8, + "peak_memory_mb": 9114, + "disk_read_mb": 93, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 241.4, + "peak_memory_mb": 9114, + "disk_read_mb": 77, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 41, + "cpu_pct": 205.9, + "peak_memory_mb": 23552, + "disk_read_mb": 1332, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 42.4, + "cpu_pct": 135.7, + "peak_memory_mb": 21709, + "disk_read_mb": 2048, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 31.8, + "cpu_pct": 118.2, + "peak_memory_mb": 26215, + "disk_read_mb": 361, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 49.3, + "cpu_pct": 201.6, + "peak_memory_mb": 23552, + "disk_read_mb": 2765, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 27.4, + "cpu_pct": 122.8, + "peak_memory_mb": 22836, + "disk_read_mb": 279, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 32.1, + "cpu_pct": 108.5, + "peak_memory_mb": 22528, + "disk_read_mb": 217, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "alra", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 32.4, + "cpu_pct": 211.6, + "peak_memory_mb": 17920, + "disk_read_mb": 1229, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "dca", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 33.1, + "cpu_pct": 191.1, + "peak_memory_mb": 16589, + "disk_read_mb": 1536, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "knn_smoothing", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 26.2, + "cpu_pct": 232, + "peak_memory_mb": 17818, + "disk_read_mb": 313, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "magic", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 43.9, + "cpu_pct": 220.9, + "peak_memory_mb": 17920, + "disk_read_mb": 2663, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "no_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 22.8, + "cpu_pct": 137, + "peak_memory_mb": 18228, + "disk_read_mb": 241, + "disk_write_mb": 1 + } + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "normalization_id": null, + "method_id": "perfect_denoising", + "metric_id": "poisson", + "resources": { + "exit_code": 0, + "duration_sec": 35.6, + "cpu_pct": 94.9, + "peak_memory_mb": 17920, + "disk_read_mb": 188, + "disk_write_mb": 1 + } + } +] diff --git a/results/task_denoising/data/metric_info.json b/results/task_denoising/data/metric_info.json new file mode 100644 index 00000000..c1430898 --- /dev/null +++ b/results/task_denoising/data/metric_info.json @@ -0,0 +1,30 @@ +[ + { + "task_id": "metrics", + "metric_id": "mse", + "metric_name": "Mean-squared error", + "metric_summary": "The mean squared error between the denoised counts and the true counts.", + "metric_description": "The mean squared error between the denoised counts of the training dataset and the true counts of the test dataset after reweighing by the train/test ratio", + "paper_reference": { + "doi": "10.1101/786269" + }, + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/metrics/mse/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76", + "maximize": false + }, + { + "task_id": "metrics", + "metric_id": "poisson", + "metric_name": "Poisson Loss", + "metric_summary": "The Poisson log likelihood of the true counts observed in the distribution of denoised counts", + "metric_description": "The Poisson log likelihood of observing the true counts of the test dataset given the distribution given in the denoised dataset.", + "paper_reference": { + "doi": "10.1101/786269" + }, + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/metrics/poisson/config.vsh.yaml", + "code_version": null, + "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76", + "maximize": false + } +] diff --git a/results/denoising/data/quality_control.json b/results/task_denoising/data/quality_control.json similarity index 62% rename from results/denoising/data/quality_control.json rename to results/task_denoising/data/quality_control.json index 2a494a4e..1779d0fa 100644 --- a/results/denoising/data/quality_control.json +++ b/results/task_denoising/data/quality_control.json @@ -1,742 +1,742 @@ [ { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Task info", "name": "Pct 'task_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing([task_info], field)", - "message": "Task metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" + "message": "Task metadata field 'task_id' should be defined\n Task id: task_denoising\n Field: task_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Task info", "name": "Pct 'task_name' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing([task_info], field)", - "message": "Task metadata field 'task_name' should be defined\n Task id: denoising\n Field: task_name\n" + "message": "Task metadata field 'task_name' should be defined\n Task id: task_denoising\n Field: task_name\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Task info", "name": "Pct 'task_summary' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing([task_info], field)", - "message": "Task metadata field 'task_summary' should be defined\n Task id: denoising\n Field: task_summary\n" + "message": "Task metadata field 'task_summary' should be defined\n Task id: task_denoising\n Field: task_summary\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Task info", "name": "Pct 'task_description' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing([task_info], field)", - "message": "Task metadata field 'task_description' should be defined\n Task id: denoising\n Field: task_description\n" + "message": "Task metadata field 'task_description' should be defined\n Task id: task_denoising\n Field: task_description\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'task_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" + "message": "Method metadata field 'task_id' should be defined\n Task id: task_denoising\n Field: task_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'commit_sha' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'commit_sha' should be defined\n Task id: denoising\n Field: commit_sha\n" + "message": "Method metadata field 'commit_sha' should be defined\n Task id: task_denoising\n Field: commit_sha\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'method_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'method_id' should be defined\n Task id: denoising\n Field: method_id\n" + "message": "Method metadata field 'method_id' should be defined\n Task id: task_denoising\n Field: method_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'method_name' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'method_name' should be defined\n Task id: denoising\n Field: method_name\n" + "message": "Method metadata field 'method_name' should be defined\n Task id: task_denoising\n Field: method_name\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'method_summary' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'method_summary' should be defined\n Task id: denoising\n Field: method_summary\n" + "message": "Method metadata field 'method_summary' should be defined\n Task id: task_denoising\n Field: method_summary\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'paper_reference' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'paper_reference' should be defined\n Task id: denoising\n Field: paper_reference\n" + "message": "Method metadata field 'paper_reference' should be defined\n Task id: task_denoising\n Field: paper_reference\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Method info", "name": "Pct 'is_baseline' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(method_info, field)", - "message": "Method metadata field 'is_baseline' should be defined\n Task id: denoising\n Field: is_baseline\n" + "message": "Method metadata field 'is_baseline' should be defined\n Task id: task_denoising\n Field: is_baseline\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'task_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" + "message": "Metric metadata field 'task_id' should be defined\n Task id: task_denoising\n Field: task_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'commit_sha' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'commit_sha' should be defined\n Task id: denoising\n Field: commit_sha\n" + "message": "Metric metadata field 'commit_sha' should be defined\n Task id: task_denoising\n Field: commit_sha\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'metric_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'metric_id' should be defined\n Task id: denoising\n Field: metric_id\n" + "message": "Metric metadata field 'metric_id' should be defined\n Task id: task_denoising\n Field: metric_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'metric_name' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'metric_name' should be defined\n Task id: denoising\n Field: metric_name\n" + "message": "Metric metadata field 'metric_name' should be defined\n Task id: task_denoising\n Field: metric_name\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'metric_summary' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'metric_summary' should be defined\n Task id: denoising\n Field: metric_summary\n" + "message": "Metric metadata field 'metric_summary' should be defined\n Task id: task_denoising\n Field: metric_summary\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'paper_reference' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'paper_reference' should be defined\n Task id: denoising\n Field: paper_reference\n" + "message": "Metric metadata field 'paper_reference' should be defined\n Task id: task_denoising\n Field: paper_reference\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Metric info", "name": "Pct 'maximize' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(metric_info, field)", - "message": "Metric metadata field 'maximize' should be defined\n Task id: denoising\n Field: maximize\n" + "message": "Metric metadata field 'maximize' should be defined\n Task id: task_denoising\n Field: maximize\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'task_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'task_id' should be defined\n Task id: denoising\n Field: task_id\n" + "message": "Dataset metadata field 'task_id' should be defined\n Task id: task_denoising\n Field: task_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'dataset_id' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'dataset_id' should be defined\n Task id: denoising\n Field: dataset_id\n" + "message": "Dataset metadata field 'dataset_id' should be defined\n Task id: task_denoising\n Field: dataset_id\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'dataset_name' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'dataset_name' should be defined\n Task id: denoising\n Field: dataset_name\n" + "message": "Dataset metadata field 'dataset_name' should be defined\n Task id: task_denoising\n Field: dataset_name\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'dataset_summary' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'dataset_summary' should be defined\n Task id: denoising\n Field: dataset_summary\n" + "message": "Dataset metadata field 'dataset_summary' should be defined\n Task id: task_denoising\n Field: dataset_summary\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'data_reference' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'data_reference' should be defined\n Task id: denoising\n Field: data_reference\n" + "message": "Dataset metadata field 'data_reference' should be defined\n Task id: task_denoising\n Field: data_reference\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Dataset info", "name": "Pct 'data_url' missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "percent_missing(dataset_info, field)", - "message": "Dataset metadata field 'data_url' should be defined\n Task id: denoising\n Field: data_url\n" + "message": "Dataset metadata field 'data_url' should be defined\n Task id: task_denoising\n Field: data_url\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw data", "name": "Number of results", - "value": 102, + "value": 204, "severity": 0, - "severity_value": 0.0, + "severity_value": -10.0, "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", - "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: denoising\n Number of results: 102\n Number of methods: 6\n Number of metrics: 2\n Number of datasets: 17\n" + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_denoising\n Number of results: 204\n Number of methods: 6\n Number of metrics: 2\n Number of datasets: 17\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Metric 'mse' %missing", - "value": 0.28431372549019607, - "severity": 2, - "severity_value": 2.8431372549019605, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: mse\n Percentage missing: 28%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n Metric id: mse\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Metric 'poisson' %missing", - "value": 0.28431372549019607, - "severity": 2, - "severity_value": 2.8431372549019605, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n Metric id: poisson\n Percentage missing: 28%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n Metric id: poisson\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'no_denoising' %missing", - "value": 0.17647058823529416, - "severity": 1, - "severity_value": 1.7647058823529416, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: no_denoising\n Percentage missing: 18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: no_denoising\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'perfect_denoising' %missing", - "value": 0.17647058823529416, - "severity": 1, - "severity_value": 1.7647058823529416, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: perfect_denoising\n Percentage missing: 18%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: perfect_denoising\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'alra' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: alra\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: alra\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'dca' %missing", - "value": 0.2941176470588235, - "severity": 2, - "severity_value": 2.9411764705882346, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: dca\n Percentage missing: 29%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: dca\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'knn_smoothing' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: knn_smoothing\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: knn_smoothing\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", "name": "Method 'magic' %missing", - "value": 0.3529411764705882, - "severity": 3, - "severity_value": 3.529411764705882, + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n method id: magic\n Percentage missing: 35%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n method id: magic\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hcla' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "name": "Dataset 'cellxgene_census/dkd' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", + "name": "Dataset 'cellxgene_census/hypomap' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", - "value": 0.6666666666666667, - "severity": 3, - "severity_value": 6.666666666666667, + "name": "Dataset 'openproblems_v1/immune_cells' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 67%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/cengen' %missing", + "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", + "name": "Dataset 'openproblems_v1/zebrafish' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/immune_cells' %missing", + "name": "Dataset 'openproblems_v1/pancreas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/gtex_v9' %missing", - "value": 0.5, - "severity": 3, - "severity_value": 5.0, + "name": "Dataset 'openproblems_v1/tenx_5k_pbmc' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tenx_5k_pbmc\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/dkd' %missing", + "name": "Dataset 'openproblems_v1/mouse_hspc_nestorowa2016' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/mouse_hspc_nestorowa2016\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", - "value": 0.6666666666666667, - "severity": 3, - "severity_value": 6.666666666666667, + "name": "Dataset 'openproblems_v1/cengen' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 67%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/zebrafish' %missing", + "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tenx_5k_pbmc' %missing", + "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_5k_pbmc\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/mouse_hspc_nestorowa2016' %missing", + "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_hspc_nestorowa2016\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hypomap' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", + "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", + "name": "Dataset 'cellxgene_census/hcla' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/pancreas' %missing", + "name": "Dataset 'cellxgene_census/gtex_v9' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score no_denoising mse", "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Worst score: 0%\n" + "message": "Method no_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: no_denoising\n Metric id: mse\n Worst score: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score no_denoising mse", "value": 0, "severity": 0, "severity_value": 0.0, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: task_denoising\n Method id: no_denoising\n Metric id: mse\n Best score: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score perfect_denoising mse", "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 0%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score perfect_denoising mse", "value": 1, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 1%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: mse\n Best score: 1%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score alra mse", - "value": -9.9708, + "value": -9.969, "severity": 3, - "severity_value": 9.9708, + "severity_value": 9.969, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Worst score: -9.9708%\n" + "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Worst score: -9.969%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score alra mse", - "value": 0.0, + "value": 0.0165, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.00825, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: mse\n Best score: 0.0%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Best score: 0.0165%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score dca mse", - "value": -8.5238, + "value": -8.5615, "severity": 3, - "severity_value": 8.5238, + "severity_value": 8.5615, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Worst score: -8.5238%\n" + "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Worst score: -8.5615%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score dca mse", - "value": 0.2033, + "value": 0.2022, "severity": 0, - "severity_value": 0.10165, + "severity_value": 0.1011, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: mse\n Best score: 0.2033%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Best score: 0.2022%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score knn_smoothing mse", - "value": -7.5261, + "value": -7.5287, "severity": 3, - "severity_value": 7.5261, + "severity_value": 7.5287, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: -7.5261%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: -7.5287%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score knn_smoothing mse", - "value": 0.1747, + "value": 0.1754, "severity": 0, - "severity_value": 0.08735, + "severity_value": 0.0877, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.1747%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.1754%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score magic mse", - "value": -7.6749, + "value": -7.6733, "severity": 3, - "severity_value": 7.6749, + "severity_value": 7.6733, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Worst score: -7.6749%\n" + "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Worst score: -7.6733%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score magic mse", "value": 0.2036, "severity": 0, "severity_value": 0.1018, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: mse\n Best score: 0.2036%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Best score: 0.2036%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score no_denoising poisson", "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method no_denoising performs much worse than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0%\n" + "message": "Method no_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: no_denoising\n Metric id: poisson\n Worst score: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score no_denoising poisson", "value": 1, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method no_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 1%\n" + "message": "Method no_denoising performs a lot better than baselines.\n Task id: task_denoising\n Method id: no_denoising\n Metric id: poisson\n Best score: 1%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score perfect_denoising poisson", "value": 0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 0%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: poisson\n Worst score: 0%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score perfect_denoising poisson", "value": 1, "severity": 0, "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1%\n" + "message": "Method perfect_denoising performs a lot better than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: poisson\n Best score: 1%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score alra poisson", - "value": -17.3505, + "value": -8.3054, "severity": 3, - "severity_value": 17.3505, + "severity_value": 8.3054, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Worst score: -17.3505%\n" + "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Worst score: -8.3054%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score alra poisson", - "value": 0.4403, + "value": 0.4408, "severity": 0, - "severity_value": 0.22015, + "severity_value": 0.2204, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.4403%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.4408%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score dca poisson", - "value": -0.3965, - "severity": 0, - "severity_value": 0.3965, + "value": -179.6428, + "severity": 3, + "severity_value": 179.6428, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Worst score: -0.3965%\n" + "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Worst score: -179.6428%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score dca poisson", - "value": 0.4399, + "value": 0.4328, "severity": 0, - "severity_value": 0.21995, + "severity_value": 0.2164, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: denoising\n Method id: dca\n Metric id: poisson\n Best score: 0.4399%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Best score: 0.4328%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score knn_smoothing poisson", - "value": -13.442, + "value": -13.4067, "severity": 3, - "severity_value": 13.442, + "severity_value": 13.4067, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -13.442%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -13.4067%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score knn_smoothing poisson", - "value": 6.285, + "value": 11.5947, "severity": 3, - "severity_value": 3.1425, + "severity_value": 5.79735, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 6.285%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 11.5947%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Worst score magic poisson", - "value": -0.762, + "value": -0.7606, "severity": 0, - "severity_value": 0.762, + "severity_value": 0.7606, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Worst score: -0.762%\n" + "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Worst score: -0.7606%\n" }, { - "task_id": "denoising", + "task_id": "task_denoising", "category": "Scaling", "name": "Best score magic poisson", - "value": 0.5015, + "value": 0.5873, "severity": 0, - "severity_value": 0.25075, + "severity_value": 0.29365, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5015%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5873%\n" } ] \ No newline at end of file diff --git a/results/task_denoising/data/results.json b/results/task_denoising/data/results.json new file mode 100644 index 00000000..094ce391 --- /dev/null +++ b/results/task_denoising/data/results.json @@ -0,0 +1,3980 @@ +[ + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "alra", + "metric_values": { + "mse": 0.2283, + "poisson": 0.8195 + }, + "scaled_scores": { + "mse": 0.0165, + "poisson": -3.0453 + }, + "mean_score": 0.0082, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "dca", + "metric_values": { + "mse": 0.1934, + "poisson": 0.2291 + }, + "scaled_scores": { + "mse": 0.1667, + "poisson": -0.0553 + }, + "mean_score": 0.0834, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2014, + "poisson": 2.0693 + }, + "scaled_scores": { + "mse": 0.1323, + "poisson": -9.375 + }, + "mean_score": 0.0661, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "magic", + "metric_values": { + "mse": 0.1933, + "poisson": 0.2307 + }, + "scaled_scores": { + "mse": 0.1671, + "poisson": -0.0635 + }, + "mean_score": 0.0835, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.2321, + "poisson": 0.2182 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0208 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "alra", + "metric_values": { + "mse": 0.2399, + "poisson": 0.4625 + }, + "scaled_scores": { + "mse": -0.1875, + "poisson": -6.6007 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "dca", + "metric_values": { + "mse": 0.1792, + "poisson": 0.0709 + }, + "scaled_scores": { + "mse": 0.1128, + "poisson": -0.0775 + }, + "mean_score": 0.0564, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2031, + "poisson": 0.6407 + }, + "scaled_scores": { + "mse": -0.0052, + "poisson": -9.568 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "magic", + "metric_values": { + "mse": 0.1816, + "poisson": 0.0688 + }, + "scaled_scores": { + "mse": 0.101, + "poisson": -0.0422 + }, + "mean_score": 0.0505, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.202, + "poisson": 0.0663 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0062 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "alra", + "metric_values": { + "mse": 0.2233, + "poisson": 0.7062 + }, + "scaled_scores": { + "mse": -0.2783, + "poisson": -3.5821 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "dca", + "metric_values": { + "mse": 0.1462, + "poisson": 0.1832 + }, + "scaled_scores": { + "mse": 0.1635, + "poisson": -0.0661 + }, + "mean_score": 0.0817, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1566, + "poisson": 1.6794 + }, + "scaled_scores": { + "mse": 0.1039, + "poisson": -10.1241 + }, + "mean_score": 0.052, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "magic", + "metric_values": { + "mse": 0.1468, + "poisson": 0.1844 + }, + "scaled_scores": { + "mse": 0.16, + "poisson": -0.0746 + }, + "mean_score": 0.08, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1747, + "poisson": 0.1733 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0246 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "alra", + "metric_values": { + "mse": 0.2679, + "poisson": 0.4097 + }, + "scaled_scores": { + "mse": -0.0808, + "poisson": -1.7334 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "dca", + "metric_values": { + "mse": 0.2054, + "poisson": 0.1641 + }, + "scaled_scores": { + "mse": 0.1713, + "poisson": -0.0333 + }, + "mean_score": 0.0857, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2187, + "poisson": 1.4981 + }, + "scaled_scores": { + "mse": 0.1176, + "poisson": -9.2664 + }, + "mean_score": 0.0588, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "magic", + "metric_values": { + "mse": 0.2066, + "poisson": 0.1637 + }, + "scaled_scores": { + "mse": 0.1664, + "poisson": -0.031 + }, + "mean_score": 0.0832, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.2479, + "poisson": 0.1593 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0148 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "alra", + "metric_values": { + "mse": 0.2004, + "poisson": 0.6209 + }, + "scaled_scores": { + "mse": -0.2612, + "poisson": -4.3737 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "dca", + "metric_values": { + "mse": 0.1282, + "poisson": 0.1457 + }, + "scaled_scores": { + "mse": 0.1933, + "poisson": -0.126 + }, + "mean_score": 0.0966, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1353, + "poisson": 1.3915 + }, + "scaled_scores": { + "mse": 0.1483, + "poisson": -11.2598 + }, + "mean_score": 0.0742, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "magic", + "metric_values": { + "mse": 0.1292, + "poisson": 0.1487 + }, + "scaled_scores": { + "mse": 0.1873, + "poisson": -0.1528 + }, + "mean_score": 0.0937, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1589, + "poisson": 0.1316 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0197 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "alra", + "metric_values": { + "mse": 0.1639, + "poisson": 0.2911 + }, + "scaled_scores": { + "mse": -0.1997, + "poisson": -8.3054 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "dca", + "metric_values": { + "mse": 0.1136, + "poisson": 0.0685 + }, + "scaled_scores": { + "mse": 0.1688, + "poisson": -0.9206 + }, + "mean_score": 0.0844, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1187, + "poisson": -0.3087 + }, + "scaled_scores": { + "mse": 0.1309, + "poisson": 11.5947 + }, + "mean_score": 0.5655, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "magic", + "metric_values": { + "mse": 0.1132, + "poisson": 0.023 + }, + "scaled_scores": { + "mse": 0.1712, + "poisson": 0.5873 + }, + "mean_score": 0.3792, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1366, + "poisson": 0.0106 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0407 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "alra", + "metric_values": { + "mse": 0.1158, + "poisson": 0.4732 + }, + "scaled_scores": { + "mse": -0.197, + "poisson": -2.6531 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "dca", + "metric_values": { + "mse": 0.0819, + "poisson": 0.1669 + }, + "scaled_scores": { + "mse": 0.1531, + "poisson": -0.143 + }, + "mean_score": 0.0766, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0847, + "poisson": 1.5087 + }, + "scaled_scores": { + "mse": 0.124, + "poisson": -11.1368 + }, + "mean_score": 0.062, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "magic", + "metric_values": { + "mse": 0.0829, + "poisson": 0.1717 + }, + "scaled_scores": { + "mse": 0.1424, + "poisson": -0.1828 + }, + "mean_score": 0.0712, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.0967, + "poisson": 0.1494 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0274 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "alra", + "metric_values": { + "mse": 0.0333, + "poisson": -4.5411 + }, + "scaled_scores": { + "mse": -9.969, + "poisson": 0.4285 + }, + "mean_score": 0.2143, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "dca", + "metric_values": { + "mse": 0.029, + "poisson": -4.6108 + }, + "scaled_scores": { + "mse": -8.5615, + "poisson": 0.4328 + }, + "mean_score": 0.2164, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0259, + "poisson": -100.6294 + }, + "scaled_scores": { + "mse": -7.5287, + "poisson": 6.2847 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "magic", + "metric_values": { + "mse": 0.0263, + "poisson": -5.739 + }, + "scaled_scores": { + "mse": -7.6733, + "poisson": 0.5015 + }, + "mean_score": 0.2508, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.003, + "poisson": -13.9177 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 2.4902 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "alra", + "metric_values": { + "mse": 0.2711, + "poisson": 0.2414 + }, + "scaled_scores": { + "mse": -0.7447, + "poisson": -4.2131 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "dca", + "metric_values": { + "mse": 0.1596, + "poisson": 8.1016 + }, + "scaled_scores": { + "mse": -0.0274, + "poisson": -179.6428 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1747, + "poisson": 0.5477 + }, + "scaled_scores": { + "mse": -0.1243, + "poisson": -11.0499 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "magic", + "metric_values": { + "mse": 0.1626, + "poisson": 0.0586 + }, + "scaled_scores": { + "mse": -0.0463, + "poisson": -0.132 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1554, + "poisson": 0.0526 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0078 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "alra", + "metric_values": { + "mse": 0.382, + "poisson": 1.2291 + }, + "scaled_scores": { + "mse": -0.215, + "poisson": -3.146 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "dca", + "metric_values": { + "mse": 0.2528, + "poisson": 0.343 + }, + "scaled_scores": { + "mse": 0.196, + "poisson": -0.0298 + }, + "mean_score": 0.098, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2613, + "poisson": 2.9776 + }, + "scaled_scores": { + "mse": 0.1688, + "poisson": -9.2953 + }, + "mean_score": 0.0844, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "magic", + "metric_values": { + "mse": 0.2509, + "poisson": 0.3442 + }, + "scaled_scores": { + "mse": 0.2019, + "poisson": -0.0339 + }, + "mean_score": 0.1009, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.3144, + "poisson": 0.3345 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0502 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "alra", + "metric_values": { + "mse": 0.0497, + "poisson": 0.4089 + }, + "scaled_scores": { + "mse": -0.2376, + "poisson": -1.8314 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "dca", + "metric_values": { + "mse": 0.0448, + "poisson": 0.2157 + }, + "scaled_scores": { + "mse": -0.1153, + "poisson": -0.417 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0452, + "poisson": 1.9903 + }, + "scaled_scores": { + "mse": -0.125, + "poisson": -13.4067 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "magic", + "metric_values": { + "mse": 0.0448, + "poisson": 0.2626 + }, + "scaled_scores": { + "mse": -0.1147, + "poisson": -0.7606 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.0402, + "poisson": 0.1587 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0221 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "alra", + "metric_values": { + "mse": 0.0487, + "poisson": -5.0847 + }, + "scaled_scores": { + "mse": -3.3577, + "poisson": 0.4408 + }, + "mean_score": 0.2204, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "dca", + "metric_values": { + "mse": 0.0476, + "poisson": -2.6147 + }, + "scaled_scores": { + "mse": -3.2592, + "poisson": 0.2796 + }, + "mean_score": 0.1398, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.0451, + "poisson": -54.8468 + }, + "scaled_scores": { + "mse": -3.0342, + "poisson": 3.6883 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "magic", + "metric_values": { + "mse": 0.046, + "poisson": -2.5968 + }, + "scaled_scores": { + "mse": -3.1183, + "poisson": 0.2785 + }, + "mean_score": 0.1392, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.0112, + "poisson": -13.653 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 1.6704 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "alra", + "metric_values": { + "mse": 0.2348, + "poisson": 2.6636 + }, + "scaled_scores": { + "mse": -0.2628, + "poisson": -0.6607 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "dca", + "metric_values": { + "mse": 0.1842, + "poisson": 0.7471 + }, + "scaled_scores": { + "mse": 0.0094, + "poisson": -0.1066 + }, + "mean_score": 0.0047, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1849, + "poisson": -11.6639 + }, + "scaled_scores": { + "mse": 0.0055, + "poisson": 3.4819 + }, + "mean_score": 0.5027, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "magic", + "metric_values": { + "mse": 0.1828, + "poisson": -0.2842 + }, + "scaled_scores": { + "mse": 0.0167, + "poisson": 0.1916 + }, + "mean_score": 0.1042, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1859, + "poisson": -3.08 + }, + "scaled_scores": { + "mse": 0, + "poisson": 1 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.3786 + }, + "scaled_scores": { + "mse": 1, + "poisson": 0 + }, + "mean_score": 0.5, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "alra", + "metric_values": { + "mse": 0.3031, + "poisson": 0.6013 + }, + "scaled_scores": { + "mse": -0.1186, + "poisson": -1.1677 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "dca", + "metric_values": { + "mse": 0.2174, + "poisson": 0.3101 + }, + "scaled_scores": { + "mse": 0.1978, + "poisson": -0.0358 + }, + "mean_score": 0.0989, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.2234, + "poisson": 2.7261 + }, + "scaled_scores": { + "mse": 0.1754, + "poisson": -9.4262 + }, + "mean_score": 0.0877, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "magic", + "metric_values": { + "mse": 0.2158, + "poisson": 0.3145 + }, + "scaled_scores": { + "mse": 0.2036, + "poisson": -0.0528 + }, + "mean_score": 0.1018, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.2709, + "poisson": 0.3009 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0436 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "alra", + "metric_values": { + "mse": 0.2245, + "poisson": 0.457 + }, + "scaled_scores": { + "mse": -0.2429, + "poisson": -1.9135 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "dca", + "metric_values": { + "mse": 0.1441, + "poisson": 0.178 + }, + "scaled_scores": { + "mse": 0.2022, + "poisson": -0.0263 + }, + "mean_score": 0.1011, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1532, + "poisson": 1.576 + }, + "scaled_scores": { + "mse": 0.1521, + "poisson": -9.4828 + }, + "mean_score": 0.0761, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "magic", + "metric_values": { + "mse": 0.1443, + "poisson": 0.1808 + }, + "scaled_scores": { + "mse": 0.2013, + "poisson": -0.0452 + }, + "mean_score": 0.1006, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1806, + "poisson": 0.1742 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0263 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "alra", + "metric_values": { + "mse": 0.2029, + "poisson": 0.7032 + }, + "scaled_scores": { + "mse": -0.3249, + "poisson": -4.9864 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "dca", + "metric_values": { + "mse": 0.1331, + "poisson": 0.162 + }, + "scaled_scores": { + "mse": 0.1308, + "poisson": -0.2236 + }, + "mean_score": 0.0654, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1398, + "poisson": 1.4912 + }, + "scaled_scores": { + "mse": 0.0874, + "poisson": -11.9217 + }, + "mean_score": 0.0437, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "magic", + "metric_values": { + "mse": 0.1335, + "poisson": 0.1576 + }, + "scaled_scores": { + "mse": 0.1284, + "poisson": -0.1843 + }, + "mean_score": 0.0642, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1531, + "poisson": 0.1366 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.023 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "alra", + "metric_values": { + "mse": 0.2168, + "poisson": 0.6528 + }, + "scaled_scores": { + "mse": -0.1332, + "poisson": -2.7236 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "dca", + "metric_values": { + "mse": 0.1599, + "poisson": 0.1956 + }, + "scaled_scores": { + "mse": 0.1641, + "poisson": -0.0262 + }, + "mean_score": 0.082, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "knn_smoothing", + "metric_values": { + "mse": 0.1659, + "poisson": 1.7876 + }, + "scaled_scores": { + "mse": 0.1328, + "poisson": -9.4176 + }, + "mean_score": 0.0664, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "magic", + "metric_values": { + "mse": 0.1599, + "poisson": 0.1976 + }, + "scaled_scores": { + "mse": 0.164, + "poisson": -0.0382 + }, + "mean_score": 0.082, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "no_denoising", + "metric_values": { + "mse": 0.1913, + "poisson": 0.1911 + }, + "scaled_scores": { + "mse": 0, + "poisson": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish", + "method_id": "perfect_denoising", + "metric_values": { + "mse": 0, + "poisson": 0.0216 + }, + "scaled_scores": { + "mse": 1, + "poisson": 1 + }, + "mean_score": 1, + "normalization_id": null, + "resources": {}, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 818, + "cpu_pct": 111.5, + "peak_memory_mb": 25191, + "disk_read_mb": 288, + "disk_write_mb": 772 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1581, + "cpu_pct": 108.7, + "peak_memory_mb": 56832, + "disk_read_mb": 230, + "disk_write_mb": 1229 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1183, + "cpu_pct": 101.3, + "peak_memory_mb": 34304, + "disk_read_mb": 379, + "disk_write_mb": 953 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 327, + "cpu_pct": 112.6, + "peak_memory_mb": 13210, + "disk_read_mb": 108, + "disk_write_mb": 171 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1942, + "cpu_pct": 184.4, + "peak_memory_mb": 48333, + "disk_read_mb": 341, + "disk_write_mb": 1229 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1445, + "cpu_pct": 119.3, + "peak_memory_mb": 49460, + "disk_read_mb": 540, + "disk_write_mb": 955 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 2091, + "cpu_pct": 100.7, + "peak_memory_mb": 68096, + "disk_read_mb": 565, + "disk_write_mb": 1332 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 2313, + "cpu_pct": 101.6, + "peak_memory_mb": 45568, + "disk_read_mb": 1434, + "disk_write_mb": 1434 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 805, + "cpu_pct": 102.5, + "peak_memory_mb": 25805, + "disk_read_mb": 99, + "disk_write_mb": 243 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 368, + "cpu_pct": 123.4, + "peak_memory_mb": 14746, + "disk_read_mb": 256, + "disk_write_mb": 662 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 376, + "cpu_pct": 109, + "peak_memory_mb": 11264, + "disk_read_mb": 68, + "disk_write_mb": 54 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 304, + "cpu_pct": 104.1, + "peak_memory_mb": 13210, + "disk_read_mb": 279, + "disk_write_mb": 164 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1062, + "cpu_pct": 101.6, + "peak_memory_mb": 38605, + "disk_read_mb": 632, + "disk_write_mb": 831 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 62, + "cpu_pct": 128.8, + "peak_memory_mb": 7168, + "disk_read_mb": 54, + "disk_write_mb": 40 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 522, + "cpu_pct": 109.6, + "peak_memory_mb": 14951, + "disk_read_mb": 128, + "disk_write_mb": 205 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1912, + "cpu_pct": 101, + "peak_memory_mb": 57037, + "disk_read_mb": 416, + "disk_write_mb": 1229 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "alra", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1249, + "cpu_pct": 101.1, + "peak_memory_mb": 43520, + "disk_read_mb": 367, + "disk_write_mb": 1127 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 419, + "cpu_pct": 2410.2, + "peak_memory_mb": 18535, + "disk_read_mb": 322, + "disk_write_mb": 894 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 926, + "cpu_pct": 3398.3, + "peak_memory_mb": 20173, + "disk_read_mb": 265, + "disk_write_mb": 1844 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 877, + "cpu_pct": 3463.3, + "peak_memory_mb": 19456, + "disk_read_mb": 413, + "disk_write_mb": 1434 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 140, + "cpu_pct": 3125.1, + "peak_memory_mb": 16794, + "disk_read_mb": 143, + "disk_write_mb": 363 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 557, + "cpu_pct": 3209.3, + "peak_memory_mb": 19764, + "disk_read_mb": 376, + "disk_write_mb": 1639 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 633, + "cpu_pct": 2926.6, + "peak_memory_mb": 20890, + "disk_read_mb": 575, + "disk_write_mb": 1639 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1210, + "cpu_pct": 3744, + "peak_memory_mb": 22836, + "disk_read_mb": 600, + "disk_write_mb": 2458 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 1369, + "cpu_pct": 3681.6, + "peak_memory_mb": 25703, + "disk_read_mb": 1434, + "disk_write_mb": 2151 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 236, + "cpu_pct": 2586.9, + "peak_memory_mb": 17818, + "disk_read_mb": 134, + "disk_write_mb": 889 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 312, + "cpu_pct": 2695.6, + "peak_memory_mb": 17408, + "disk_read_mb": 291, + "disk_write_mb": 514 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 292, + "cpu_pct": 3512.1, + "peak_memory_mb": 25600, + "disk_read_mb": 103, + "disk_write_mb": 268 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 107, + "cpu_pct": 2777.1, + "peak_memory_mb": 18125, + "disk_read_mb": 314, + "disk_write_mb": 358 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 314, + "cpu_pct": 2518.7, + "peak_memory_mb": 19354, + "disk_read_mb": 667, + "disk_write_mb": 1229 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 52, + "cpu_pct": 2417.5, + "peak_memory_mb": 15872, + "disk_read_mb": 89, + "disk_write_mb": 65 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 222, + "cpu_pct": 2616.7, + "peak_memory_mb": 16794, + "disk_read_mb": 162, + "disk_write_mb": 407 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 814, + "cpu_pct": 3442.5, + "peak_memory_mb": 20480, + "disk_read_mb": 451, + "disk_write_mb": 1946 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "dca", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 732, + "cpu_pct": 3259.2, + "peak_memory_mb": 19354, + "disk_read_mb": 402, + "disk_write_mb": 1434 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 133, + "cpu_pct": 1327, + "peak_memory_mb": 17818, + "disk_read_mb": 290, + "disk_write_mb": 139 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 477, + "cpu_pct": 454.3, + "peak_memory_mb": 35328, + "disk_read_mb": 233, + "disk_write_mb": 183 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 262, + "cpu_pct": 707.7, + "peak_memory_mb": 27956, + "disk_read_mb": 381, + "disk_write_mb": 194 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 54.1, + "cpu_pct": 2048.3, + "peak_memory_mb": 10445, + "disk_read_mb": 110, + "disk_write_mb": 52 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 291, + "cpu_pct": 884.3, + "peak_memory_mb": 30516, + "disk_read_mb": 344, + "disk_write_mb": 195 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 348, + "cpu_pct": 679.5, + "peak_memory_mb": 31949, + "disk_read_mb": 542, + "disk_write_mb": 276 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 532, + "cpu_pct": 514, + "peak_memory_mb": 41370, + "disk_read_mb": 567, + "disk_write_mb": 284 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 296, + "cpu_pct": 575, + "peak_memory_mb": 31437, + "disk_read_mb": 1434, + "disk_write_mb": 589 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 164, + "cpu_pct": 855.7, + "peak_memory_mb": 19661, + "disk_read_mb": 101, + "disk_write_mb": 71 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 104, + "cpu_pct": 1030.6, + "peak_memory_mb": 13517, + "disk_read_mb": 258, + "disk_write_mb": 107 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 60, + "cpu_pct": 3729, + "peak_memory_mb": 9216, + "disk_read_mb": 70, + "disk_write_mb": 15 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 54.7, + "cpu_pct": 2477.3, + "peak_memory_mb": 9626, + "disk_read_mb": 282, + "disk_write_mb": 100 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 222, + "cpu_pct": 616.6, + "peak_memory_mb": 23860, + "disk_read_mb": 635, + "disk_write_mb": 261 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 17.9, + "cpu_pct": 3560.4, + "peak_memory_mb": 6452, + "disk_read_mb": 57, + "disk_write_mb": 13 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 65, + "cpu_pct": 1625.5, + "peak_memory_mb": 11060, + "disk_read_mb": 130, + "disk_write_mb": 64 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 502, + "cpu_pct": 455.3, + "peak_memory_mb": 36352, + "disk_read_mb": 419, + "disk_write_mb": 243 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "knn_smoothing", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 241, + "cpu_pct": 749.4, + "peak_memory_mb": 27136, + "disk_read_mb": 370, + "disk_write_mb": 208 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 140, + "cpu_pct": 914.7, + "peak_memory_mb": 11981, + "disk_read_mb": 302, + "disk_write_mb": 1434 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 344, + "cpu_pct": 2049.5, + "peak_memory_mb": 19047, + "disk_read_mb": 245, + "disk_write_mb": 2765 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 263, + "cpu_pct": 1305.3, + "peak_memory_mb": 15770, + "disk_read_mb": 393, + "disk_write_mb": 2253 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 52.3, + "cpu_pct": 1314.1, + "peak_memory_mb": 8295, + "disk_read_mb": 122, + "disk_write_mb": 518 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 321, + "cpu_pct": 1815.7, + "peak_memory_mb": 16896, + "disk_read_mb": 356, + "disk_write_mb": 2356 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 292, + "cpu_pct": 1836.2, + "peak_memory_mb": 19559, + "disk_read_mb": 554, + "disk_write_mb": 2356 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 373, + "cpu_pct": 1033.1, + "peak_memory_mb": 22631, + "disk_read_mb": 579, + "disk_write_mb": 3277 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 383, + "cpu_pct": 864.4, + "peak_memory_mb": 20583, + "disk_read_mb": 1434, + "disk_write_mb": 3175 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 210, + "cpu_pct": 1246, + "peak_memory_mb": 11879, + "disk_read_mb": 113, + "disk_write_mb": 1127 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 109, + "cpu_pct": 1287.9, + "peak_memory_mb": 10036, + "disk_read_mb": 270, + "disk_write_mb": 910 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 21.2, + "cpu_pct": 717.5, + "peak_memory_mb": 7783, + "disk_read_mb": 82, + "disk_write_mb": 66 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 96, + "cpu_pct": 300.9, + "peak_memory_mb": 8295, + "disk_read_mb": 294, + "disk_write_mb": 569 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 242, + "cpu_pct": 1239.9, + "peak_memory_mb": 15770, + "disk_read_mb": 647, + "disk_write_mb": 1946 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 12.9, + "cpu_pct": 787.1, + "peak_memory_mb": 6247, + "disk_read_mb": 69, + "disk_write_mb": 110 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 59.7, + "cpu_pct": 1090.5, + "peak_memory_mb": 8602, + "disk_read_mb": 142, + "disk_write_mb": 612 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 381, + "cpu_pct": 1440.8, + "peak_memory_mb": 20071, + "disk_read_mb": 431, + "disk_write_mb": 2560 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "magic", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 482, + "cpu_pct": 789.9, + "peak_memory_mb": 15565, + "disk_read_mb": 382, + "disk_write_mb": 2560 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 13.2, + "cpu_pct": 302.4, + "peak_memory_mb": 3175, + "disk_read_mb": 278, + "disk_write_mb": 102 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 11.7, + "cpu_pct": 184.8, + "peak_memory_mb": 3072, + "disk_read_mb": 221, + "disk_write_mb": 80 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 15.5, + "cpu_pct": 151.3, + "peak_memory_mb": 5940, + "disk_read_mb": 369, + "disk_write_mb": 138 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 6.4, + "cpu_pct": 261.8, + "peak_memory_mb": 2970, + "disk_read_mb": 98, + "disk_write_mb": 33 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 15.1, + "cpu_pct": 248.7, + "peak_memory_mb": 3175, + "disk_read_mb": 332, + "disk_write_mb": 123 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 27.2, + "cpu_pct": 168.3, + "peak_memory_mb": 3380, + "disk_read_mb": 530, + "disk_write_mb": 206 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 26.4, + "cpu_pct": 162.3, + "peak_memory_mb": 3380, + "disk_read_mb": 555, + "disk_write_mb": 214 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 97, + "cpu_pct": 145.3, + "peak_memory_mb": 4301, + "disk_read_mb": 1434, + "disk_write_mb": 747 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 8.1, + "cpu_pct": 122.4, + "peak_memory_mb": 5632, + "disk_read_mb": 89, + "disk_write_mb": 31 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 14.2, + "cpu_pct": 208.7, + "peak_memory_mb": 3072, + "disk_read_mb": 246, + "disk_write_mb": 92 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 3.2, + "cpu_pct": 389.3, + "peak_memory_mb": 5632, + "disk_read_mb": 58, + "disk_write_mb": 17 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 15.5, + "cpu_pct": 154, + "peak_memory_mb": 5837, + "disk_read_mb": 270, + "disk_write_mb": 118 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 30.1, + "cpu_pct": 228.1, + "peak_memory_mb": 3482, + "disk_read_mb": 623, + "disk_write_mb": 257 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 3.5, + "cpu_pct": 411.4, + "peak_memory_mb": 2868, + "disk_read_mb": 45, + "disk_write_mb": 11 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 241.1, + "peak_memory_mb": 2970, + "disk_read_mb": 118, + "disk_write_mb": 41 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 22.1, + "cpu_pct": 153.7, + "peak_memory_mb": 3277, + "disk_read_mb": 407, + "disk_write_mb": 162 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "no_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 14.5, + "cpu_pct": 172.8, + "peak_memory_mb": 5940, + "disk_read_mb": 358, + "disk_write_mb": 136 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/dkd/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 8.7, + "cpu_pct": 224.8, + "peak_memory_mb": 3175, + "disk_read_mb": 327, + "disk_write_mb": 61 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 7.2, + "cpu_pct": 299.9, + "peak_memory_mb": 3072, + "disk_read_mb": 253, + "disk_write_mb": 47 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hcla/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 11.5, + "cpu_pct": 317.9, + "peak_memory_mb": 3277, + "disk_read_mb": 443, + "disk_write_mb": 84 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/hypomap/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 4.4, + "cpu_pct": 258.1, + "peak_memory_mb": 2970, + "disk_read_mb": 114, + "disk_write_mb": 20 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 10.8, + "cpu_pct": 193.2, + "peak_memory_mb": 3277, + "disk_read_mb": 398, + "disk_write_mb": 74 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 16.3, + "cpu_pct": 254.6, + "peak_memory_mb": 3482, + "disk_read_mb": 640, + "disk_write_mb": 125 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 18.8, + "cpu_pct": 219.4, + "peak_memory_mb": 3584, + "disk_read_mb": 679, + "disk_write_mb": 132 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 83, + "cpu_pct": 188.9, + "peak_memory_mb": 5428, + "disk_read_mb": 2560, + "disk_write_mb": 626 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/cengen/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 4.1, + "cpu_pct": 307.2, + "peak_memory_mb": 2970, + "disk_read_mb": 105, + "disk_write_mb": 19 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/immune_cells/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 10.3, + "cpu_pct": 175, + "peak_memory_mb": 5837, + "disk_read_mb": 295, + "disk_write_mb": 56 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 3.2, + "cpu_pct": 404.9, + "peak_memory_mb": 5632, + "disk_read_mb": 77, + "disk_write_mb": 13 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 14.7, + "cpu_pct": 176.3, + "peak_memory_mb": 3277, + "disk_read_mb": 403, + "disk_write_mb": 90 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/pancreas/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 22.9, + "cpu_pct": 169.3, + "peak_memory_mb": 3789, + "disk_read_mb": 883, + "disk_write_mb": 183 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 3, + "cpu_pct": 396.8, + "peak_memory_mb": 2868, + "disk_read_mb": 51, + "disk_write_mb": 7 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 6.1, + "cpu_pct": 296.6, + "peak_memory_mb": 2970, + "disk_read_mb": 140, + "disk_write_mb": 25 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 14.2, + "cpu_pct": 220.8, + "peak_memory_mb": 3380, + "disk_read_mb": 494, + "disk_write_mb": 99 + }, + "task_id": "task_denoising" + }, + { + "dataset_id": "openproblems_v1/zebrafish/log_cp10k", + "method_id": "perfect_denoising", + "metric_values": { + "poisson": "NA", + "mse": "NA" + }, + "scaled_scores": { + "poisson": 0, + "mse": 0 + }, + "mean_score": 0, + "normalization_id": null, + "resources": { + "exit_code": 0, + "duration_sec": 11.1, + "cpu_pct": 252.4, + "peak_memory_mb": 3277, + "disk_read_mb": 432, + "disk_write_mb": 83 + }, + "task_id": "task_denoising" + } +] diff --git a/results/denoising/data/state.yaml b/results/task_denoising/data/state.yaml similarity index 100% rename from results/denoising/data/state.yaml rename to results/task_denoising/data/state.yaml diff --git a/results/task_denoising/data/task_info.json b/results/task_denoising/data/task_info.json new file mode 100644 index 00000000..62183e0e --- /dev/null +++ b/results/task_denoising/data/task_info.json @@ -0,0 +1,41 @@ +{ + "task_id": "task_denoising", + "commit_sha": null, + "task_name": "Denoising", + "task_summary": "Removing noise in sparse single-cell RNA-sequencing count data", + "task_description": "\n\nA key challenge in evaluating denoising methods is the general lack of a ground truth. A\nrecent benchmark study ([Hou et al.,\n2020](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02132-x))\nrelied on flow-sorted datasets, mixture control experiments ([Tian et al.,\n2019](https://www.nature.com/articles/s41592-019-0425-8)), and comparisons with bulk\nRNA-Seq data. Since each of these approaches suffers from specific limitations, it is\ndifficult to combine these different approaches into a single quantitative measure of\ndenoising accuracy. Here, we instead rely on an approach termed molecular\ncross-validation (MCV), which was specifically developed to quantify denoising accuracy\nin the absence of a ground truth ([Batson et al.,\n2019](https://www.biorxiv.org/content/10.1101/786269v1)). In MCV, the observed molecules\nin a given scRNA-Seq dataset are first partitioned between a *training* and a *test*\ndataset. Next, a denoising method is applied to the training dataset. Finally, denoising\naccuracy is measured by comparing the result to the test dataset. The authors show that\nboth in theory and in practice, the measured denoising accuracy is representative of the\naccuracy that would be obtained on a ground truth dataset.\n", + "repo": "openproblems-bio/openproblems", + "authors": [ + { + "name": "Wesley Lewis", + "roles": ["author", "maintainer"], + "info": { + "github": "wes-lewis" + } + }, + { + "name": "Scott Gigante", + "roles": ["author", "maintainer"], + "info": { + "github": "scottgigante", + "orcid": "0000-0002-4544-2764" + } + }, + { + "name": "Robrecht Cannoodt", + "roles": "author", + "info": { + "github": "rcannood", + "orcid": "0000-0003-3641-729X" + } + }, + { + "name": "Kai Waldrant", + "roles": "contributor", + "info": { + "github": "KaiWaldrant", + "orcid": "0009-0003-8555-1361" + } + } + ] +} diff --git a/results/denoising/index.qmd b/results/task_denoising/index.qmd similarity index 86% rename from results/denoising/index.qmd rename to results/task_denoising/index.qmd index 171853c8..b51fea76 100644 --- a/results/denoising/index.qmd +++ b/results/task_denoising/index.qmd @@ -12,7 +12,7 @@ toc: false ```{r} #| include: false -params <- list(data_dir = "results/denoising/data") +params <- list(data_dir = "results/task_denoising/data") params <- list(data_dir = "./data") ``` diff --git a/results/denoising/thumbnail.svg b/results/task_denoising/thumbnail.svg similarity index 100% rename from results/denoising/thumbnail.svg rename to results/task_denoising/thumbnail.svg From ddca57f5072e22106c7d592ba010a02bd11836a4 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Wed, 2 Oct 2024 16:41:24 +0200 Subject: [PATCH 10/12] update results --- .../data/metric_execution_info.json | 816 ++-- .../task_denoising/data/quality_control.json | 12 +- results/task_denoising/data/results.json | 3452 +++++------------ 3 files changed, 1324 insertions(+), 2956 deletions(-) diff --git a/results/task_denoising/data/metric_execution_info.json b/results/task_denoising/data/metric_execution_info.json index e05b1a0d..c071c882 100644 --- a/results/task_denoising/data/metric_execution_info.json +++ b/results/task_denoising/data/metric_execution_info.json @@ -1,7 +1,7 @@ [ { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -14,8 +14,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -28,8 +28,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -42,8 +42,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -56,8 +56,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -70,8 +70,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -84,8 +84,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -98,8 +98,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -112,8 +112,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -126,8 +126,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -140,8 +140,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -154,8 +154,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -168,8 +168,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -182,8 +182,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -196,8 +196,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -210,8 +210,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -224,8 +224,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -238,8 +238,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -252,8 +252,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -266,8 +266,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -280,8 +280,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -294,8 +294,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -308,8 +308,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -322,8 +322,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -336,8 +336,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -350,8 +350,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -364,8 +364,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -378,8 +378,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -392,8 +392,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -406,8 +406,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -420,8 +420,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -434,8 +434,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -448,8 +448,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -462,8 +462,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -476,8 +476,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -490,8 +490,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -504,8 +504,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -518,8 +518,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -532,8 +532,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -546,8 +546,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -560,8 +560,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -574,8 +574,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -588,8 +588,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -602,8 +602,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -616,8 +616,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -630,8 +630,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -644,8 +644,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -658,8 +658,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -672,8 +672,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -686,8 +686,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -700,8 +700,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -714,8 +714,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -728,8 +728,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -742,8 +742,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -756,8 +756,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -770,8 +770,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -784,8 +784,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -798,8 +798,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -812,8 +812,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -826,8 +826,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -840,8 +840,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -854,8 +854,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -868,8 +868,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -882,8 +882,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -896,8 +896,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -910,8 +910,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -924,8 +924,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -938,8 +938,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -952,8 +952,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -966,8 +966,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -980,8 +980,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -994,8 +994,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1008,8 +1008,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -1022,8 +1022,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -1036,8 +1036,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -1050,8 +1050,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -1064,8 +1064,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -1078,8 +1078,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1092,8 +1092,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -1106,8 +1106,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -1120,8 +1120,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -1134,8 +1134,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -1148,8 +1148,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -1162,8 +1162,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1176,8 +1176,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -1190,8 +1190,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -1204,8 +1204,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -1218,8 +1218,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -1232,8 +1232,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -1246,8 +1246,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1260,8 +1260,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -1274,8 +1274,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -1288,8 +1288,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -1302,8 +1302,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -1316,8 +1316,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -1330,8 +1330,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1344,8 +1344,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "mse", "resources": { @@ -1358,8 +1358,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "mse", "resources": { @@ -1372,8 +1372,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "mse", "resources": { @@ -1386,8 +1386,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "mse", "resources": { @@ -1400,8 +1400,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "mse", "resources": { @@ -1414,8 +1414,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "mse", "resources": { @@ -1428,8 +1428,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1442,8 +1442,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1456,8 +1456,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1470,8 +1470,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1484,8 +1484,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1498,8 +1498,8 @@ } }, { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/dkd", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1512,8 +1512,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1526,8 +1526,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1540,8 +1540,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1554,8 +1554,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1568,8 +1568,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1582,8 +1582,8 @@ } }, { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/gtex_v9", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1596,8 +1596,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1610,8 +1610,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1624,8 +1624,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1638,8 +1638,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1652,8 +1652,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1666,8 +1666,8 @@ } }, { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hcla", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1680,8 +1680,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1694,8 +1694,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1708,8 +1708,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1722,8 +1722,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1736,8 +1736,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1750,8 +1750,8 @@ } }, { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/hypomap", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1764,8 +1764,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1778,8 +1778,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1792,8 +1792,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1806,8 +1806,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1820,8 +1820,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1834,8 +1834,8 @@ } }, { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/immune_cell_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1848,8 +1848,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1862,8 +1862,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1876,8 +1876,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1890,8 +1890,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1904,8 +1904,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -1918,8 +1918,8 @@ } }, { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -1932,8 +1932,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -1946,8 +1946,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -1960,8 +1960,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -1974,8 +1974,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -1988,8 +1988,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2002,8 +2002,8 @@ } }, { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "normalization_id": null, + "dataset_id": "cellxgene_census/tabula_sapiens", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2016,8 +2016,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2030,8 +2030,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2044,8 +2044,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2058,8 +2058,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2072,8 +2072,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2086,8 +2086,8 @@ } }, { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/allen_brain_atlas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2100,8 +2100,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2114,8 +2114,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2128,8 +2128,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2142,8 +2142,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2156,8 +2156,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2170,8 +2170,8 @@ } }, { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/cengen", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2184,8 +2184,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2198,8 +2198,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2212,8 +2212,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2226,8 +2226,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2240,8 +2240,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2254,8 +2254,8 @@ } }, { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/immune_cells", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2268,8 +2268,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2282,8 +2282,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2296,8 +2296,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2310,8 +2310,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2324,8 +2324,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2338,8 +2338,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2352,8 +2352,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2366,8 +2366,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2380,8 +2380,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2394,8 +2394,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2408,8 +2408,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2422,8 +2422,8 @@ } }, { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2436,8 +2436,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2450,8 +2450,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2464,8 +2464,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2478,8 +2478,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2492,8 +2492,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2506,8 +2506,8 @@ } }, { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/pancreas", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2520,8 +2520,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2534,8 +2534,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2548,8 +2548,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2562,8 +2562,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2576,8 +2576,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2590,8 +2590,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2604,8 +2604,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2618,8 +2618,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2632,8 +2632,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2646,8 +2646,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2660,8 +2660,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2674,8 +2674,8 @@ } }, { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tenx_5k_pbmc", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2688,8 +2688,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2702,8 +2702,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2716,8 +2716,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2730,8 +2730,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2744,8 +2744,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2758,8 +2758,8 @@ } }, { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/tnbc_wu2021", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { @@ -2772,8 +2772,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "alra", "metric_id": "poisson", "resources": { @@ -2786,8 +2786,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "dca", "metric_id": "poisson", "resources": { @@ -2800,8 +2800,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "knn_smoothing", "metric_id": "poisson", "resources": { @@ -2814,8 +2814,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "magic", "metric_id": "poisson", "resources": { @@ -2828,8 +2828,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "no_denoising", "metric_id": "poisson", "resources": { @@ -2842,8 +2842,8 @@ } }, { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "normalization_id": null, + "dataset_id": "openproblems_v1/zebrafish", + "normalization_id": "log_cp10k", "method_id": "perfect_denoising", "metric_id": "poisson", "resources": { diff --git a/results/task_denoising/data/quality_control.json b/results/task_denoising/data/quality_control.json index 1779d0fa..12229024 100644 --- a/results/task_denoising/data/quality_control.json +++ b/results/task_denoising/data/quality_control.json @@ -243,11 +243,11 @@ "task_id": "task_denoising", "category": "Raw data", "name": "Number of results", - "value": 204, + "value": 102, "severity": 0, - "severity_value": -10.0, + "severity_value": 0.0, "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", - "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_denoising\n Number of results: 204\n Number of methods: 6\n Number of metrics: 2\n Number of datasets: 17\n" + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_denoising\n Number of results: 102\n Number of methods: 6\n Number of metrics: 2\n Number of datasets: 17\n" }, { "task_id": "task_denoising", @@ -523,11 +523,11 @@ "task_id": "task_denoising", "category": "Scaling", "name": "Worst score perfect_denoising mse", - "value": 0, + "value": 1, "severity": 0, - "severity_value": -0.0, + "severity_value": -1.0, "code": "worst_score >= -1", - "message": "Method perfect_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 0%\n" + "message": "Method perfect_denoising performs much worse than baselines.\n Task id: task_denoising\n Method id: perfect_denoising\n Metric id: mse\n Worst score: 1%\n" }, { "task_id": "task_denoising", diff --git a/results/task_denoising/data/results.json b/results/task_denoising/data/results.json index 094ce391..c7f018de 100644 --- a/results/task_denoising/data/results.json +++ b/results/task_denoising/data/results.json @@ -11,8 +11,15 @@ "poisson": -3.0453 }, "mean_score": 0.0082, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 818, + "cpu_pct": 111.5, + "peak_memory_mb": 25191, + "disk_read_mb": 288, + "disk_write_mb": 772 + }, "task_id": "task_denoising" }, { @@ -27,8 +34,15 @@ "poisson": -0.0553 }, "mean_score": 0.0834, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 419, + "cpu_pct": 2410.2, + "peak_memory_mb": 18535, + "disk_read_mb": 322, + "disk_write_mb": 894 + }, "task_id": "task_denoising" }, { @@ -43,8 +57,15 @@ "poisson": -9.375 }, "mean_score": 0.0661, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 133, + "cpu_pct": 1327, + "peak_memory_mb": 17818, + "disk_read_mb": 290, + "disk_write_mb": 139 + }, "task_id": "task_denoising" }, { @@ -59,8 +80,15 @@ "poisson": -0.0635 }, "mean_score": 0.0835, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 140, + "cpu_pct": 914.7, + "peak_memory_mb": 11981, + "disk_read_mb": 302, + "disk_write_mb": 1434 + }, "task_id": "task_denoising" }, { @@ -75,8 +103,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 13.2, + "cpu_pct": 302.4, + "peak_memory_mb": 3175, + "disk_read_mb": 278, + "disk_write_mb": 102 + }, "task_id": "task_denoising" }, { @@ -91,8 +126,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 8.7, + "cpu_pct": 224.8, + "peak_memory_mb": 3175, + "disk_read_mb": 327, + "disk_write_mb": 61 + }, "task_id": "task_denoising" }, { @@ -107,8 +149,15 @@ "poisson": -6.6007 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1581, + "cpu_pct": 108.7, + "peak_memory_mb": 56832, + "disk_read_mb": 230, + "disk_write_mb": 1229 + }, "task_id": "task_denoising" }, { @@ -123,8 +172,15 @@ "poisson": -0.0775 }, "mean_score": 0.0564, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 926, + "cpu_pct": 3398.3, + "peak_memory_mb": 20173, + "disk_read_mb": 265, + "disk_write_mb": 1844 + }, "task_id": "task_denoising" }, { @@ -139,8 +195,15 @@ "poisson": -9.568 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 477, + "cpu_pct": 454.3, + "peak_memory_mb": 35328, + "disk_read_mb": 233, + "disk_write_mb": 183 + }, "task_id": "task_denoising" }, { @@ -155,8 +218,15 @@ "poisson": -0.0422 }, "mean_score": 0.0505, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 344, + "cpu_pct": 2049.5, + "peak_memory_mb": 19047, + "disk_read_mb": 245, + "disk_write_mb": 2765 + }, "task_id": "task_denoising" }, { @@ -171,8 +241,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 11.7, + "cpu_pct": 184.8, + "peak_memory_mb": 3072, + "disk_read_mb": 221, + "disk_write_mb": 80 + }, "task_id": "task_denoising" }, { @@ -187,8 +264,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 7.2, + "cpu_pct": 299.9, + "peak_memory_mb": 3072, + "disk_read_mb": 253, + "disk_write_mb": 47 + }, "task_id": "task_denoising" }, { @@ -203,8 +287,15 @@ "poisson": -3.5821 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1183, + "cpu_pct": 101.3, + "peak_memory_mb": 34304, + "disk_read_mb": 379, + "disk_write_mb": 953 + }, "task_id": "task_denoising" }, { @@ -219,8 +310,15 @@ "poisson": -0.0661 }, "mean_score": 0.0817, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 877, + "cpu_pct": 3463.3, + "peak_memory_mb": 19456, + "disk_read_mb": 413, + "disk_write_mb": 1434 + }, "task_id": "task_denoising" }, { @@ -235,8 +333,15 @@ "poisson": -10.1241 }, "mean_score": 0.052, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 262, + "cpu_pct": 707.7, + "peak_memory_mb": 27956, + "disk_read_mb": 381, + "disk_write_mb": 194 + }, "task_id": "task_denoising" }, { @@ -251,8 +356,15 @@ "poisson": -0.0746 }, "mean_score": 0.08, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 263, + "cpu_pct": 1305.3, + "peak_memory_mb": 15770, + "disk_read_mb": 393, + "disk_write_mb": 2253 + }, "task_id": "task_denoising" }, { @@ -267,8 +379,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 15.5, + "cpu_pct": 151.3, + "peak_memory_mb": 5940, + "disk_read_mb": 369, + "disk_write_mb": 138 + }, "task_id": "task_denoising" }, { @@ -283,8 +402,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 11.5, + "cpu_pct": 317.9, + "peak_memory_mb": 3277, + "disk_read_mb": 443, + "disk_write_mb": 84 + }, "task_id": "task_denoising" }, { @@ -299,8 +425,15 @@ "poisson": -1.7334 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 327, + "cpu_pct": 112.6, + "peak_memory_mb": 13210, + "disk_read_mb": 108, + "disk_write_mb": 171 + }, "task_id": "task_denoising" }, { @@ -315,8 +448,15 @@ "poisson": -0.0333 }, "mean_score": 0.0857, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 140, + "cpu_pct": 3125.1, + "peak_memory_mb": 16794, + "disk_read_mb": 143, + "disk_write_mb": 363 + }, "task_id": "task_denoising" }, { @@ -331,8 +471,15 @@ "poisson": -9.2664 }, "mean_score": 0.0588, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 54.1, + "cpu_pct": 2048.3, + "peak_memory_mb": 10445, + "disk_read_mb": 110, + "disk_write_mb": 52 + }, "task_id": "task_denoising" }, { @@ -347,8 +494,15 @@ "poisson": -0.031 }, "mean_score": 0.0832, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 52.3, + "cpu_pct": 1314.1, + "peak_memory_mb": 8295, + "disk_read_mb": 122, + "disk_write_mb": 518 + }, "task_id": "task_denoising" }, { @@ -363,8 +517,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 6.4, + "cpu_pct": 261.8, + "peak_memory_mb": 2970, + "disk_read_mb": 98, + "disk_write_mb": 33 + }, "task_id": "task_denoising" }, { @@ -379,8 +540,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 4.4, + "cpu_pct": 258.1, + "peak_memory_mb": 2970, + "disk_read_mb": 114, + "disk_write_mb": 20 + }, "task_id": "task_denoising" }, { @@ -395,8 +563,15 @@ "poisson": -4.3737 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1942, + "cpu_pct": 184.4, + "peak_memory_mb": 48333, + "disk_read_mb": 341, + "disk_write_mb": 1229 + }, "task_id": "task_denoising" }, { @@ -411,8 +586,15 @@ "poisson": -0.126 }, "mean_score": 0.0966, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 557, + "cpu_pct": 3209.3, + "peak_memory_mb": 19764, + "disk_read_mb": 376, + "disk_write_mb": 1639 + }, "task_id": "task_denoising" }, { @@ -427,8 +609,15 @@ "poisson": -11.2598 }, "mean_score": 0.0742, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 291, + "cpu_pct": 884.3, + "peak_memory_mb": 30516, + "disk_read_mb": 344, + "disk_write_mb": 195 + }, "task_id": "task_denoising" }, { @@ -443,8 +632,15 @@ "poisson": -0.1528 }, "mean_score": 0.0937, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 321, + "cpu_pct": 1815.7, + "peak_memory_mb": 16896, + "disk_read_mb": 356, + "disk_write_mb": 2356 + }, "task_id": "task_denoising" }, { @@ -459,8 +655,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 15.1, + "cpu_pct": 248.7, + "peak_memory_mb": 3175, + "disk_read_mb": 332, + "disk_write_mb": 123 + }, "task_id": "task_denoising" }, { @@ -475,8 +678,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 10.8, + "cpu_pct": 193.2, + "peak_memory_mb": 3277, + "disk_read_mb": 398, + "disk_write_mb": 74 + }, "task_id": "task_denoising" }, { @@ -491,8 +701,15 @@ "poisson": -8.3054 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1445, + "cpu_pct": 119.3, + "peak_memory_mb": 49460, + "disk_read_mb": 540, + "disk_write_mb": 955 + }, "task_id": "task_denoising" }, { @@ -507,8 +724,15 @@ "poisson": -0.9206 }, "mean_score": 0.0844, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 633, + "cpu_pct": 2926.6, + "peak_memory_mb": 20890, + "disk_read_mb": 575, + "disk_write_mb": 1639 + }, "task_id": "task_denoising" }, { @@ -523,8 +747,15 @@ "poisson": 11.5947 }, "mean_score": 0.5655, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 348, + "cpu_pct": 679.5, + "peak_memory_mb": 31949, + "disk_read_mb": 542, + "disk_write_mb": 276 + }, "task_id": "task_denoising" }, { @@ -539,8 +770,15 @@ "poisson": 0.5873 }, "mean_score": 0.3792, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 292, + "cpu_pct": 1836.2, + "peak_memory_mb": 19559, + "disk_read_mb": 554, + "disk_write_mb": 2356 + }, "task_id": "task_denoising" }, { @@ -555,8 +793,15 @@ "poisson": 1 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 27.2, + "cpu_pct": 168.3, + "peak_memory_mb": 3380, + "disk_read_mb": 530, + "disk_write_mb": 206 + }, "task_id": "task_denoising" }, { @@ -571,8 +816,15 @@ "poisson": 0 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 16.3, + "cpu_pct": 254.6, + "peak_memory_mb": 3482, + "disk_read_mb": 640, + "disk_write_mb": 125 + }, "task_id": "task_denoising" }, { @@ -587,8 +839,15 @@ "poisson": -2.6531 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 2091, + "cpu_pct": 100.7, + "peak_memory_mb": 68096, + "disk_read_mb": 565, + "disk_write_mb": 1332 + }, "task_id": "task_denoising" }, { @@ -603,8 +862,15 @@ "poisson": -0.143 }, "mean_score": 0.0766, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1210, + "cpu_pct": 3744, + "peak_memory_mb": 22836, + "disk_read_mb": 600, + "disk_write_mb": 2458 + }, "task_id": "task_denoising" }, { @@ -619,8 +885,15 @@ "poisson": -11.1368 }, "mean_score": 0.062, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 532, + "cpu_pct": 514, + "peak_memory_mb": 41370, + "disk_read_mb": 567, + "disk_write_mb": 284 + }, "task_id": "task_denoising" }, { @@ -635,8 +908,15 @@ "poisson": -0.1828 }, "mean_score": 0.0712, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 373, + "cpu_pct": 1033.1, + "peak_memory_mb": 22631, + "disk_read_mb": 579, + "disk_write_mb": 3277 + }, "task_id": "task_denoising" }, { @@ -651,8 +931,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 26.4, + "cpu_pct": 162.3, + "peak_memory_mb": 3380, + "disk_read_mb": 555, + "disk_write_mb": 214 + }, "task_id": "task_denoising" }, { @@ -667,8 +954,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 18.8, + "cpu_pct": 219.4, + "peak_memory_mb": 3584, + "disk_read_mb": 679, + "disk_write_mb": 132 + }, "task_id": "task_denoising" }, { @@ -683,8 +977,15 @@ "poisson": 0.4285 }, "mean_score": 0.2143, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 2313, + "cpu_pct": 101.6, + "peak_memory_mb": 45568, + "disk_read_mb": 1434, + "disk_write_mb": 1434 + }, "task_id": "task_denoising" }, { @@ -699,8 +1000,15 @@ "poisson": 0.4328 }, "mean_score": 0.2164, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1369, + "cpu_pct": 3681.6, + "peak_memory_mb": 25703, + "disk_read_mb": 1434, + "disk_write_mb": 2151 + }, "task_id": "task_denoising" }, { @@ -715,8 +1023,15 @@ "poisson": 6.2847 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 296, + "cpu_pct": 575, + "peak_memory_mb": 31437, + "disk_read_mb": 1434, + "disk_write_mb": 589 + }, "task_id": "task_denoising" }, { @@ -731,8 +1046,15 @@ "poisson": 0.5015 }, "mean_score": 0.2508, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 383, + "cpu_pct": 864.4, + "peak_memory_mb": 20583, + "disk_read_mb": 1434, + "disk_write_mb": 3175 + }, "task_id": "task_denoising" }, { @@ -747,8 +1069,15 @@ "poisson": 1 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 97, + "cpu_pct": 145.3, + "peak_memory_mb": 4301, + "disk_read_mb": 1434, + "disk_write_mb": 747 + }, "task_id": "task_denoising" }, { @@ -763,8 +1092,15 @@ "poisson": 0 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 83, + "cpu_pct": 188.9, + "peak_memory_mb": 5428, + "disk_read_mb": 2560, + "disk_write_mb": 626 + }, "task_id": "task_denoising" }, { @@ -779,8 +1115,15 @@ "poisson": -4.2131 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 805, + "cpu_pct": 102.5, + "peak_memory_mb": 25805, + "disk_read_mb": 99, + "disk_write_mb": 243 + }, "task_id": "task_denoising" }, { @@ -795,8 +1138,15 @@ "poisson": -179.6428 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 236, + "cpu_pct": 2586.9, + "peak_memory_mb": 17818, + "disk_read_mb": 134, + "disk_write_mb": 889 + }, "task_id": "task_denoising" }, { @@ -811,8 +1161,15 @@ "poisson": -11.0499 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 164, + "cpu_pct": 855.7, + "peak_memory_mb": 19661, + "disk_read_mb": 101, + "disk_write_mb": 71 + }, "task_id": "task_denoising" }, { @@ -827,8 +1184,15 @@ "poisson": -0.132 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 210, + "cpu_pct": 1246, + "peak_memory_mb": 11879, + "disk_read_mb": 113, + "disk_write_mb": 1127 + }, "task_id": "task_denoising" }, { @@ -843,8 +1207,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 8.1, + "cpu_pct": 122.4, + "peak_memory_mb": 5632, + "disk_read_mb": 89, + "disk_write_mb": 31 + }, "task_id": "task_denoising" }, { @@ -859,8 +1230,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 4.1, + "cpu_pct": 307.2, + "peak_memory_mb": 2970, + "disk_read_mb": 105, + "disk_write_mb": 19 + }, "task_id": "task_denoising" }, { @@ -875,8 +1253,15 @@ "poisson": -3.146 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 368, + "cpu_pct": 123.4, + "peak_memory_mb": 14746, + "disk_read_mb": 256, + "disk_write_mb": 662 + }, "task_id": "task_denoising" }, { @@ -891,8 +1276,15 @@ "poisson": -0.0298 }, "mean_score": 0.098, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 312, + "cpu_pct": 2695.6, + "peak_memory_mb": 17408, + "disk_read_mb": 291, + "disk_write_mb": 514 + }, "task_id": "task_denoising" }, { @@ -907,8 +1299,15 @@ "poisson": -9.2953 }, "mean_score": 0.0844, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 104, + "cpu_pct": 1030.6, + "peak_memory_mb": 13517, + "disk_read_mb": 258, + "disk_write_mb": 107 + }, "task_id": "task_denoising" }, { @@ -923,8 +1322,15 @@ "poisson": -0.0339 }, "mean_score": 0.1009, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 109, + "cpu_pct": 1287.9, + "peak_memory_mb": 10036, + "disk_read_mb": 270, + "disk_write_mb": 910 + }, "task_id": "task_denoising" }, { @@ -939,8 +1345,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 14.2, + "cpu_pct": 208.7, + "peak_memory_mb": 3072, + "disk_read_mb": 246, + "disk_write_mb": 92 + }, "task_id": "task_denoising" }, { @@ -955,8 +1368,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 10.3, + "cpu_pct": 175, + "peak_memory_mb": 5837, + "disk_read_mb": 295, + "disk_write_mb": 56 + }, "task_id": "task_denoising" }, { @@ -971,8 +1391,15 @@ "poisson": -1.8314 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 376, + "cpu_pct": 109, + "peak_memory_mb": 11264, + "disk_read_mb": 68, + "disk_write_mb": 54 + }, "task_id": "task_denoising" }, { @@ -987,8 +1414,15 @@ "poisson": -0.417 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 292, + "cpu_pct": 3512.1, + "peak_memory_mb": 25600, + "disk_read_mb": 103, + "disk_write_mb": 268 + }, "task_id": "task_denoising" }, { @@ -1003,8 +1437,15 @@ "poisson": -13.4067 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 60, + "cpu_pct": 3729, + "peak_memory_mb": 9216, + "disk_read_mb": 70, + "disk_write_mb": 15 + }, "task_id": "task_denoising" }, { @@ -1019,8 +1460,15 @@ "poisson": -0.7606 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 21.2, + "cpu_pct": 717.5, + "peak_memory_mb": 7783, + "disk_read_mb": 82, + "disk_write_mb": 66 + }, "task_id": "task_denoising" }, { @@ -1035,8 +1483,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3.2, + "cpu_pct": 389.3, + "peak_memory_mb": 5632, + "disk_read_mb": 58, + "disk_write_mb": 17 + }, "task_id": "task_denoising" }, { @@ -1051,8 +1506,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3.2, + "cpu_pct": 404.9, + "peak_memory_mb": 5632, + "disk_read_mb": 77, + "disk_write_mb": 13 + }, "task_id": "task_denoising" }, { @@ -1067,8 +1529,15 @@ "poisson": 0.4408 }, "mean_score": 0.2204, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 304, + "cpu_pct": 104.1, + "peak_memory_mb": 13210, + "disk_read_mb": 279, + "disk_write_mb": 164 + }, "task_id": "task_denoising" }, { @@ -1083,8 +1552,15 @@ "poisson": 0.2796 }, "mean_score": 0.1398, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 107, + "cpu_pct": 2777.1, + "peak_memory_mb": 18125, + "disk_read_mb": 314, + "disk_write_mb": 358 + }, "task_id": "task_denoising" }, { @@ -1099,8 +1575,15 @@ "poisson": 3.6883 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 54.7, + "cpu_pct": 2477.3, + "peak_memory_mb": 9626, + "disk_read_mb": 282, + "disk_write_mb": 100 + }, "task_id": "task_denoising" }, { @@ -1115,8 +1598,15 @@ "poisson": 0.2785 }, "mean_score": 0.1392, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 96, + "cpu_pct": 300.9, + "peak_memory_mb": 8295, + "disk_read_mb": 294, + "disk_write_mb": 569 + }, "task_id": "task_denoising" }, { @@ -1131,8 +1621,15 @@ "poisson": 1 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 15.5, + "cpu_pct": 154, + "peak_memory_mb": 5837, + "disk_read_mb": 270, + "disk_write_mb": 118 + }, "task_id": "task_denoising" }, { @@ -1147,8 +1644,15 @@ "poisson": 0 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 14.7, + "cpu_pct": 176.3, + "peak_memory_mb": 3277, + "disk_read_mb": 403, + "disk_write_mb": 90 + }, "task_id": "task_denoising" }, { @@ -1163,8 +1667,15 @@ "poisson": -0.6607 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1062, + "cpu_pct": 101.6, + "peak_memory_mb": 38605, + "disk_read_mb": 632, + "disk_write_mb": 831 + }, "task_id": "task_denoising" }, { @@ -1179,8 +1690,15 @@ "poisson": -0.1066 }, "mean_score": 0.0047, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 314, + "cpu_pct": 2518.7, + "peak_memory_mb": 19354, + "disk_read_mb": 667, + "disk_write_mb": 1229 + }, "task_id": "task_denoising" }, { @@ -1195,8 +1713,15 @@ "poisson": 3.4819 }, "mean_score": 0.5027, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 222, + "cpu_pct": 616.6, + "peak_memory_mb": 23860, + "disk_read_mb": 635, + "disk_write_mb": 261 + }, "task_id": "task_denoising" }, { @@ -1211,8 +1736,15 @@ "poisson": 0.1916 }, "mean_score": 0.1042, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 242, + "cpu_pct": 1239.9, + "peak_memory_mb": 15770, + "disk_read_mb": 647, + "disk_write_mb": 1946 + }, "task_id": "task_denoising" }, { @@ -1227,8 +1759,15 @@ "poisson": 1 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 30.1, + "cpu_pct": 228.1, + "peak_memory_mb": 3482, + "disk_read_mb": 623, + "disk_write_mb": 257 + }, "task_id": "task_denoising" }, { @@ -1243,8 +1782,15 @@ "poisson": 0 }, "mean_score": 0.5, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 22.9, + "cpu_pct": 169.3, + "peak_memory_mb": 3789, + "disk_read_mb": 883, + "disk_write_mb": 183 + }, "task_id": "task_denoising" }, { @@ -1259,8 +1805,15 @@ "poisson": -1.1677 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 62, + "cpu_pct": 128.8, + "peak_memory_mb": 7168, + "disk_read_mb": 54, + "disk_write_mb": 40 + }, "task_id": "task_denoising" }, { @@ -1275,8 +1828,15 @@ "poisson": -0.0358 }, "mean_score": 0.0989, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 52, + "cpu_pct": 2417.5, + "peak_memory_mb": 15872, + "disk_read_mb": 89, + "disk_write_mb": 65 + }, "task_id": "task_denoising" }, { @@ -1291,8 +1851,15 @@ "poisson": -9.4262 }, "mean_score": 0.0877, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 17.9, + "cpu_pct": 3560.4, + "peak_memory_mb": 6452, + "disk_read_mb": 57, + "disk_write_mb": 13 + }, "task_id": "task_denoising" }, { @@ -1307,8 +1874,15 @@ "poisson": -0.0528 }, "mean_score": 0.1018, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 12.9, + "cpu_pct": 787.1, + "peak_memory_mb": 6247, + "disk_read_mb": 69, + "disk_write_mb": 110 + }, "task_id": "task_denoising" }, { @@ -1323,8 +1897,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3.5, + "cpu_pct": 411.4, + "peak_memory_mb": 2868, + "disk_read_mb": 45, + "disk_write_mb": 11 + }, "task_id": "task_denoising" }, { @@ -1339,8 +1920,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 3, + "cpu_pct": 396.8, + "peak_memory_mb": 2868, + "disk_read_mb": 51, + "disk_write_mb": 7 + }, "task_id": "task_denoising" }, { @@ -1355,8 +1943,15 @@ "poisson": -1.9135 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 522, + "cpu_pct": 109.6, + "peak_memory_mb": 14951, + "disk_read_mb": 128, + "disk_write_mb": 205 + }, "task_id": "task_denoising" }, { @@ -1371,8 +1966,15 @@ "poisson": -0.0263 }, "mean_score": 0.1011, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 222, + "cpu_pct": 2616.7, + "peak_memory_mb": 16794, + "disk_read_mb": 162, + "disk_write_mb": 407 + }, "task_id": "task_denoising" }, { @@ -1387,8 +1989,15 @@ "poisson": -9.4828 }, "mean_score": 0.0761, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 65, + "cpu_pct": 1625.5, + "peak_memory_mb": 11060, + "disk_read_mb": 130, + "disk_write_mb": 64 + }, "task_id": "task_denoising" }, { @@ -1403,8 +2012,15 @@ "poisson": -0.0452 }, "mean_score": 0.1006, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 59.7, + "cpu_pct": 1090.5, + "peak_memory_mb": 8602, + "disk_read_mb": 142, + "disk_write_mb": 612 + }, "task_id": "task_denoising" }, { @@ -1419,8 +2035,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 7.8, + "cpu_pct": 241.1, + "peak_memory_mb": 2970, + "disk_read_mb": 118, + "disk_write_mb": 41 + }, "task_id": "task_denoising" }, { @@ -1435,8 +2058,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 6.1, + "cpu_pct": 296.6, + "peak_memory_mb": 2970, + "disk_read_mb": 140, + "disk_write_mb": 25 + }, "task_id": "task_denoising" }, { @@ -1451,8 +2081,15 @@ "poisson": -4.9864 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1912, + "cpu_pct": 101, + "peak_memory_mb": 57037, + "disk_read_mb": 416, + "disk_write_mb": 1229 + }, "task_id": "task_denoising" }, { @@ -1467,8 +2104,15 @@ "poisson": -0.2236 }, "mean_score": 0.0654, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 814, + "cpu_pct": 3442.5, + "peak_memory_mb": 20480, + "disk_read_mb": 451, + "disk_write_mb": 1946 + }, "task_id": "task_denoising" }, { @@ -1483,8 +2127,15 @@ "poisson": -11.9217 }, "mean_score": 0.0437, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 502, + "cpu_pct": 455.3, + "peak_memory_mb": 36352, + "disk_read_mb": 419, + "disk_write_mb": 243 + }, "task_id": "task_denoising" }, { @@ -1499,8 +2150,15 @@ "poisson": -0.1843 }, "mean_score": 0.0642, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 381, + "cpu_pct": 1440.8, + "peak_memory_mb": 20071, + "disk_read_mb": 431, + "disk_write_mb": 2560 + }, "task_id": "task_denoising" }, { @@ -1515,8 +2173,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 22.1, + "cpu_pct": 153.7, + "peak_memory_mb": 3277, + "disk_read_mb": 407, + "disk_write_mb": 162 + }, "task_id": "task_denoising" }, { @@ -1531,8 +2196,15 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 14.2, + "cpu_pct": 220.8, + "peak_memory_mb": 3380, + "disk_read_mb": 494, + "disk_write_mb": 99 + }, "task_id": "task_denoising" }, { @@ -1547,8 +2219,15 @@ "poisson": -2.7236 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 1249, + "cpu_pct": 101.1, + "peak_memory_mb": 43520, + "disk_read_mb": 367, + "disk_write_mb": 1127 + }, "task_id": "task_denoising" }, { @@ -1563,8 +2242,15 @@ "poisson": -0.0262 }, "mean_score": 0.082, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 732, + "cpu_pct": 3259.2, + "peak_memory_mb": 19354, + "disk_read_mb": 402, + "disk_write_mb": 1434 + }, "task_id": "task_denoising" }, { @@ -1579,8 +2265,15 @@ "poisson": -9.4176 }, "mean_score": 0.0664, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 241, + "cpu_pct": 749.4, + "peak_memory_mb": 27136, + "disk_read_mb": 370, + "disk_write_mb": 208 + }, "task_id": "task_denoising" }, { @@ -1595,8 +2288,15 @@ "poisson": -0.0382 }, "mean_score": 0.082, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 482, + "cpu_pct": 789.9, + "peak_memory_mb": 15565, + "disk_read_mb": 382, + "disk_write_mb": 2560 + }, "task_id": "task_denoising" }, { @@ -1611,8 +2311,15 @@ "poisson": 0 }, "mean_score": 0, - "normalization_id": null, - "resources": {}, + "normalization_id": "log_cp10k", + "resources": { + "exit_code": 0, + "duration_sec": 14.5, + "cpu_pct": 172.8, + "peak_memory_mb": 5940, + "disk_read_mb": 358, + "disk_write_mb": 136 + }, "task_id": "task_denoising" }, { @@ -1627,2346 +2334,7 @@ "poisson": 1 }, "mean_score": 1, - "normalization_id": null, - "resources": {}, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 818, - "cpu_pct": 111.5, - "peak_memory_mb": 25191, - "disk_read_mb": 288, - "disk_write_mb": 772 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1581, - "cpu_pct": 108.7, - "peak_memory_mb": 56832, - "disk_read_mb": 230, - "disk_write_mb": 1229 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1183, - "cpu_pct": 101.3, - "peak_memory_mb": 34304, - "disk_read_mb": 379, - "disk_write_mb": 953 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 327, - "cpu_pct": 112.6, - "peak_memory_mb": 13210, - "disk_read_mb": 108, - "disk_write_mb": 171 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1942, - "cpu_pct": 184.4, - "peak_memory_mb": 48333, - "disk_read_mb": 341, - "disk_write_mb": 1229 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1445, - "cpu_pct": 119.3, - "peak_memory_mb": 49460, - "disk_read_mb": 540, - "disk_write_mb": 955 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 2091, - "cpu_pct": 100.7, - "peak_memory_mb": 68096, - "disk_read_mb": 565, - "disk_write_mb": 1332 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 2313, - "cpu_pct": 101.6, - "peak_memory_mb": 45568, - "disk_read_mb": 1434, - "disk_write_mb": 1434 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 805, - "cpu_pct": 102.5, - "peak_memory_mb": 25805, - "disk_read_mb": 99, - "disk_write_mb": 243 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 368, - "cpu_pct": 123.4, - "peak_memory_mb": 14746, - "disk_read_mb": 256, - "disk_write_mb": 662 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 376, - "cpu_pct": 109, - "peak_memory_mb": 11264, - "disk_read_mb": 68, - "disk_write_mb": 54 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 304, - "cpu_pct": 104.1, - "peak_memory_mb": 13210, - "disk_read_mb": 279, - "disk_write_mb": 164 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1062, - "cpu_pct": 101.6, - "peak_memory_mb": 38605, - "disk_read_mb": 632, - "disk_write_mb": 831 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 62, - "cpu_pct": 128.8, - "peak_memory_mb": 7168, - "disk_read_mb": 54, - "disk_write_mb": 40 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 522, - "cpu_pct": 109.6, - "peak_memory_mb": 14951, - "disk_read_mb": 128, - "disk_write_mb": 205 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1912, - "cpu_pct": 101, - "peak_memory_mb": 57037, - "disk_read_mb": 416, - "disk_write_mb": 1229 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "alra", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1249, - "cpu_pct": 101.1, - "peak_memory_mb": 43520, - "disk_read_mb": 367, - "disk_write_mb": 1127 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 419, - "cpu_pct": 2410.2, - "peak_memory_mb": 18535, - "disk_read_mb": 322, - "disk_write_mb": 894 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 926, - "cpu_pct": 3398.3, - "peak_memory_mb": 20173, - "disk_read_mb": 265, - "disk_write_mb": 1844 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 877, - "cpu_pct": 3463.3, - "peak_memory_mb": 19456, - "disk_read_mb": 413, - "disk_write_mb": 1434 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 140, - "cpu_pct": 3125.1, - "peak_memory_mb": 16794, - "disk_read_mb": 143, - "disk_write_mb": 363 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 557, - "cpu_pct": 3209.3, - "peak_memory_mb": 19764, - "disk_read_mb": 376, - "disk_write_mb": 1639 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 633, - "cpu_pct": 2926.6, - "peak_memory_mb": 20890, - "disk_read_mb": 575, - "disk_write_mb": 1639 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1210, - "cpu_pct": 3744, - "peak_memory_mb": 22836, - "disk_read_mb": 600, - "disk_write_mb": 2458 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 1369, - "cpu_pct": 3681.6, - "peak_memory_mb": 25703, - "disk_read_mb": 1434, - "disk_write_mb": 2151 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 236, - "cpu_pct": 2586.9, - "peak_memory_mb": 17818, - "disk_read_mb": 134, - "disk_write_mb": 889 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 312, - "cpu_pct": 2695.6, - "peak_memory_mb": 17408, - "disk_read_mb": 291, - "disk_write_mb": 514 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 292, - "cpu_pct": 3512.1, - "peak_memory_mb": 25600, - "disk_read_mb": 103, - "disk_write_mb": 268 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 107, - "cpu_pct": 2777.1, - "peak_memory_mb": 18125, - "disk_read_mb": 314, - "disk_write_mb": 358 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 314, - "cpu_pct": 2518.7, - "peak_memory_mb": 19354, - "disk_read_mb": 667, - "disk_write_mb": 1229 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 52, - "cpu_pct": 2417.5, - "peak_memory_mb": 15872, - "disk_read_mb": 89, - "disk_write_mb": 65 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 222, - "cpu_pct": 2616.7, - "peak_memory_mb": 16794, - "disk_read_mb": 162, - "disk_write_mb": 407 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 814, - "cpu_pct": 3442.5, - "peak_memory_mb": 20480, - "disk_read_mb": 451, - "disk_write_mb": 1946 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "dca", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 732, - "cpu_pct": 3259.2, - "peak_memory_mb": 19354, - "disk_read_mb": 402, - "disk_write_mb": 1434 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 133, - "cpu_pct": 1327, - "peak_memory_mb": 17818, - "disk_read_mb": 290, - "disk_write_mb": 139 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 477, - "cpu_pct": 454.3, - "peak_memory_mb": 35328, - "disk_read_mb": 233, - "disk_write_mb": 183 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 262, - "cpu_pct": 707.7, - "peak_memory_mb": 27956, - "disk_read_mb": 381, - "disk_write_mb": 194 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 54.1, - "cpu_pct": 2048.3, - "peak_memory_mb": 10445, - "disk_read_mb": 110, - "disk_write_mb": 52 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 291, - "cpu_pct": 884.3, - "peak_memory_mb": 30516, - "disk_read_mb": 344, - "disk_write_mb": 195 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 348, - "cpu_pct": 679.5, - "peak_memory_mb": 31949, - "disk_read_mb": 542, - "disk_write_mb": 276 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 532, - "cpu_pct": 514, - "peak_memory_mb": 41370, - "disk_read_mb": 567, - "disk_write_mb": 284 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 296, - "cpu_pct": 575, - "peak_memory_mb": 31437, - "disk_read_mb": 1434, - "disk_write_mb": 589 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 164, - "cpu_pct": 855.7, - "peak_memory_mb": 19661, - "disk_read_mb": 101, - "disk_write_mb": 71 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 104, - "cpu_pct": 1030.6, - "peak_memory_mb": 13517, - "disk_read_mb": 258, - "disk_write_mb": 107 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 60, - "cpu_pct": 3729, - "peak_memory_mb": 9216, - "disk_read_mb": 70, - "disk_write_mb": 15 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 54.7, - "cpu_pct": 2477.3, - "peak_memory_mb": 9626, - "disk_read_mb": 282, - "disk_write_mb": 100 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 222, - "cpu_pct": 616.6, - "peak_memory_mb": 23860, - "disk_read_mb": 635, - "disk_write_mb": 261 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 17.9, - "cpu_pct": 3560.4, - "peak_memory_mb": 6452, - "disk_read_mb": 57, - "disk_write_mb": 13 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 65, - "cpu_pct": 1625.5, - "peak_memory_mb": 11060, - "disk_read_mb": 130, - "disk_write_mb": 64 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 502, - "cpu_pct": 455.3, - "peak_memory_mb": 36352, - "disk_read_mb": 419, - "disk_write_mb": 243 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "knn_smoothing", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 241, - "cpu_pct": 749.4, - "peak_memory_mb": 27136, - "disk_read_mb": 370, - "disk_write_mb": 208 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 140, - "cpu_pct": 914.7, - "peak_memory_mb": 11981, - "disk_read_mb": 302, - "disk_write_mb": 1434 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 344, - "cpu_pct": 2049.5, - "peak_memory_mb": 19047, - "disk_read_mb": 245, - "disk_write_mb": 2765 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 263, - "cpu_pct": 1305.3, - "peak_memory_mb": 15770, - "disk_read_mb": 393, - "disk_write_mb": 2253 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 52.3, - "cpu_pct": 1314.1, - "peak_memory_mb": 8295, - "disk_read_mb": 122, - "disk_write_mb": 518 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 321, - "cpu_pct": 1815.7, - "peak_memory_mb": 16896, - "disk_read_mb": 356, - "disk_write_mb": 2356 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 292, - "cpu_pct": 1836.2, - "peak_memory_mb": 19559, - "disk_read_mb": 554, - "disk_write_mb": 2356 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 373, - "cpu_pct": 1033.1, - "peak_memory_mb": 22631, - "disk_read_mb": 579, - "disk_write_mb": 3277 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 383, - "cpu_pct": 864.4, - "peak_memory_mb": 20583, - "disk_read_mb": 1434, - "disk_write_mb": 3175 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 210, - "cpu_pct": 1246, - "peak_memory_mb": 11879, - "disk_read_mb": 113, - "disk_write_mb": 1127 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 109, - "cpu_pct": 1287.9, - "peak_memory_mb": 10036, - "disk_read_mb": 270, - "disk_write_mb": 910 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 21.2, - "cpu_pct": 717.5, - "peak_memory_mb": 7783, - "disk_read_mb": 82, - "disk_write_mb": 66 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 96, - "cpu_pct": 300.9, - "peak_memory_mb": 8295, - "disk_read_mb": 294, - "disk_write_mb": 569 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 242, - "cpu_pct": 1239.9, - "peak_memory_mb": 15770, - "disk_read_mb": 647, - "disk_write_mb": 1946 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 12.9, - "cpu_pct": 787.1, - "peak_memory_mb": 6247, - "disk_read_mb": 69, - "disk_write_mb": 110 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 59.7, - "cpu_pct": 1090.5, - "peak_memory_mb": 8602, - "disk_read_mb": 142, - "disk_write_mb": 612 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 381, - "cpu_pct": 1440.8, - "peak_memory_mb": 20071, - "disk_read_mb": 431, - "disk_write_mb": 2560 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "magic", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 482, - "cpu_pct": 789.9, - "peak_memory_mb": 15565, - "disk_read_mb": 382, - "disk_write_mb": 2560 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 13.2, - "cpu_pct": 302.4, - "peak_memory_mb": 3175, - "disk_read_mb": 278, - "disk_write_mb": 102 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 11.7, - "cpu_pct": 184.8, - "peak_memory_mb": 3072, - "disk_read_mb": 221, - "disk_write_mb": 80 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 15.5, - "cpu_pct": 151.3, - "peak_memory_mb": 5940, - "disk_read_mb": 369, - "disk_write_mb": 138 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 6.4, - "cpu_pct": 261.8, - "peak_memory_mb": 2970, - "disk_read_mb": 98, - "disk_write_mb": 33 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 15.1, - "cpu_pct": 248.7, - "peak_memory_mb": 3175, - "disk_read_mb": 332, - "disk_write_mb": 123 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 27.2, - "cpu_pct": 168.3, - "peak_memory_mb": 3380, - "disk_read_mb": 530, - "disk_write_mb": 206 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 26.4, - "cpu_pct": 162.3, - "peak_memory_mb": 3380, - "disk_read_mb": 555, - "disk_write_mb": 214 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 97, - "cpu_pct": 145.3, - "peak_memory_mb": 4301, - "disk_read_mb": 1434, - "disk_write_mb": 747 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 8.1, - "cpu_pct": 122.4, - "peak_memory_mb": 5632, - "disk_read_mb": 89, - "disk_write_mb": 31 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 14.2, - "cpu_pct": 208.7, - "peak_memory_mb": 3072, - "disk_read_mb": 246, - "disk_write_mb": 92 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 3.2, - "cpu_pct": 389.3, - "peak_memory_mb": 5632, - "disk_read_mb": 58, - "disk_write_mb": 17 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 15.5, - "cpu_pct": 154, - "peak_memory_mb": 5837, - "disk_read_mb": 270, - "disk_write_mb": 118 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 30.1, - "cpu_pct": 228.1, - "peak_memory_mb": 3482, - "disk_read_mb": 623, - "disk_write_mb": 257 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 3.5, - "cpu_pct": 411.4, - "peak_memory_mb": 2868, - "disk_read_mb": 45, - "disk_write_mb": 11 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 241.1, - "peak_memory_mb": 2970, - "disk_read_mb": 118, - "disk_write_mb": 41 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 22.1, - "cpu_pct": 153.7, - "peak_memory_mb": 3277, - "disk_read_mb": 407, - "disk_write_mb": 162 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "no_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 14.5, - "cpu_pct": 172.8, - "peak_memory_mb": 5940, - "disk_read_mb": 358, - "disk_write_mb": 136 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/dkd/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 8.7, - "cpu_pct": 224.8, - "peak_memory_mb": 3175, - "disk_read_mb": 327, - "disk_write_mb": 61 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/gtex_v9/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 7.2, - "cpu_pct": 299.9, - "peak_memory_mb": 3072, - "disk_read_mb": 253, - "disk_write_mb": 47 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hcla/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 11.5, - "cpu_pct": 317.9, - "peak_memory_mb": 3277, - "disk_read_mb": 443, - "disk_write_mb": 84 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/hypomap/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 4.4, - "cpu_pct": 258.1, - "peak_memory_mb": 2970, - "disk_read_mb": 114, - "disk_write_mb": 20 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/immune_cell_atlas/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 10.8, - "cpu_pct": 193.2, - "peak_memory_mb": 3277, - "disk_read_mb": 398, - "disk_write_mb": 74 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/mouse_pancreas_atlas/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 16.3, - "cpu_pct": 254.6, - "peak_memory_mb": 3482, - "disk_read_mb": 640, - "disk_write_mb": 125 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "cellxgene_census/tabula_sapiens/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 18.8, - "cpu_pct": 219.4, - "peak_memory_mb": 3584, - "disk_read_mb": 679, - "disk_write_mb": 132 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/allen_brain_atlas/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 83, - "cpu_pct": 188.9, - "peak_memory_mb": 5428, - "disk_read_mb": 2560, - "disk_write_mb": 626 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/cengen/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 4.1, - "cpu_pct": 307.2, - "peak_memory_mb": 2970, - "disk_read_mb": 105, - "disk_write_mb": 19 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/immune_cells/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 10.3, - "cpu_pct": 175, - "peak_memory_mb": 5837, - "disk_read_mb": 295, - "disk_write_mb": 56 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 3.2, - "cpu_pct": 404.9, - "peak_memory_mb": 5632, - "disk_read_mb": 77, - "disk_write_mb": 13 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 14.7, - "cpu_pct": 176.3, - "peak_memory_mb": 3277, - "disk_read_mb": 403, - "disk_write_mb": 90 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/pancreas/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 22.9, - "cpu_pct": 169.3, - "peak_memory_mb": 3789, - "disk_read_mb": 883, - "disk_write_mb": 183 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_1k_pbmc/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 3, - "cpu_pct": 396.8, - "peak_memory_mb": 2868, - "disk_read_mb": 51, - "disk_write_mb": 7 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tenx_5k_pbmc/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 6.1, - "cpu_pct": 296.6, - "peak_memory_mb": 2970, - "disk_read_mb": 140, - "disk_write_mb": 25 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/tnbc_wu2021/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, - "resources": { - "exit_code": 0, - "duration_sec": 14.2, - "cpu_pct": 220.8, - "peak_memory_mb": 3380, - "disk_read_mb": 494, - "disk_write_mb": 99 - }, - "task_id": "task_denoising" - }, - { - "dataset_id": "openproblems_v1/zebrafish/log_cp10k", - "method_id": "perfect_denoising", - "metric_values": { - "poisson": "NA", - "mse": "NA" - }, - "scaled_scores": { - "poisson": 0, - "mse": 0 - }, - "mean_score": 0, - "normalization_id": null, + "normalization_id": "log_cp10k", "resources": { "exit_code": 0, "duration_sec": 11.1, From bf47b64b0c92732d707ac3b81cecc49dab9576c5 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Wed, 2 Oct 2024 16:45:25 +0200 Subject: [PATCH 11/12] update submodules --- _core | 2 +- _openproblems | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/_core b/_core index 5e2d2717..a938a529 160000 --- a/_core +++ b/_core @@ -1 +1 @@ -Subproject commit 5e2d27178b2590ef028dac199b16bd49035972c8 +Subproject commit a938a52915b3b4af67e04c92f3dfd13a31963413 diff --git a/_openproblems b/_openproblems index bf274d82..a01361f4 160000 --- a/_openproblems +++ b/_openproblems @@ -1 +1 @@ -Subproject commit bf274d8279e2686df64b75a799c08aa9bf311101 +Subproject commit a01361f4ce2cac290991756717f49cbe85815b85 From c0cdb6bb276f375fa37d2e9de17dd88da48f71c7 Mon Sep 17 00:00:00 2001 From: Kai Waldrant Date: Mon, 14 Oct 2024 22:34:12 +0200 Subject: [PATCH 12/12] update results --- results/task_denoising/data/dataset_info.json | 230 +-- results/task_denoising/data/method_info.json | 24 +- .../data/metric_execution_info.json | 1462 ++++++++-------- results/task_denoising/data/metric_info.json | 8 +- .../task_denoising/data/quality_control.json | 156 +- results/task_denoising/data/results.json | 1482 ++++++++--------- 6 files changed, 1681 insertions(+), 1681 deletions(-) diff --git a/results/task_denoising/data/dataset_info.json b/results/task_denoising/data/dataset_info.json index bda7d411..0f46b905 100644 --- a/results/task_denoising/data/dataset_info.json +++ b/results/task_denoising/data/dataset_info.json @@ -1,69 +1,69 @@ [ { "task_id": "task_denoising", - "dataset_id": "cellxgene_census/dkd", - "dataset_name": "Diabetic Kidney Disease", - "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", - "dataset_description": "Multimodal single cell sequencing is a powerful tool for interrogating cell-specific changes in transcription and chromatin accessibility. We performed single nucleus RNA (snRNA-seq) and assay for transposase accessible chromatin sequencing (snATAC-seq) on human kidney cortex from donors with and without diabetic kidney disease (DKD) to identify altered signaling pathways and transcription factors associated with DKD. Both snRNA-seq and snATAC-seq had an increased proportion of VCAM1+ injured proximal tubule cells (PT_VCAM1) in DKD samples. PT_VCAM1 has a pro-inflammatory expression signature and transcription factor motif enrichment implicated NFkB signaling. We used stratified linkage disequilibrium score regression to partition heritability of kidney-function-related traits using publicly-available GWAS summary statistics. Cell-specific PT_VCAM1 peaks were enriched for heritability of chronic kidney disease (CKD), suggesting that genetic background may regulate chromatin accessibility and DKD progression. snATAC-seq found cell-specific differentially accessible regions (DAR) throughout the nephron that change accessibility in DKD and these regions were enriched for glucocorticoid receptor (GR) motifs. Changes in chromatin accessibility were associated with decreased expression of insulin receptor, increased gluconeogenesis, and decreased expression of the GR cytosolic chaperone, FKBP5, in the diabetic proximal tubule. Cleavage under targets and release using nuclease (CUT&RUN) profiling of GR binding in bulk kidney cortex and an in vitro model of the proximal tubule (RPTEC) showed that DAR co-localize with GR binding sites. CRISPRi silencing of GR response elements (GRE) in the FKBP5 gene body reduced FKBP5 expression in RPTEC, suggesting that reduced FKBP5 chromatin accessibility in DKD may alter cellular response to GR. We developed an open-source tool for single cell allele specific analysis (SALSA) to model the effect of genetic background on gene expression. Heterozygous germline single nucleotide variants (SNV) in proximal tubule ATAC peaks were associated with allele-specific chromatin accessibility and differential expression of target genes within cis-coaccessibility networks. Partitioned heritability of proximal tubule ATAC peaks with a predicted allele-specific effect was enriched for eGFR, suggesting that genetic background may modify DKD progression in a cell-specific manner.", - "data_reference": "wilson2022multimodal", - "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b", - "date_created": "20-09-2024", - "file_size": 50805568 + "dataset_id": "openproblems_v1/zebrafish", + "dataset_name": "Zebrafish embryonic cells", + "dataset_summary": "Single-cell mRNA sequencing of zebrafish embryonic cells.", + "dataset_description": "90k cells from zebrafish embryos throughout the first day of development, with and without a knockout of chordin, an important developmental gene.", + "data_reference": "wagner2018single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294", + "date_created": "02-10-2024", + "file_size": 51152176 }, { "task_id": "task_denoising", - "dataset_id": "cellxgene_census/hypomap", - "dataset_name": "HypoMap", - "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", - "dataset_description": "The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalogue and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here we present an integrated reference atlas “HypoMap” of the murine hypothalamus consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from SmartSeq2 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity.", - "data_reference": "steuernagel2022hypomap", - "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36", - "date_created": "20-09-2024", - "file_size": 16024072 + "dataset_id": "cellxgene_census/mouse_pancreas_atlas", + "dataset_name": "Mouse Pancreatic Islet Atlas", + "dataset_summary": "Mouse pancreatic islet scRNA-seq atlas across sexes, ages, and stress conditions including diabetes", + "dataset_description": "To better understand pancreatic β-cell heterogeneity we generated a mouse pancreatic islet atlas capturing a wide range of biological conditions. The atlas contains scRNA-seq datasets of over 300,000 mouse pancreatic islet cells, of which more than 100,000 are β-cells, from nine datasets with 56 samples, including two previously unpublished datasets. The samples vary in sex, age (ranging from embryonic to aged), chemical stress, and disease status (including T1D NOD model development and two T2D models, mSTZ and db/db) together with different diabetes treatments. Additional information about data fields is available in anndata uns field 'field_descriptions' and on https://github.com/theislab/mm_pancreas_atlas_rep/blob/main/resources/cellxgene.md.", + "data_reference": "hrovatin2023delineating", + "data_url": "https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070", + "date_created": "02-10-2024", + "file_size": 58395968 }, { "task_id": "task_denoising", - "dataset_id": "openproblems_v1/immune_cells", - "dataset_name": "Human immune", - "dataset_summary": "Human immune cells dataset from the scIB benchmarks", - "dataset_description": "Human immune cells from peripheral blood and bone marrow taken from 5 datasets comprising 10 batches across technologies (10X, Smart-seq2).", - "data_reference": "luecken2022benchmarking", - "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html", - "date_created": "20-09-2024", - "file_size": 50923456 + "dataset_id": "openproblems_v1/tenx_1k_pbmc", + "dataset_name": "1k PBMCs", + "dataset_summary": "1k peripheral blood mononuclear cells from a healthy donor", + "dataset_description": "1k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in November 2018 by 10X Genomics.", + "data_reference": "10x2018pbmc", + "data_url": "https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0", + "date_created": "02-10-2024", + "file_size": 6217680 }, { "task_id": "task_denoising", - "dataset_id": "cellxgene_census/tabula_sapiens", - "dataset_name": "Tabula Sapiens", - "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", - "dataset_description": "Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects. This work is the product of the Tabula Sapiens Consortium. Taking the organs from the same individual controls for genetic background, age, environment, and epigenetic effects and allows detailed analysis and comparison of cell types that are shared between tissues. Our work creates a detailed portrait of cell types as well as their distribution and variation in gene expression across tissues and within the endothelial, epithelial, stromal and immune compartments.", - "data_reference": "consortium2022tabula", - "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5", - "date_created": "20-09-2024", - "file_size": 129380976 + "dataset_id": "openproblems_v1/cengen", + "dataset_name": "CeNGEN", + "dataset_summary": "Complete Gene Expression Map of an Entire Nervous System", + "dataset_description": "100k FACS-isolated C. elegans neurons from 17 experiments sequenced on 10x Genomics.", + "data_reference": "hammarlund2018cengen", + "data_url": "https://www.cengen.org", + "date_created": "02-10-2024", + "file_size": 12760976 }, { "task_id": "task_denoising", - "dataset_id": "openproblems_v1/zebrafish", - "dataset_name": "Zebrafish embryonic cells", - "dataset_summary": "Single-cell mRNA sequencing of zebrafish embryonic cells.", - "dataset_description": "90k cells from zebrafish embryos throughout the first day of development, with and without a knockout of chordin, an important developmental gene.", - "data_reference": "wagner2018single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112294", - "date_created": "20-09-2024", - "file_size": 78080928 + "dataset_id": "openproblems_v1/tnbc_wu2021", + "dataset_name": "Triple-Negative Breast Cancer", + "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", + "dataset_description": "1535 cells from six TNBC donors by (Wu et al., 2021). This dataset includes cytokine activities, inferred using a multivariate linear model with cytokine-focused signatures, as assumed true cell-cell communication (Dimitrov et al., 2022).", + "data_reference": "wu2021single", + "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389", + "date_created": "02-10-2024", + "file_size": 46471680 }, { "task_id": "task_denoising", - "dataset_id": "openproblems_v1/pancreas", - "dataset_name": "Human pancreas", - "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", - "dataset_description": "Human pancreatic islet scRNA-seq data from 6 datasets across technologies (CEL-seq, CEL-seq2, Smart-seq2, inDrop, Fluidigm C1, and SMARTER-seq).", - "data_reference": "luecken2022benchmarking", - "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html", - "date_created": "20-09-2024", - "file_size": 273053808 + "dataset_id": "cellxgene_census/hcla", + "dataset_name": "Human Lung Cell Atlas", + "dataset_summary": "An integrated cell atlas of the human lung in health and disease (core)", + "dataset_description": "The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung. It consists of over 2 million cells from the respiratory tract of 486 individuals, and includes 49 different datasets. It is split into the HLCA core, and the extended or full HLCA. The HLCA core includes data of healthy lung tissue from 107 individuals, and includes manual cell type annotations based on consensus across 6 independent experts, as well as demographic, biological and technical metadata.", + "data_reference": "sikkema2023integrated", + "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293", + "date_created": "02-10-2024", + "file_size": 77918688 }, { "task_id": "task_denoising", @@ -73,8 +73,8 @@ "dataset_description": "5k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in July 2019 by 10X Genomics.", "data_reference": "10x2019pbmc", "data_url": "https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-v-3-chemistry-3-1-standard-3-1-0", - "date_created": "20-09-2024", - "file_size": 22470440 + "date_created": "02-10-2024", + "file_size": 22471584 }, { "task_id": "task_denoising", @@ -84,52 +84,19 @@ "dataset_description": "1656 hematopoietic stem and progenitor cells from mouse bone marrow. Sequenced by Smart-seq2.", "data_reference": "nestorowa2016single", "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81682", - "date_created": "20-09-2024", - "file_size": 140227444 - }, - { - "task_id": "task_denoising", - "dataset_id": "cellxgene_census/mouse_pancreas_atlas", - "dataset_name": "Mouse Pancreatic Islet Atlas", - "dataset_summary": "Mouse pancreatic islet scRNA-seq atlas across sexes, ages, and stress conditions including diabetes", - "dataset_description": "To better understand pancreatic β-cell heterogeneity we generated a mouse pancreatic islet atlas capturing a wide range of biological conditions. The atlas contains scRNA-seq datasets of over 300,000 mouse pancreatic islet cells, of which more than 100,000 are β-cells, from nine datasets with 56 samples, including two previously unpublished datasets. The samples vary in sex, age (ranging from embryonic to aged), chemical stress, and disease status (including T1D NOD model development and two T2D models, mSTZ and db/db) together with different diabetes treatments. Additional information about data fields is available in anndata uns field 'field_descriptions' and on https://github.com/theislab/mm_pancreas_atlas_rep/blob/main/resources/cellxgene.md.", - "data_reference": "hrovatin2023delineating", - "data_url": "https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070", - "date_created": "20-09-2024", - "file_size": 115102144 + "date_created": "02-10-2024", + "file_size": 140202724 }, { "task_id": "task_denoising", - "dataset_id": "openproblems_v1/cengen", - "dataset_name": "CeNGEN", - "dataset_summary": "Complete Gene Expression Map of an Entire Nervous System", - "dataset_description": "100k FACS-isolated C. elegans neurons from 17 experiments sequenced on 10x Genomics.", - "data_reference": "hammarlund2018cengen", - "data_url": "https://www.cengen.org", - "date_created": "20-09-2024", - "file_size": 16473280 - }, - { - "task_id": "task_denoising", - "dataset_id": "openproblems_v1/tenx_1k_pbmc", - "dataset_name": "1k PBMCs", - "dataset_summary": "1k peripheral blood mononuclear cells from a healthy donor", - "dataset_description": "1k Peripheral Blood Mononuclear Cells (PBMCs) from a healthy donor. Sequenced on 10X v3 chemistry in November 2018 by 10X Genomics.", - "data_reference": "10x2018pbmc", - "data_url": "https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0", - "date_created": "20-09-2024", - "file_size": 6204096 - }, - { - "task_id": "task_denoising", - "dataset_id": "openproblems_v1/tnbc_wu2021", - "dataset_name": "Triple-Negative Breast Cancer", - "dataset_summary": "1535 cells from six fresh triple-negative breast cancer tumors.", - "dataset_description": "1535 cells from six TNBC donors by (Wu et al., 2021). This dataset includes cytokine activities, inferred using a multivariate linear model with cytokine-focused signatures, as assumed true cell-cell communication (Dimitrov et al., 2022).", - "data_reference": "wu2021single", - "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118389", - "date_created": "20-09-2024", - "file_size": 91602304 + "dataset_id": "cellxgene_census/gtex_v9", + "dataset_name": "GTEX v9", + "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", + "dataset_description": "Understanding the function of genes and their regulation in tissue homeostasis and disease requires knowing the cellular context in which genes are expressed in tissues across the body. Single cell genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are focused on single tissue types. Here, we establish a framework for profiling multiple tissues across the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei profiles, and benchmark them vs. scRNA-seq of comparable fresh tissues. We use a conditional variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory methods. We highlight shared and tissue-specific features of tissue-resident immune cells, identifying tissue-restricted and non-restricted resident myeloid populations. These include a cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and the broad presence of LAM-like macrophages across healthy tissues that is also observed in disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the neuromuscular, metabolic, and immune components of these diseases, and biological processes involved in their pathology. For common complex diseases and traits analyzed by GWAS, we identify the cell types and gene modules that potentially underlie disease mechanisms. The experimental and analytical frameworks we describe will enable the generation of large-scale studies of how cellular and molecular processes vary across individuals and populations.", + "data_reference": "eraslan2022singlenucleus", + "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470", + "date_created": "02-10-2024", + "file_size": 15792224 }, { "task_id": "task_denoising", @@ -139,8 +106,30 @@ "dataset_description": "660 FACS-isolated myeloid cells from 9 experiments sequenced using C1 Fluidigm and SMARTseq in 2016 by Olsson et al.", "data_reference": "olsson2016single", "data_url": "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70245", - "date_created": "20-09-2024", - "file_size": 19665956 + "date_created": "02-10-2024", + "file_size": 19666052 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/dkd", + "dataset_name": "Diabetic Kidney Disease", + "dataset_summary": "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression", + "dataset_description": "Multimodal single cell sequencing is a powerful tool for interrogating cell-specific changes in transcription and chromatin accessibility. We performed single nucleus RNA (snRNA-seq) and assay for transposase accessible chromatin sequencing (snATAC-seq) on human kidney cortex from donors with and without diabetic kidney disease (DKD) to identify altered signaling pathways and transcription factors associated with DKD. Both snRNA-seq and snATAC-seq had an increased proportion of VCAM1+ injured proximal tubule cells (PT_VCAM1) in DKD samples. PT_VCAM1 has a pro-inflammatory expression signature and transcription factor motif enrichment implicated NFkB signaling. We used stratified linkage disequilibrium score regression to partition heritability of kidney-function-related traits using publicly-available GWAS summary statistics. Cell-specific PT_VCAM1 peaks were enriched for heritability of chronic kidney disease (CKD), suggesting that genetic background may regulate chromatin accessibility and DKD progression. snATAC-seq found cell-specific differentially accessible regions (DAR) throughout the nephron that change accessibility in DKD and these regions were enriched for glucocorticoid receptor (GR) motifs. Changes in chromatin accessibility were associated with decreased expression of insulin receptor, increased gluconeogenesis, and decreased expression of the GR cytosolic chaperone, FKBP5, in the diabetic proximal tubule. Cleavage under targets and release using nuclease (CUT&RUN) profiling of GR binding in bulk kidney cortex and an in vitro model of the proximal tubule (RPTEC) showed that DAR co-localize with GR binding sites. CRISPRi silencing of GR response elements (GRE) in the FKBP5 gene body reduced FKBP5 expression in RPTEC, suggesting that reduced FKBP5 chromatin accessibility in DKD may alter cellular response to GR. We developed an open-source tool for single cell allele specific analysis (SALSA) to model the effect of genetic background on gene expression. Heterozygous germline single nucleotide variants (SNV) in proximal tubule ATAC peaks were associated with allele-specific chromatin accessibility and differential expression of target genes within cis-coaccessibility networks. Partitioned heritability of proximal tubule ATAC peaks with a predicted allele-specific effect was enriched for eGFR, suggesting that genetic background may modify DKD progression in a cell-specific manner.", + "data_reference": "wilson2022multimodal", + "data_url": "https://cellxgene.cziscience.com/collections/b3e2c6e3-9b05-4da9-8f42-da38a664b45b", + "date_created": "02-10-2024", + "file_size": 50805456 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/hypomap", + "dataset_name": "HypoMap", + "dataset_summary": "A unified single cell gene expression atlas of the murine hypothalamus", + "dataset_description": "The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalogue and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here we present an integrated reference atlas “HypoMap” of the murine hypothalamus consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from SmartSeq2 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity.", + "data_reference": "steuernagel2022hypomap", + "data_url": "https://cellxgene.cziscience.com/collections/d86517f0-fa7e-4266-b82e-a521350d6d36", + "date_created": "02-10-2024", + "file_size": 46841520 }, { "task_id": "task_denoising", @@ -150,8 +139,8 @@ "dataset_description": "Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. We surveyed the immune compartment of 16 tissues from 12 adult donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of ~360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of finely phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. Our multitissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis, and antigen receptor sequencing.", "data_reference": "dominguez2022crosstissue", "data_url": "https://cellxgene.cziscience.com/collections/62ef75e4-cbea-454e-a0ce-998ec40223d3", - "date_created": "20-09-2024", - "file_size": 69103776 + "date_created": "02-10-2024", + "file_size": 59557448 }, { "task_id": "task_denoising", @@ -161,29 +150,40 @@ "dataset_description": "A murine brain atlas with adjacent cell types as assumed benchmark truth, inferred from deconvolution proportion correlations using matching 10x Visium slides (see Dimitrov et al., 2022).", "data_reference": "tasic2016adult", "data_url": "http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585", - "date_created": "20-09-2024", - "file_size": 1211812848 + "date_created": "02-10-2024", + "file_size": 851626584 }, { "task_id": "task_denoising", - "dataset_id": "cellxgene_census/hcla", - "dataset_name": "Human Lung Cell Atlas", - "dataset_summary": "An integrated cell atlas of the human lung in health and disease (core)", - "dataset_description": "The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung. It consists of over 2 million cells from the respiratory tract of 486 individuals, and includes 49 different datasets. It is split into the HLCA core, and the extended or full HLCA. The HLCA core includes data of healthy lung tissue from 107 individuals, and includes manual cell type annotations based on consensus across 6 independent experts, as well as demographic, biological and technical metadata.", - "data_reference": "sikkema2023integrated", - "data_url": "https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293", - "date_created": "20-09-2024", - "file_size": 77918688 + "dataset_id": "openproblems_v1/immune_cells", + "dataset_name": "Human immune", + "dataset_summary": "Human immune cells dataset from the scIB benchmarks", + "dataset_description": "Human immune cells from peripheral blood and bone marrow taken from 5 datasets comprising 10 batches across technologies (10X, Smart-seq2).", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_immune_cell_hum.html", + "date_created": "02-10-2024", + "file_size": 47439616 }, { "task_id": "task_denoising", - "dataset_id": "cellxgene_census/gtex_v9", - "dataset_name": "GTEX v9", - "dataset_summary": "Single-nucleus cross-tissue molecular reference maps to decipher disease gene function", - "dataset_description": "Understanding the function of genes and their regulation in tissue homeostasis and disease requires knowing the cellular context in which genes are expressed in tissues across the body. Single cell genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are focused on single tissue types. Here, we establish a framework for profiling multiple tissues across the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei profiles, and benchmark them vs. scRNA-seq of comparable fresh tissues. We use a conditional variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory methods. We highlight shared and tissue-specific features of tissue-resident immune cells, identifying tissue-restricted and non-restricted resident myeloid populations. These include a cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and the broad presence of LAM-like macrophages across healthy tissues that is also observed in disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the neuromuscular, metabolic, and immune components of these diseases, and biological processes involved in their pathology. For common complex diseases and traits analyzed by GWAS, we identify the cell types and gene modules that potentially underlie disease mechanisms. The experimental and analytical frameworks we describe will enable the generation of large-scale studies of how cellular and molecular processes vary across individuals and populations.", - "data_reference": "eraslan2022singlenucleus", - "data_url": "https://cellxgene.cziscience.com/collections/a3ffde6c-7ad2-498a-903c-d58e732f7470", - "date_created": "20-09-2024", - "file_size": 34214816 + "dataset_id": "openproblems_v1/pancreas", + "dataset_name": "Human pancreas", + "dataset_summary": "Human pancreas cells dataset from the scIB benchmarks", + "dataset_description": "Human pancreatic islet scRNA-seq data from 6 datasets across technologies (CEL-seq, CEL-seq2, Smart-seq2, inDrop, Fluidigm C1, and SMARTER-seq).", + "data_reference": "luecken2022benchmarking", + "data_url": "https://theislab.github.io/scib-reproducibility/dataset_pancreas.html", + "date_created": "02-10-2024", + "file_size": 14734440 + }, + { + "task_id": "task_denoising", + "dataset_id": "cellxgene_census/tabula_sapiens", + "dataset_name": "Tabula Sapiens", + "dataset_summary": "A multiple-organ, single-cell transcriptomic atlas of humans", + "dataset_description": "Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects. This work is the product of the Tabula Sapiens Consortium. Taking the organs from the same individual controls for genetic background, age, environment, and epigenetic effects and allows detailed analysis and comparison of cell types that are shared between tissues. Our work creates a detailed portrait of cell types as well as their distribution and variation in gene expression across tissues and within the endothelial, epithelial, stromal and immune compartments.", + "data_reference": "consortium2022tabula", + "data_url": "https://cellxgene.cziscience.com/collections/e5f58829-1a66-40b5-a624-9046778e74f5", + "date_created": "02-10-2024", + "file_size": 72851720 } ] diff --git a/results/task_denoising/data/method_info.json b/results/task_denoising/data/method_info.json index 3441c23f..b6f9428a 100644 --- a/results/task_denoising/data/method_info.json +++ b/results/task_denoising/data/method_info.json @@ -8,9 +8,9 @@ "is_baseline": true, "paper_reference": null, "code_url": "https://github.com/openproblems-bio/task_denoising", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/control_methods/no_denoising/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/control_methods/no_denoising/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" }, { "task_id": "task_denoising", @@ -21,9 +21,9 @@ "is_baseline": true, "paper_reference": null, "code_url": "https://github.com/openproblems-bio/task_denoising", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/control_methods/perfect_denoising/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/control_methods/perfect_denoising/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" }, { "task_id": "task_denoising", @@ -34,9 +34,9 @@ "is_baseline": false, "paper_reference": "10.1101/397588", "code_url": "https://github.com/KlugerLab/ALRA", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/alra/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/methods/alra/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" }, { "task_id": "task_denoising", @@ -47,9 +47,9 @@ "is_baseline": false, "paper_reference": "10.1038/s41467-018-07931-2", "code_url": "https://github.com/theislab/dca", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/dca/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/methods/dca/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" }, { "task_id": "task_denoising", @@ -60,9 +60,9 @@ "is_baseline": false, "paper_reference": "10.1101/217737", "code_url": "https://github.com/yanailab/knn-smoothing", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/knn_smoothing/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/methods/knn_smoothing/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" }, { "task_id": "task_denoising", @@ -73,8 +73,8 @@ "is_baseline": false, "paper_reference": "10.1016/j.cell.2018.05.061", "code_url": "https://github.com/KrishnaswamyLab/MAGIC", - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/methods/magic/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/methods/magic/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76" + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0" } ] diff --git a/results/task_denoising/data/metric_execution_info.json b/results/task_denoising/data/metric_execution_info.json index c071c882..8203fa59 100644 --- a/results/task_denoising/data/metric_execution_info.json +++ b/results/task_denoising/data/metric_execution_info.json @@ -6,10 +6,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30.4, - "cpu_pct": 162.5, - "peak_memory_mb": 6964, - "disk_read_mb": 867, + "duration_sec": 24.9, + "cpu_pct": 110.2, + "peak_memory_mb": 7885, + "disk_read_mb": 940, "disk_write_mb": 1 } }, @@ -20,9 +20,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 22.3, - "cpu_pct": 141, - "peak_memory_mb": 10650, + "duration_sec": 20.2, + "cpu_pct": 132.4, + "peak_memory_mb": 7066, "disk_read_mb": 989, "disk_write_mb": 1 } @@ -34,8 +34,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30.8, - "cpu_pct": 89.4, + "duration_sec": 31.3, + "cpu_pct": 87.5, "peak_memory_mb": 9626, "disk_read_mb": 234, "disk_write_mb": 1 @@ -48,8 +48,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30.4, - "cpu_pct": 96.5, + "duration_sec": 30.1, + "cpu_pct": 95.3, "peak_memory_mb": 9626, "disk_read_mb": 1536, "disk_write_mb": 1 @@ -62,8 +62,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 12.6, - "cpu_pct": 146.6, + "duration_sec": 28.3, + "cpu_pct": 76.7, "peak_memory_mb": 10343, "disk_read_mb": 198, "disk_write_mb": 1 @@ -76,8 +76,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 12.4, - "cpu_pct": 175.5, + "duration_sec": 11.2, + "cpu_pct": 198.8, "peak_memory_mb": 11776, "disk_read_mb": 156, "disk_write_mb": 1 @@ -90,10 +90,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.3, - "cpu_pct": 189.1, - "peak_memory_mb": 11162, - "disk_read_mb": 1332, + "duration_sec": 20.3, + "cpu_pct": 136.9, + "peak_memory_mb": 7988, + "disk_read_mb": 557, "disk_write_mb": 1 } }, @@ -104,10 +104,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.9, - "cpu_pct": 170.2, - "peak_memory_mb": 13312, - "disk_read_mb": 1946, + "duration_sec": 23.2, + "cpu_pct": 104.9, + "peak_memory_mb": 6964, + "disk_read_mb": 1015, "disk_write_mb": 1 } }, @@ -118,10 +118,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 36.7, - "cpu_pct": 136.9, - "peak_memory_mb": 15156, - "disk_read_mb": 263, + "duration_sec": 19.7, + "cpu_pct": 106.7, + "peak_memory_mb": 7988, + "disk_read_mb": 156, "disk_write_mb": 1 } }, @@ -132,10 +132,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 49.6, - "cpu_pct": 137.3, - "peak_memory_mb": 15156, - "disk_read_mb": 2868, + "duration_sec": 30.7, + "cpu_pct": 107.3, + "peak_memory_mb": 9933, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -146,10 +146,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 22.4, - "cpu_pct": 143.2, - "peak_memory_mb": 15770, - "disk_read_mb": 160, + "duration_sec": 11.9, + "cpu_pct": 144.5, + "peak_memory_mb": 12288, + "disk_read_mb": 101, "disk_write_mb": 1 } }, @@ -160,10 +160,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 27.3, - "cpu_pct": 90.5, - "peak_memory_mb": 14132, - "disk_read_mb": 127, + "duration_sec": 15.1, + "cpu_pct": 171.5, + "peak_memory_mb": 10036, + "disk_read_mb": 85, "disk_write_mb": 1 } }, @@ -174,9 +174,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 34.4, - "cpu_pct": 205.3, - "peak_memory_mb": 9421, + "duration_sec": 32.3, + "cpu_pct": 123.6, + "peak_memory_mb": 15156, "disk_read_mb": 1024, "disk_write_mb": 1 } @@ -188,9 +188,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 33.9, - "cpu_pct": 178.2, - "peak_memory_mb": 11162, + "duration_sec": 32.5, + "cpu_pct": 87.9, + "peak_memory_mb": 10855, "disk_read_mb": 1639, "disk_write_mb": 1 } @@ -202,9 +202,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 26, - "cpu_pct": 132.7, - "peak_memory_mb": 15156, + "duration_sec": 25.1, + "cpu_pct": 138.6, + "peak_memory_mb": 12084, "disk_read_mb": 315, "disk_write_mb": 1 } @@ -216,9 +216,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 42.5, - "cpu_pct": 131.7, - "peak_memory_mb": 12493, + "duration_sec": 44.6, + "cpu_pct": 93.9, + "peak_memory_mb": 15156, "disk_read_mb": 2356, "disk_write_mb": 1 } @@ -230,9 +230,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 20.1, - "cpu_pct": 177.4, - "peak_memory_mb": 10445, + "duration_sec": 25.2, + "cpu_pct": 102.5, + "peak_memory_mb": 13108, "disk_read_mb": 259, "disk_write_mb": 1 } @@ -244,9 +244,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 18.7, - "cpu_pct": 182.7, - "peak_memory_mb": 12903, + "duration_sec": 22.3, + "cpu_pct": 114.1, + "peak_memory_mb": 15668, "disk_read_mb": 205, "disk_write_mb": 1 } @@ -258,10 +258,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 11.3, - "cpu_pct": 157.4, - "peak_memory_mb": 8090, - "disk_read_mb": 233, + "duration_sec": 32.4, + "cpu_pct": 84, + "peak_memory_mb": 11264, + "disk_read_mb": 757, "disk_write_mb": 1 } }, @@ -272,10 +272,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13, - "cpu_pct": 210, - "peak_memory_mb": 3687, - "disk_read_mb": 425, + "duration_sec": 32.5, + "cpu_pct": 91.6, + "peak_memory_mb": 10036, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -286,10 +286,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 12.5, - "cpu_pct": 153.8, - "peak_memory_mb": 4711, - "disk_read_mb": 114, + "duration_sec": 22.4, + "cpu_pct": 124.7, + "peak_memory_mb": 13927, + "disk_read_mb": 244, "disk_write_mb": 1 } }, @@ -300,10 +300,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 24.4, - "cpu_pct": 76.8, - "peak_memory_mb": 7373, - "disk_read_mb": 580, + "duration_sec": 40.6, + "cpu_pct": 94.2, + "peak_memory_mb": 13927, + "disk_read_mb": 1639, "disk_write_mb": 1 } }, @@ -314,10 +314,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 8.9, - "cpu_pct": 207.6, - "peak_memory_mb": 8397, - "disk_read_mb": 95, + "duration_sec": 17.1, + "cpu_pct": 104.8, + "peak_memory_mb": 14541, + "disk_read_mb": 188, "disk_write_mb": 1 } }, @@ -328,10 +328,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 7.9, - "cpu_pct": 203.2, - "peak_memory_mb": 8192, - "disk_read_mb": 82, + "duration_sec": 13.7, + "cpu_pct": 143.6, + "peak_memory_mb": 11572, + "disk_read_mb": 149, "disk_write_mb": 1 } }, @@ -342,10 +342,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 38.3, - "cpu_pct": 200.1, - "peak_memory_mb": 13415, - "disk_read_mb": 1332, + "duration_sec": 20.5, + "cpu_pct": 131.5, + "peak_memory_mb": 7988, + "disk_read_mb": 701, "disk_write_mb": 1 } }, @@ -356,10 +356,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.4, - "cpu_pct": 155.8, - "peak_memory_mb": 8602, - "disk_read_mb": 1741, + "duration_sec": 22.4, + "cpu_pct": 110.2, + "peak_memory_mb": 11060, + "disk_read_mb": 1024, "disk_write_mb": 1 } }, @@ -370,10 +370,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 34.1, - "cpu_pct": 135.8, - "peak_memory_mb": 13415, - "disk_read_mb": 308, + "duration_sec": 23.5, + "cpu_pct": 119.4, + "peak_memory_mb": 9933, + "disk_read_mb": 238, "disk_write_mb": 1 } }, @@ -384,10 +384,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 44.2, - "cpu_pct": 102.1, - "peak_memory_mb": 16180, - "disk_read_mb": 2458, + "duration_sec": 33.7, + "cpu_pct": 88, + "peak_memory_mb": 11879, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -398,10 +398,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 25.5, - "cpu_pct": 110.4, - "peak_memory_mb": 13722, - "disk_read_mb": 236, + "duration_sec": 28.1, + "cpu_pct": 79.4, + "peak_memory_mb": 10650, + "disk_read_mb": 203, "disk_write_mb": 1 } }, @@ -412,10 +412,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 23.1, - "cpu_pct": 111.6, - "peak_memory_mb": 16589, - "disk_read_mb": 187, + "duration_sec": 14.4, + "cpu_pct": 109, + "peak_memory_mb": 10343, + "disk_read_mb": 165, "disk_write_mb": 1 } }, @@ -426,10 +426,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 36.8, - "cpu_pct": 205.7, - "peak_memory_mb": 13517, - "disk_read_mb": 1127, + "duration_sec": 29.8, + "cpu_pct": 124.2, + "peak_memory_mb": 9216, + "disk_read_mb": 518, "disk_write_mb": 1 } }, @@ -440,10 +440,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 38.1, - "cpu_pct": 229.9, - "peak_memory_mb": 8807, - "disk_read_mb": 1844, + "duration_sec": 22, + "cpu_pct": 126.2, + "peak_memory_mb": 7066, + "disk_read_mb": 913, "disk_write_mb": 1 } }, @@ -454,10 +454,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.3, - "cpu_pct": 78.7, - "peak_memory_mb": 16282, - "disk_read_mb": 433, + "duration_sec": 15.9, + "cpu_pct": 163.2, + "peak_memory_mb": 10855, + "disk_read_mb": 240, "disk_write_mb": 1 } }, @@ -468,10 +468,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.4, - "cpu_pct": 122.5, - "peak_memory_mb": 12903, - "disk_read_mb": 2458, + "duration_sec": 36.2, + "cpu_pct": 79, + "peak_memory_mb": 9216, + "disk_read_mb": 1229, "disk_write_mb": 1 } }, @@ -482,10 +482,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.9, - "cpu_pct": 68.1, - "peak_memory_mb": 17716, - "disk_read_mb": 363, + "duration_sec": 22, + "cpu_pct": 142.7, + "peak_memory_mb": 11572, + "disk_read_mb": 207, "disk_write_mb": 1 } }, @@ -496,10 +496,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 25.2, - "cpu_pct": 104.5, - "peak_memory_mb": 13517, - "disk_read_mb": 282, + "duration_sec": 18.8, + "cpu_pct": 98.2, + "peak_memory_mb": 11162, + "disk_read_mb": 166, "disk_write_mb": 1 } }, @@ -510,10 +510,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 46.9, - "cpu_pct": 154.8, - "peak_memory_mb": 18944, - "disk_read_mb": 1434, + "duration_sec": 30, + "cpu_pct": 122.9, + "peak_memory_mb": 11981, + "disk_read_mb": 751, "disk_write_mb": 1 } }, @@ -524,10 +524,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 52.8, - "cpu_pct": 219.6, - "peak_memory_mb": 16692, - "disk_read_mb": 2663, + "duration_sec": 30.3, + "cpu_pct": 101.2, + "peak_memory_mb": 13620, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -538,10 +538,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 43.7, - "cpu_pct": 159.1, - "peak_memory_mb": 18944, - "disk_read_mb": 454, + "duration_sec": 45.9, + "cpu_pct": 74.6, + "peak_memory_mb": 14951, + "disk_read_mb": 275, "disk_write_mb": 1 } }, @@ -552,10 +552,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 60, - "cpu_pct": 194, - "peak_memory_mb": 18944, - "disk_read_mb": 3482, + "duration_sec": 37.1, + "cpu_pct": 97.6, + "peak_memory_mb": 11981, + "disk_read_mb": 1946, "disk_write_mb": 1 } }, @@ -566,10 +566,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 126.5, - "peak_memory_mb": 23245, - "disk_read_mb": 384, + "duration_sec": 21.4, + "cpu_pct": 100.1, + "peak_memory_mb": 15770, + "disk_read_mb": 235, "disk_write_mb": 1 } }, @@ -580,10 +580,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 24.3, - "cpu_pct": 141.3, - "peak_memory_mb": 22324, - "disk_read_mb": 302, + "duration_sec": 21, + "cpu_pct": 111.8, + "peak_memory_mb": 15258, + "disk_read_mb": 190, "disk_write_mb": 1 } }, @@ -594,10 +594,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 51.7, - "cpu_pct": 180.1, - "peak_memory_mb": 16794, - "disk_read_mb": 2560, + "duration_sec": 41.2, + "cpu_pct": 84, + "peak_memory_mb": 12800, + "disk_read_mb": 1844, "disk_write_mb": 1 } }, @@ -608,10 +608,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 53.8, - "cpu_pct": 176.3, - "peak_memory_mb": 15872, - "disk_read_mb": 3380, + "duration_sec": 34.1, + "cpu_pct": 115.6, + "peak_memory_mb": 14746, + "disk_read_mb": 2356, "disk_write_mb": 1 } }, @@ -622,10 +622,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 44, - "cpu_pct": 96.7, - "peak_memory_mb": 19559, - "disk_read_mb": 1741, + "duration_sec": 33.7, + "cpu_pct": 114.4, + "peak_memory_mb": 15463, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -636,10 +636,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 61, - "cpu_pct": 170.9, - "peak_memory_mb": 16794, - "disk_read_mb": 4404, + "duration_sec": 42.4, + "cpu_pct": 105.8, + "peak_memory_mb": 12800, + "disk_read_mb": 3072, "disk_write_mb": 1 } }, @@ -650,10 +650,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 44.9, - "cpu_pct": 102.3, - "peak_memory_mb": 23757, - "disk_read_mb": 1946, + "duration_sec": 36.1, + "cpu_pct": 102.8, + "peak_memory_mb": 15770, + "disk_read_mb": 1434, "disk_write_mb": 1 } }, @@ -664,10 +664,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 40.9, - "cpu_pct": 105.8, - "peak_memory_mb": 23245, - "disk_read_mb": 1844, + "duration_sec": 34, + "cpu_pct": 102.1, + "peak_memory_mb": 18023, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -678,10 +678,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 19.1, - "cpu_pct": 170.9, - "peak_memory_mb": 6964, - "disk_read_mb": 306, + "duration_sec": 22.3, + "cpu_pct": 141.2, + "peak_memory_mb": 10138, + "disk_read_mb": 231, "disk_write_mb": 1 } }, @@ -692,10 +692,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 23.8, - "cpu_pct": 141.8, - "peak_memory_mb": 7988, - "disk_read_mb": 952, + "duration_sec": 27, + "cpu_pct": 120.3, + "peak_memory_mb": 9421, + "disk_read_mb": 725, "disk_write_mb": 1 } }, @@ -706,10 +706,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 16.2, - "cpu_pct": 138.1, - "peak_memory_mb": 11572, - "disk_read_mb": 133, + "duration_sec": 18.4, + "cpu_pct": 136.3, + "peak_memory_mb": 8704, + "disk_read_mb": 113, "disk_write_mb": 1 } }, @@ -720,10 +720,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30, - "cpu_pct": 175.3, - "peak_memory_mb": 6964, - "disk_read_mb": 1127, + "duration_sec": 45.3, + "cpu_pct": 60.8, + "peak_memory_mb": 8704, + "disk_read_mb": 884, "disk_write_mb": 1 } }, @@ -734,10 +734,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30.5, - "cpu_pct": 66.1, - "peak_memory_mb": 7988, - "disk_read_mb": 93, + "duration_sec": 10.1, + "cpu_pct": 203.6, + "peak_memory_mb": 10240, + "disk_read_mb": 83, "disk_write_mb": 1 } }, @@ -748,10 +748,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 12.2, - "cpu_pct": 205.6, - "peak_memory_mb": 9012, - "disk_read_mb": 82, + "duration_sec": 9.2, + "cpu_pct": 155.9, + "peak_memory_mb": 10240, + "disk_read_mb": 74, "disk_write_mb": 1 } }, @@ -762,10 +762,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 22.3, - "cpu_pct": 101.6, - "peak_memory_mb": 7988, - "disk_read_mb": 757, + "duration_sec": 25.2, + "cpu_pct": 99.8, + "peak_memory_mb": 6964, + "disk_read_mb": 705, "disk_write_mb": 1 } }, @@ -776,10 +776,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 15.9, - "cpu_pct": 269.8, - "peak_memory_mb": 5940, - "disk_read_mb": 610, + "duration_sec": 50.6, + "cpu_pct": 47, + "peak_memory_mb": 7476, + "disk_read_mb": 572, "disk_write_mb": 1 } }, @@ -790,10 +790,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13.4, - "cpu_pct": 182.2, - "peak_memory_mb": 7066, - "disk_read_mb": 202, + "duration_sec": 19.7, + "cpu_pct": 150, + "peak_memory_mb": 7783, + "disk_read_mb": 192, "disk_write_mb": 1 } }, @@ -804,10 +804,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 20.6, - "cpu_pct": 200.3, - "peak_memory_mb": 4199, - "disk_read_mb": 1005, + "duration_sec": 21, + "cpu_pct": 92.9, + "peak_memory_mb": 8807, + "disk_read_mb": 940, "disk_write_mb": 1 } }, @@ -818,10 +818,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13.1, - "cpu_pct": 192.6, - "peak_memory_mb": 5940, - "disk_read_mb": 187, + "duration_sec": 11.1, + "cpu_pct": 143.6, + "peak_memory_mb": 9421, + "disk_read_mb": 178, "disk_write_mb": 1 } }, @@ -832,10 +832,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 9.3, - "cpu_pct": 180.9, - "peak_memory_mb": 9319, - "disk_read_mb": 151, + "duration_sec": 15.5, + "cpu_pct": 158.4, + "peak_memory_mb": 7271, + "disk_read_mb": 144, "disk_write_mb": 1 } }, @@ -846,10 +846,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 9.8, - "cpu_pct": 239.1, - "peak_memory_mb": 5018, - "disk_read_mb": 120, + "duration_sec": 9.1, + "cpu_pct": 178.8, + "peak_memory_mb": 7066, + "disk_read_mb": 121, "disk_write_mb": 1 } }, @@ -860,8 +860,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 10.2, - "cpu_pct": 173.4, + "duration_sec": 10.4, + "cpu_pct": 171.6, "peak_memory_mb": 7373, "disk_read_mb": 333, "disk_write_mb": 1 @@ -874,9 +874,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 20.4, - "cpu_pct": 81.2, - "peak_memory_mb": 6452, + "duration_sec": 9, + "cpu_pct": 212, + "peak_memory_mb": 7680, "disk_read_mb": 81, "disk_write_mb": 1 } @@ -888,9 +888,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 10.3, - "cpu_pct": 175.9, - "peak_memory_mb": 7066, + "duration_sec": 12.7, + "cpu_pct": 130.5, + "peak_memory_mb": 6452, "disk_read_mb": 131, "disk_write_mb": 1 } @@ -902,9 +902,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 7.4, - "cpu_pct": 202.1, - "peak_memory_mb": 4506, + "duration_sec": 7.3, + "cpu_pct": 137.3, + "peak_memory_mb": 7168, "disk_read_mb": 83, "disk_write_mb": 1 } @@ -916,9 +916,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 218.8, - "peak_memory_mb": 5018, + "duration_sec": 7.1, + "cpu_pct": 123.7, + "peak_memory_mb": 7168, "disk_read_mb": 79, "disk_write_mb": 1 } @@ -930,10 +930,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13.7, - "cpu_pct": 181.1, - "peak_memory_mb": 4199, - "disk_read_mb": 345, + "duration_sec": 49.9, + "cpu_pct": 44, + "peak_memory_mb": 7373, + "disk_read_mb": 346, "disk_write_mb": 1 } }, @@ -944,9 +944,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13.4, - "cpu_pct": 144.9, - "peak_memory_mb": 6656, + "duration_sec": 31.3, + "cpu_pct": 68.6, + "peak_memory_mb": 6349, "disk_read_mb": 539, "disk_write_mb": 1 } @@ -958,9 +958,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 11.8, - "cpu_pct": 229.4, - "peak_memory_mb": 4711, + "duration_sec": 17.2, + "cpu_pct": 82.2, + "peak_memory_mb": 6452, "disk_read_mb": 280, "disk_write_mb": 1 } @@ -972,9 +972,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 36.9, - "cpu_pct": 58, - "peak_memory_mb": 6452, + "duration_sec": 23.7, + "cpu_pct": 72.2, + "peak_memory_mb": 7988, "disk_read_mb": 749, "disk_write_mb": 1 } @@ -986,9 +986,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 11.3, - "cpu_pct": 234.9, - "peak_memory_mb": 6042, + "duration_sec": 23.4, + "cpu_pct": 110.8, + "peak_memory_mb": 8192, "disk_read_mb": 299, "disk_write_mb": 1 } @@ -1000,9 +1000,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 10.1, - "cpu_pct": 148.6, - "peak_memory_mb": 8500, + "duration_sec": 17.1, + "cpu_pct": 133.2, + "peak_memory_mb": 6656, "disk_read_mb": 270, "disk_write_mb": 1 } @@ -1014,10 +1014,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 32.2, - "cpu_pct": 144.9, - "peak_memory_mb": 10752, - "disk_read_mb": 1127, + "duration_sec": 8.3, + "cpu_pct": 205.7, + "peak_memory_mb": 6759, + "disk_read_mb": 206, "disk_write_mb": 1 } }, @@ -1028,10 +1028,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 32.4, - "cpu_pct": 121.8, - "peak_memory_mb": 9933, - "disk_read_mb": 1536, + "duration_sec": 9, + "cpu_pct": 174.6, + "peak_memory_mb": 7066, + "disk_read_mb": 281, "disk_write_mb": 1 } }, @@ -1042,10 +1042,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 26.3, - "cpu_pct": 150.3, - "peak_memory_mb": 10752, - "disk_read_mb": 568, + "duration_sec": 13.1, + "cpu_pct": 136.4, + "peak_memory_mb": 6759, + "disk_read_mb": 100, "disk_write_mb": 1 } }, @@ -1056,10 +1056,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 47.9, - "cpu_pct": 113.3, - "peak_memory_mb": 13415, - "disk_read_mb": 2253, + "duration_sec": 9.6, + "cpu_pct": 176.7, + "peak_memory_mb": 7271, + "disk_read_mb": 410, "disk_write_mb": 1 } }, @@ -1070,10 +1070,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 30.2, - "cpu_pct": 136.3, - "peak_memory_mb": 12903, - "disk_read_mb": 564, + "duration_sec": 10.3, + "cpu_pct": 147.9, + "peak_memory_mb": 7373, + "disk_read_mb": 88, "disk_write_mb": 1 } }, @@ -1084,10 +1084,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 21.4, - "cpu_pct": 89.1, - "peak_memory_mb": 11879, - "disk_read_mb": 490, + "duration_sec": 7.5, + "cpu_pct": 156.8, + "peak_memory_mb": 7271, + "disk_read_mb": 77, "disk_write_mb": 1 } }, @@ -1098,10 +1098,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 14.6, - "cpu_pct": 77.1, + "duration_sec": 13.6, + "cpu_pct": 131.6, "peak_memory_mb": 5837, - "disk_read_mb": 93, + "disk_read_mb": 102, "disk_write_mb": 1 } }, @@ -1112,8 +1112,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 5.5, - "cpu_pct": 263.8, + "duration_sec": 6.3, + "cpu_pct": 199.1, "peak_memory_mb": 6247, "disk_read_mb": 117, "disk_write_mb": 1 @@ -1126,8 +1126,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 5.8, - "cpu_pct": 187, + "duration_sec": 6, + "cpu_pct": 250.3, "peak_memory_mb": 6042, "disk_read_mb": 66, "disk_write_mb": 1 @@ -1140,9 +1140,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 10.2, - "cpu_pct": 180.6, - "peak_memory_mb": 6247, + "duration_sec": 13.8, + "cpu_pct": 118.1, + "peak_memory_mb": 5837, "disk_read_mb": 162, "disk_write_mb": 1 } @@ -1154,9 +1154,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 5.9, - "cpu_pct": 239.8, - "peak_memory_mb": 6042, + "duration_sec": 5.5, + "cpu_pct": 294.1, + "peak_memory_mb": 6349, "disk_read_mb": 64, "disk_write_mb": 1 } @@ -1168,8 +1168,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 5.4, - "cpu_pct": 246.8, + "duration_sec": 6.5, + "cpu_pct": 194.9, "peak_memory_mb": 6247, "disk_read_mb": 60, "disk_write_mb": 1 @@ -1182,10 +1182,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 13.5, - "cpu_pct": 174.8, - "peak_memory_mb": 4096, - "disk_read_mb": 273, + "duration_sec": 22.6, + "cpu_pct": 116.2, + "peak_memory_mb": 8397, + "disk_read_mb": 274, "disk_write_mb": 1 } }, @@ -1196,9 +1196,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 14.4, - "cpu_pct": 187.2, - "peak_memory_mb": 3687, + "duration_sec": 11.8, + "cpu_pct": 169.7, + "peak_memory_mb": 7168, "disk_read_mb": 475, "disk_write_mb": 1 } @@ -1210,8 +1210,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 18.8, - "cpu_pct": 105, + "duration_sec": 12.4, + "cpu_pct": 103.8, "peak_memory_mb": 6759, "disk_read_mb": 132, "disk_write_mb": 1 @@ -1224,8 +1224,8 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 75.5, + "duration_sec": 17.9, + "cpu_pct": 93.6, "peak_memory_mb": 6656, "disk_read_mb": 680, "disk_write_mb": 1 @@ -1238,9 +1238,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 10.9, - "cpu_pct": 194.3, - "peak_memory_mb": 8704, + "duration_sec": 13.1, + "cpu_pct": 138.9, + "peak_memory_mb": 7066, "disk_read_mb": 110, "disk_write_mb": 1 } @@ -1252,9 +1252,9 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 9.6, - "cpu_pct": 286.3, - "peak_memory_mb": 5837, + "duration_sec": 8.8, + "cpu_pct": 150.9, + "peak_memory_mb": 8500, "disk_read_mb": 94, "disk_write_mb": 1 } @@ -1266,10 +1266,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 40.7, - "cpu_pct": 157.5, - "peak_memory_mb": 11572, - "disk_read_mb": 1332, + "duration_sec": 30.9, + "cpu_pct": 88.1, + "peak_memory_mb": 11776, + "disk_read_mb": 760, "disk_write_mb": 1 } }, @@ -1280,10 +1280,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 42.9, - "cpu_pct": 194.4, - "peak_memory_mb": 9831, - "disk_read_mb": 2151, + "duration_sec": 23.1, + "cpu_pct": 118.5, + "peak_memory_mb": 9012, + "disk_read_mb": 1024, "disk_write_mb": 1 } }, @@ -1294,10 +1294,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 48.1, - "cpu_pct": 125, - "peak_memory_mb": 18330, - "disk_read_mb": 377, + "duration_sec": 25.8, + "cpu_pct": 113.1, + "peak_memory_mb": 7988, + "disk_read_mb": 215, "disk_write_mb": 1 } }, @@ -1308,10 +1308,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 53.7, - "cpu_pct": 223.4, - "peak_memory_mb": 15668, - "disk_read_mb": 2765, + "duration_sec": 35.4, + "cpu_pct": 93.2, + "peak_memory_mb": 11776, + "disk_read_mb": 1434, "disk_write_mb": 1 } }, @@ -1322,10 +1322,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 120.5, - "peak_memory_mb": 19456, - "disk_read_mb": 296, + "duration_sec": 16.5, + "cpu_pct": 133.2, + "peak_memory_mb": 12391, + "disk_read_mb": 173, "disk_write_mb": 1 } }, @@ -1336,10 +1336,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 24.8, - "cpu_pct": 115.4, - "peak_memory_mb": 14848, - "disk_read_mb": 233, + "duration_sec": 15.9, + "cpu_pct": 122.4, + "peak_memory_mb": 12084, + "disk_read_mb": 142, "disk_write_mb": 1 } }, @@ -1350,10 +1350,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 38.1, - "cpu_pct": 226.1, - "peak_memory_mb": 12288, - "disk_read_mb": 1229, + "duration_sec": 36.1, + "cpu_pct": 115, + "peak_memory_mb": 9831, + "disk_read_mb": 689, "disk_write_mb": 1 } }, @@ -1364,10 +1364,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 29.9, - "cpu_pct": 103.8, - "peak_memory_mb": 10957, - "disk_read_mb": 1536, + "duration_sec": 29.6, + "cpu_pct": 99.1, + "peak_memory_mb": 10855, + "disk_read_mb": 1024, "disk_write_mb": 1 } }, @@ -1378,10 +1378,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 29.2, - "cpu_pct": 253.4, - "peak_memory_mb": 12186, - "disk_read_mb": 329, + "duration_sec": 26.4, + "cpu_pct": 83.6, + "peak_memory_mb": 9831, + "disk_read_mb": 233, "disk_write_mb": 1 } }, @@ -1392,10 +1392,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 44.4, - "cpu_pct": 175.3, - "peak_memory_mb": 12288, - "disk_read_mb": 2663, + "duration_sec": 28.4, + "cpu_pct": 104.5, + "peak_memory_mb": 7988, + "disk_read_mb": 1741, "disk_write_mb": 1 } }, @@ -1406,10 +1406,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 20.4, - "cpu_pct": 139, - "peak_memory_mb": 12903, - "disk_read_mb": 258, + "duration_sec": 16.2, + "cpu_pct": 143.1, + "peak_memory_mb": 12391, + "disk_read_mb": 185, "disk_write_mb": 1 } }, @@ -1420,10 +1420,10 @@ "metric_id": "mse", "resources": { "exit_code": 0, - "duration_sec": 16.1, - "cpu_pct": 138.3, - "peak_memory_mb": 15360, - "disk_read_mb": 204, + "duration_sec": 12, + "cpu_pct": 147.5, + "peak_memory_mb": 12084, + "disk_read_mb": 150, "disk_write_mb": 1 } }, @@ -1434,10 +1434,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 22.9, - "cpu_pct": 213.3, - "peak_memory_mb": 12186, - "disk_read_mb": 850, + "duration_sec": 32.7, + "cpu_pct": 123.4, + "peak_memory_mb": 14848, + "disk_read_mb": 924, "disk_write_mb": 1 } }, @@ -1448,10 +1448,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 29.2, - "cpu_pct": 90.4, + "duration_sec": 28.3, + "cpu_pct": 139.7, "peak_memory_mb": 14029, - "disk_read_mb": 973, + "disk_read_mb": 972, "disk_write_mb": 1 } }, @@ -1462,8 +1462,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 16.9, - "cpu_pct": 159.1, + "duration_sec": 21.9, + "cpu_pct": 103.3, "peak_memory_mb": 14848, "disk_read_mb": 217, "disk_write_mb": 1 @@ -1477,7 +1477,7 @@ "resources": { "exit_code": 0, "duration_sec": 28.8, - "cpu_pct": 103.5, + "cpu_pct": 102.9, "peak_memory_mb": 14848, "disk_read_mb": 1536, "disk_write_mb": 1 @@ -1490,8 +1490,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 24.9, - "cpu_pct": 78.7, + "duration_sec": 22.1, + "cpu_pct": 112.3, "peak_memory_mb": 13517, "disk_read_mb": 181, "disk_write_mb": 1 @@ -1504,9 +1504,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 17.1, - "cpu_pct": 278.4, - "peak_memory_mb": 10548, + "duration_sec": 23.4, + "cpu_pct": 143.5, + "peak_memory_mb": 13312, "disk_read_mb": 140, "disk_write_mb": 1 } @@ -1518,10 +1518,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 43.6, - "cpu_pct": 185.7, - "peak_memory_mb": 22836, - "disk_read_mb": 1332, + "duration_sec": 23.2, + "cpu_pct": 106.8, + "peak_memory_mb": 15872, + "disk_read_mb": 541, "disk_write_mb": 1 } }, @@ -1532,10 +1532,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 40.7, - "cpu_pct": 150.3, - "peak_memory_mb": 20992, - "disk_read_mb": 1946, + "duration_sec": 17.9, + "cpu_pct": 134.3, + "peak_memory_mb": 14848, + "disk_read_mb": 998, "disk_write_mb": 1 } }, @@ -1546,10 +1546,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 34, - "cpu_pct": 166.9, - "peak_memory_mb": 22836, - "disk_read_mb": 246, + "duration_sec": 35.8, + "cpu_pct": 67.5, + "peak_memory_mb": 15872, + "disk_read_mb": 140, "disk_write_mb": 1 } }, @@ -1560,10 +1560,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 52, - "cpu_pct": 145.9, - "peak_memory_mb": 22836, - "disk_read_mb": 2868, + "duration_sec": 28.3, + "cpu_pct": 119.6, + "peak_memory_mb": 15872, + "disk_read_mb": 1434, "disk_write_mb": 1 } }, @@ -1574,10 +1574,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 25.6, - "cpu_pct": 214.5, - "peak_memory_mb": 19252, - "disk_read_mb": 143, + "duration_sec": 13.4, + "cpu_pct": 149, + "peak_memory_mb": 13927, + "disk_read_mb": 84, "disk_write_mb": 1 } }, @@ -1588,10 +1588,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 29.9, - "cpu_pct": 110.4, - "peak_memory_mb": 21709, - "disk_read_mb": 110, + "duration_sec": 17, + "cpu_pct": 138.5, + "peak_memory_mb": 13824, + "disk_read_mb": 68, "disk_write_mb": 1 } }, @@ -1602,9 +1602,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 35, - "cpu_pct": 136.6, - "peak_memory_mb": 18228, + "duration_sec": 28.6, + "cpu_pct": 134.9, + "peak_memory_mb": 20890, "disk_read_mb": 1024, "disk_write_mb": 1 } @@ -1616,9 +1616,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 29.8, - "cpu_pct": 163.3, - "peak_memory_mb": 16896, + "duration_sec": 32.5, + "cpu_pct": 91.7, + "peak_memory_mb": 19661, "disk_read_mb": 1536, "disk_write_mb": 1 } @@ -1630,8 +1630,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 25.2, - "cpu_pct": 124.1, + "duration_sec": 27.1, + "cpu_pct": 113.5, "peak_memory_mb": 20890, "disk_read_mb": 298, "disk_write_mb": 1 @@ -1644,9 +1644,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 42.9, - "cpu_pct": 127, - "peak_memory_mb": 18228, + "duration_sec": 43, + "cpu_pct": 96.3, + "peak_memory_mb": 20890, "disk_read_mb": 2356, "disk_write_mb": 1 } @@ -1658,9 +1658,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 27.1, - "cpu_pct": 183.7, - "peak_memory_mb": 15872, + "duration_sec": 27.7, + "cpu_pct": 103.7, + "peak_memory_mb": 18535, "disk_read_mb": 242, "disk_write_mb": 1 } @@ -1672,8 +1672,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 30.3, - "cpu_pct": 141.4, + "duration_sec": 26.4, + "cpu_pct": 114.8, "peak_memory_mb": 18228, "disk_read_mb": 188, "disk_write_mb": 1 @@ -1686,10 +1686,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 15.4, - "cpu_pct": 134.8, - "peak_memory_mb": 6349, - "disk_read_mb": 216, + "duration_sec": 31.4, + "cpu_pct": 84, + "peak_memory_mb": 18944, + "disk_read_mb": 740, "disk_write_mb": 1 } }, @@ -1700,10 +1700,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 10.1, - "cpu_pct": 197.7, - "peak_memory_mb": 6349, - "disk_read_mb": 409, + "duration_sec": 31.3, + "cpu_pct": 104.4, + "peak_memory_mb": 17716, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -1714,10 +1714,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 32.1, - "cpu_pct": 52.8, - "peak_memory_mb": 6349, - "disk_read_mb": 97, + "duration_sec": 25.3, + "cpu_pct": 126.2, + "peak_memory_mb": 18944, + "disk_read_mb": 227, "disk_write_mb": 1 } }, @@ -1728,10 +1728,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 22.4, - "cpu_pct": 78.2, - "peak_memory_mb": 6349, - "disk_read_mb": 564, + "duration_sec": 38.3, + "cpu_pct": 103.4, + "peak_memory_mb": 18944, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -1742,10 +1742,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 16.4, - "cpu_pct": 108.5, - "peak_memory_mb": 8807, - "disk_read_mb": 78, + "duration_sec": 17.4, + "cpu_pct": 129, + "peak_memory_mb": 16692, + "disk_read_mb": 171, "disk_write_mb": 1 } }, @@ -1756,10 +1756,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 8.8, - "cpu_pct": 219.4, - "peak_memory_mb": 6042, - "disk_read_mb": 66, + "duration_sec": 15.9, + "cpu_pct": 133.6, + "peak_memory_mb": 16487, + "disk_read_mb": 133, "disk_write_mb": 1 } }, @@ -1770,10 +1770,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 36.1, - "cpu_pct": 254.4, - "peak_memory_mb": 19968, - "disk_read_mb": 1332, + "duration_sec": 26.6, + "cpu_pct": 96.4, + "peak_memory_mb": 15565, + "disk_read_mb": 684, "disk_write_mb": 1 } }, @@ -1784,10 +1784,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 34.9, - "cpu_pct": 147.7, - "peak_memory_mb": 18432, - "disk_read_mb": 1741, + "duration_sec": 29.5, + "cpu_pct": 139.1, + "peak_memory_mb": 14746, + "disk_read_mb": 1024, "disk_write_mb": 1 } }, @@ -1798,10 +1798,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 27.1, - "cpu_pct": 153.1, - "peak_memory_mb": 22631, - "disk_read_mb": 291, + "duration_sec": 17, + "cpu_pct": 173.8, + "peak_memory_mb": 15565, + "disk_read_mb": 222, "disk_write_mb": 1 } }, @@ -1812,10 +1812,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 46.4, - "cpu_pct": 131.7, - "peak_memory_mb": 19968, - "disk_read_mb": 2458, + "duration_sec": 29.5, + "cpu_pct": 103.8, + "peak_memory_mb": 15565, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -1826,10 +1826,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 34.5, - "cpu_pct": 85.3, - "peak_memory_mb": 19866, - "disk_read_mb": 219, + "duration_sec": 15, + "cpu_pct": 136.9, + "peak_memory_mb": 14029, + "disk_read_mb": 187, "disk_write_mb": 1 } }, @@ -1840,10 +1840,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 28.3, - "cpu_pct": 114.6, - "peak_memory_mb": 19559, - "disk_read_mb": 170, + "duration_sec": 23.4, + "cpu_pct": 119.3, + "peak_memory_mb": 13824, + "disk_read_mb": 148, "disk_write_mb": 1 } }, @@ -1854,10 +1854,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 41.2, - "cpu_pct": 129.5, - "peak_memory_mb": 19968, - "disk_read_mb": 1127, + "duration_sec": 15.7, + "cpu_pct": 144.1, + "peak_memory_mb": 13824, + "disk_read_mb": 502, "disk_write_mb": 1 } }, @@ -1868,10 +1868,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 38.1, - "cpu_pct": 140.5, - "peak_memory_mb": 18535, - "disk_read_mb": 1844, + "duration_sec": 27.5, + "cpu_pct": 116.2, + "peak_memory_mb": 13210, + "disk_read_mb": 897, "disk_write_mb": 1 } }, @@ -1882,10 +1882,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 30.7, - "cpu_pct": 229.9, - "peak_memory_mb": 19968, - "disk_read_mb": 417, + "duration_sec": 15.7, + "cpu_pct": 132.8, + "peak_memory_mb": 13824, + "disk_read_mb": 224, "disk_write_mb": 1 } }, @@ -1896,10 +1896,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 38.2, - "cpu_pct": 126.3, - "peak_memory_mb": 22631, - "disk_read_mb": 2458, + "duration_sec": 25.7, + "cpu_pct": 102.8, + "peak_memory_mb": 13824, + "disk_read_mb": 1229, "disk_write_mb": 1 } }, @@ -1910,10 +1910,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 31.5, - "cpu_pct": 107.2, - "peak_memory_mb": 20276, - "disk_read_mb": 346, + "duration_sec": 20.4, + "cpu_pct": 100.6, + "peak_memory_mb": 12698, + "disk_read_mb": 190, "disk_write_mb": 1 } }, @@ -1924,10 +1924,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 29.9, - "cpu_pct": 98.6, - "peak_memory_mb": 19866, - "disk_read_mb": 266, + "duration_sec": 20.1, + "cpu_pct": 119.4, + "peak_memory_mb": 12493, + "disk_read_mb": 150, "disk_write_mb": 1 } }, @@ -1938,10 +1938,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 53.7, - "cpu_pct": 191.8, - "peak_memory_mb": 28877, - "disk_read_mb": 1434, + "duration_sec": 26.2, + "cpu_pct": 125.8, + "peak_memory_mb": 20480, + "disk_read_mb": 735, "disk_write_mb": 1 } }, @@ -1952,10 +1952,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 47.2, - "cpu_pct": 120.8, - "peak_memory_mb": 26727, - "disk_read_mb": 2663, + "duration_sec": 30.2, + "cpu_pct": 106.1, + "peak_memory_mb": 19252, + "disk_read_mb": 1536, "disk_write_mb": 1 } }, @@ -1966,10 +1966,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 46.7, - "cpu_pct": 192.9, - "peak_memory_mb": 28877, - "disk_read_mb": 437, + "duration_sec": 27.9, + "cpu_pct": 123.7, + "peak_memory_mb": 20480, + "disk_read_mb": 259, "disk_write_mb": 1 } }, @@ -1980,10 +1980,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 61, - "cpu_pct": 150.2, - "peak_memory_mb": 28980, - "disk_read_mb": 3482, + "duration_sec": 37, + "cpu_pct": 105.5, + "peak_memory_mb": 20480, + "disk_read_mb": 1844, "disk_write_mb": 1 } }, @@ -1994,10 +1994,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 36.5, - "cpu_pct": 110.4, - "peak_memory_mb": 27444, - "disk_read_mb": 368, + "duration_sec": 25.3, + "cpu_pct": 125.8, + "peak_memory_mb": 18125, + "disk_read_mb": 219, "disk_write_mb": 1 } }, @@ -2008,10 +2008,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 32.2, - "cpu_pct": 112.3, - "peak_memory_mb": 27034, - "disk_read_mb": 285, + "duration_sec": 23.3, + "cpu_pct": 113.9, + "peak_memory_mb": 17818, + "disk_read_mb": 174, "disk_write_mb": 1 } }, @@ -2022,10 +2022,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 45.1, - "cpu_pct": 202.8, - "peak_memory_mb": 22938, - "disk_read_mb": 2560, + "duration_sec": 31.2, + "cpu_pct": 116.3, + "peak_memory_mb": 19661, + "disk_read_mb": 1844, "disk_write_mb": 1 } }, @@ -2036,10 +2036,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 45, - "cpu_pct": 189.7, - "peak_memory_mb": 22016, - "disk_read_mb": 3277, + "duration_sec": 32.2, + "cpu_pct": 103.4, + "peak_memory_mb": 19047, + "disk_read_mb": 2356, "disk_write_mb": 1 } }, @@ -2050,10 +2050,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 39, - "cpu_pct": 100.3, - "peak_memory_mb": 25703, - "disk_read_mb": 1741, + "duration_sec": 29.5, + "cpu_pct": 114.5, + "peak_memory_mb": 19661, + "disk_read_mb": 1229, "disk_write_mb": 1 } }, @@ -2064,10 +2064,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 50.9, - "cpu_pct": 162.3, - "peak_memory_mb": 22938, - "disk_read_mb": 4301, + "duration_sec": 36, + "cpu_pct": 116.3, + "peak_memory_mb": 19661, + "disk_read_mb": 3072, "disk_write_mb": 1 } }, @@ -2078,10 +2078,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 45.1, - "cpu_pct": 92.9, - "peak_memory_mb": 24679, - "disk_read_mb": 1946, + "duration_sec": 32.8, + "cpu_pct": 101.9, + "peak_memory_mb": 19047, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -2092,10 +2092,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 40.6, - "cpu_pct": 108.8, - "peak_memory_mb": 24474, - "disk_read_mb": 1844, + "duration_sec": 40.2, + "cpu_pct": 119.2, + "peak_memory_mb": 18842, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -2106,10 +2106,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 20, - "cpu_pct": 277.5, - "peak_memory_mb": 12493, - "disk_read_mb": 289, + "duration_sec": 13.3, + "cpu_pct": 152, + "peak_memory_mb": 12698, + "disk_read_mb": 215, "disk_write_mb": 1 } }, @@ -2120,10 +2120,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 21.7, - "cpu_pct": 158, - "peak_memory_mb": 11469, - "disk_read_mb": 935, + "duration_sec": 17.6, + "cpu_pct": 123.5, + "peak_memory_mb": 12084, + "disk_read_mb": 709, "disk_write_mb": 1 } }, @@ -2134,10 +2134,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 16, - "cpu_pct": 150, - "peak_memory_mb": 15156, - "disk_read_mb": 117, + "duration_sec": 29.4, + "cpu_pct": 80.1, + "peak_memory_mb": 12698, + "disk_read_mb": 97, "disk_write_mb": 1 } }, @@ -2148,10 +2148,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 28.7, - "cpu_pct": 125.7, - "peak_memory_mb": 12493, - "disk_read_mb": 1127, + "duration_sec": 22.5, + "cpu_pct": 112.1, + "peak_memory_mb": 12698, + "disk_read_mb": 868, "disk_write_mb": 1 } }, @@ -2162,10 +2162,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 12.3, - "cpu_pct": 144, - "peak_memory_mb": 13312, - "disk_read_mb": 77, + "duration_sec": 12.4, + "cpu_pct": 167, + "peak_memory_mb": 11367, + "disk_read_mb": 66, "disk_write_mb": 1 } }, @@ -2176,10 +2176,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 12.3, - "cpu_pct": 193.2, - "peak_memory_mb": 13312, - "disk_read_mb": 65, + "duration_sec": 10, + "cpu_pct": 162.9, + "peak_memory_mb": 11367, + "disk_read_mb": 57, "disk_write_mb": 1 } }, @@ -2190,10 +2190,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 20.1, - "cpu_pct": 94.7, - "peak_memory_mb": 7680, - "disk_read_mb": 741, + "duration_sec": 19, + "cpu_pct": 145.9, + "peak_memory_mb": 10343, + "disk_read_mb": 689, "disk_write_mb": 1 } }, @@ -2204,10 +2204,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 14.1, - "cpu_pct": 224.1, - "peak_memory_mb": 6656, - "disk_read_mb": 593, + "duration_sec": 10.9, + "cpu_pct": 181.3, + "peak_memory_mb": 10036, + "disk_read_mb": 555, "disk_write_mb": 1 } }, @@ -2218,10 +2218,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 14.3, - "cpu_pct": 179.4, - "peak_memory_mb": 9728, - "disk_read_mb": 186, + "duration_sec": 13.3, + "cpu_pct": 169.7, + "peak_memory_mb": 8500, + "disk_read_mb": 175, "disk_write_mb": 1 } }, @@ -2232,10 +2232,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 18.4, - "cpu_pct": 147.7, - "peak_memory_mb": 7988, - "disk_read_mb": 989, + "duration_sec": 15.8, + "cpu_pct": 117.9, + "peak_memory_mb": 8500, + "disk_read_mb": 923, "disk_write_mb": 1 } }, @@ -2246,10 +2246,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 12.5, - "cpu_pct": 286, - "peak_memory_mb": 7476, - "disk_read_mb": 171, + "duration_sec": 15.8, + "cpu_pct": 128.7, + "peak_memory_mb": 9831, + "disk_read_mb": 161, "disk_write_mb": 1 } }, @@ -2260,10 +2260,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 9.1, - "cpu_pct": 224.6, - "peak_memory_mb": 9933, - "disk_read_mb": 135, + "duration_sec": 12, + "cpu_pct": 148.4, + "peak_memory_mb": 9728, + "disk_read_mb": 128, "disk_write_mb": 1 } }, @@ -2274,10 +2274,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.9, - "cpu_pct": 296.1, - "peak_memory_mb": 5837, - "disk_read_mb": 103, + "duration_sec": 7.6, + "cpu_pct": 186.5, + "peak_memory_mb": 8602, + "disk_read_mb": 105, "disk_write_mb": 1 } }, @@ -2288,9 +2288,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 8.5, - "cpu_pct": 274.9, - "peak_memory_mb": 5632, + "duration_sec": 16.4, + "cpu_pct": 96.9, + "peak_memory_mb": 5940, "disk_read_mb": 317, "disk_write_mb": 1 } @@ -2302,8 +2302,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 23.8, - "cpu_pct": 72.6, + "duration_sec": 11.8, + "cpu_pct": 169.1, "peak_memory_mb": 8602, "disk_read_mb": 64, "disk_write_mb": 1 @@ -2316,8 +2316,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.7, - "cpu_pct": 237.9, + "duration_sec": 7.6, + "cpu_pct": 182.9, "peak_memory_mb": 8602, "disk_read_mb": 115, "disk_write_mb": 1 @@ -2330,9 +2330,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 6.9, - "cpu_pct": 289.1, - "peak_memory_mb": 5325, + "duration_sec": 6.1, + "cpu_pct": 195.5, + "peak_memory_mb": 8090, "disk_read_mb": 66, "disk_write_mb": 1 } @@ -2344,9 +2344,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.2, - "cpu_pct": 200.4, - "peak_memory_mb": 5325, + "duration_sec": 5.8, + "cpu_pct": 211.2, + "peak_memory_mb": 7988, "disk_read_mb": 62, "disk_write_mb": 1 } @@ -2358,10 +2358,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 9.5, - "cpu_pct": 207.1, + "duration_sec": 42.3, + "cpu_pct": 45.5, "peak_memory_mb": 6247, - "disk_read_mb": 328, + "disk_read_mb": 329, "disk_write_mb": 1 } }, @@ -2372,9 +2372,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 10.8, - "cpu_pct": 301.5, - "peak_memory_mb": 6144, + "duration_sec": 9.2, + "cpu_pct": 169.9, + "peak_memory_mb": 8807, "disk_read_mb": 522, "disk_write_mb": 1 } @@ -2386,9 +2386,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 9.3, - "cpu_pct": 200.5, - "peak_memory_mb": 6247, + "duration_sec": 9.8, + "cpu_pct": 160.1, + "peak_memory_mb": 8909, "disk_read_mb": 264, "disk_write_mb": 1 } @@ -2400,9 +2400,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 10.6, - "cpu_pct": 189.4, - "peak_memory_mb": 8909, + "duration_sec": 24.9, + "cpu_pct": 66.8, + "peak_memory_mb": 6247, "disk_read_mb": 733, "disk_write_mb": 1 } @@ -2414,9 +2414,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 15.3, - "cpu_pct": 125.3, - "peak_memory_mb": 6042, + "duration_sec": 10.5, + "cpu_pct": 196.4, + "peak_memory_mb": 8807, "disk_read_mb": 282, "disk_write_mb": 1 } @@ -2428,9 +2428,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 12.3, - "cpu_pct": 185.5, - "peak_memory_mb": 8704, + "duration_sec": 18.6, + "cpu_pct": 80.5, + "peak_memory_mb": 6759, "disk_read_mb": 254, "disk_write_mb": 1 } @@ -2442,10 +2442,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 199.2, - "peak_memory_mb": 14951, - "disk_read_mb": 1127, + "duration_sec": 6.9, + "cpu_pct": 190.5, + "peak_memory_mb": 7885, + "disk_read_mb": 189, "disk_write_mb": 1 } }, @@ -2456,10 +2456,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 29.1, - "cpu_pct": 144.7, - "peak_memory_mb": 14132, - "disk_read_mb": 1536, + "duration_sec": 6.5, + "cpu_pct": 208.9, + "peak_memory_mb": 7680, + "disk_read_mb": 265, "disk_write_mb": 1 } }, @@ -2470,10 +2470,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 24.7, - "cpu_pct": 210.7, - "peak_memory_mb": 14951, - "disk_read_mb": 552, + "duration_sec": 6.1, + "cpu_pct": 180.8, + "peak_memory_mb": 7885, + "disk_read_mb": 84, "disk_write_mb": 1 } }, @@ -2484,10 +2484,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 30.1, - "cpu_pct": 109.1, - "peak_memory_mb": 17613, - "disk_read_mb": 2151, + "duration_sec": 16.5, + "cpu_pct": 132.4, + "peak_memory_mb": 7885, + "disk_read_mb": 394, "disk_write_mb": 1 } }, @@ -2498,10 +2498,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 24.6, - "cpu_pct": 93.8, - "peak_memory_mb": 13722, - "disk_read_mb": 548, + "duration_sec": 8.7, + "cpu_pct": 163.5, + "peak_memory_mb": 7578, + "disk_read_mb": 71, "disk_write_mb": 1 } }, @@ -2512,10 +2512,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 18.5, - "cpu_pct": 133.8, - "peak_memory_mb": 16077, - "disk_read_mb": 474, + "duration_sec": 5.8, + "cpu_pct": 206.4, + "peak_memory_mb": 7476, + "disk_read_mb": 61, "disk_write_mb": 1 } }, @@ -2526,10 +2526,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 9, - "cpu_pct": 175.5, - "peak_memory_mb": 6042, - "disk_read_mb": 76, + "duration_sec": 4, + "cpu_pct": 314, + "peak_memory_mb": 5735, + "disk_read_mb": 85, "disk_write_mb": 1 } }, @@ -2540,8 +2540,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 3.9, - "cpu_pct": 297.5, + "duration_sec": 6.2, + "cpu_pct": 244, "peak_memory_mb": 5735, "disk_read_mb": 101, "disk_write_mb": 1 @@ -2554,9 +2554,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.7, - "cpu_pct": 136.2, - "peak_memory_mb": 6247, + "duration_sec": 3.9, + "cpu_pct": 209.1, + "peak_memory_mb": 5735, "disk_read_mb": 49, "disk_write_mb": 1 } @@ -2568,8 +2568,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 4.5, - "cpu_pct": 199.4, + "duration_sec": 6.8, + "cpu_pct": 221.6, "peak_memory_mb": 6247, "disk_read_mb": 146, "disk_write_mb": 1 @@ -2582,9 +2582,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 4.7, - "cpu_pct": 237.5, - "peak_memory_mb": 3482, + "duration_sec": 7.9, + "cpu_pct": 168.8, + "peak_memory_mb": 6144, "disk_read_mb": 47, "disk_write_mb": 1 } @@ -2596,9 +2596,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 3.6, - "cpu_pct": 387.9, - "peak_memory_mb": 6144, + "duration_sec": 3.8, + "cpu_pct": 258.6, + "peak_memory_mb": 5940, "disk_read_mb": 43, "disk_write_mb": 1 } @@ -2610,10 +2610,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 11.8, - "cpu_pct": 297.6, - "peak_memory_mb": 7066, - "disk_read_mb": 257, + "duration_sec": 19.1, + "cpu_pct": 141.3, + "peak_memory_mb": 9831, + "disk_read_mb": 258, "disk_write_mb": 1 } }, @@ -2624,9 +2624,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 11, - "cpu_pct": 189.1, - "peak_memory_mb": 6759, + "duration_sec": 9.6, + "cpu_pct": 170.8, + "peak_memory_mb": 9421, "disk_read_mb": 459, "disk_write_mb": 1 } @@ -2638,9 +2638,9 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 14, - "cpu_pct": 126.1, - "peak_memory_mb": 6452, + "duration_sec": 9.7, + "cpu_pct": 136.6, + "peak_memory_mb": 9831, "disk_read_mb": 115, "disk_write_mb": 1 } @@ -2652,10 +2652,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 21.6, - "cpu_pct": 103.3, - "peak_memory_mb": 6452, - "disk_read_mb": 663, + "duration_sec": 17.8, + "cpu_pct": 158.6, + "peak_memory_mb": 9831, + "disk_read_mb": 664, "disk_write_mb": 1 } }, @@ -2666,8 +2666,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 138.8, + "duration_sec": 13, + "cpu_pct": 172, "peak_memory_mb": 9114, "disk_read_mb": 93, "disk_write_mb": 1 @@ -2680,8 +2680,8 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 241.4, + "duration_sec": 12.8, + "cpu_pct": 151.6, "peak_memory_mb": 9114, "disk_read_mb": 77, "disk_write_mb": 1 @@ -2694,10 +2694,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 41, - "cpu_pct": 205.9, - "peak_memory_mb": 23552, - "disk_read_mb": 1332, + "duration_sec": 19.4, + "cpu_pct": 143.6, + "peak_memory_mb": 15360, + "disk_read_mb": 744, "disk_write_mb": 1 } }, @@ -2708,10 +2708,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 42.4, - "cpu_pct": 135.7, - "peak_memory_mb": 21709, - "disk_read_mb": 2048, + "duration_sec": 21.5, + "cpu_pct": 112.1, + "peak_memory_mb": 14541, + "disk_read_mb": 1017, "disk_write_mb": 1 } }, @@ -2722,10 +2722,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 31.8, - "cpu_pct": 118.2, - "peak_memory_mb": 26215, - "disk_read_mb": 361, + "duration_sec": 35.5, + "cpu_pct": 61.1, + "peak_memory_mb": 15463, + "disk_read_mb": 199, "disk_write_mb": 1 } }, @@ -2736,10 +2736,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 49.3, - "cpu_pct": 201.6, - "peak_memory_mb": 23552, - "disk_read_mb": 2765, + "duration_sec": 30.8, + "cpu_pct": 108.7, + "peak_memory_mb": 15463, + "disk_read_mb": 1332, "disk_write_mb": 1 } }, @@ -2750,10 +2750,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 27.4, - "cpu_pct": 122.8, - "peak_memory_mb": 22836, - "disk_read_mb": 279, + "duration_sec": 16.2, + "cpu_pct": 151.6, + "peak_memory_mb": 13824, + "disk_read_mb": 157, "disk_write_mb": 1 } }, @@ -2764,10 +2764,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 32.1, - "cpu_pct": 108.5, - "peak_memory_mb": 22528, - "disk_read_mb": 217, + "duration_sec": 18.7, + "cpu_pct": 122.4, + "peak_memory_mb": 13620, + "disk_read_mb": 125, "disk_write_mb": 1 } }, @@ -2778,10 +2778,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 32.4, - "cpu_pct": 211.6, - "peak_memory_mb": 17920, - "disk_read_mb": 1229, + "duration_sec": 34.3, + "cpu_pct": 118.3, + "peak_memory_mb": 15258, + "disk_read_mb": 673, "disk_write_mb": 1 } }, @@ -2792,10 +2792,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 33.1, - "cpu_pct": 191.1, - "peak_memory_mb": 16589, - "disk_read_mb": 1536, + "duration_sec": 28.7, + "cpu_pct": 88.4, + "peak_memory_mb": 14439, + "disk_read_mb": 1013, "disk_write_mb": 1 } }, @@ -2806,10 +2806,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 26.2, - "cpu_pct": 232, - "peak_memory_mb": 17818, - "disk_read_mb": 313, + "duration_sec": 18.3, + "cpu_pct": 102.9, + "peak_memory_mb": 15258, + "disk_read_mb": 217, "disk_write_mb": 1 } }, @@ -2820,10 +2820,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 43.9, - "cpu_pct": 220.9, - "peak_memory_mb": 17920, - "disk_read_mb": 2663, + "duration_sec": 27.9, + "cpu_pct": 115.4, + "peak_memory_mb": 15258, + "disk_read_mb": 1741, "disk_write_mb": 1 } }, @@ -2834,10 +2834,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 22.8, - "cpu_pct": 137, - "peak_memory_mb": 18228, - "disk_read_mb": 241, + "duration_sec": 13.8, + "cpu_pct": 138.4, + "peak_memory_mb": 13824, + "disk_read_mb": 169, "disk_write_mb": 1 } }, @@ -2848,10 +2848,10 @@ "metric_id": "poisson", "resources": { "exit_code": 0, - "duration_sec": 35.6, - "cpu_pct": 94.9, - "peak_memory_mb": 17920, - "disk_read_mb": 188, + "duration_sec": 16.3, + "cpu_pct": 134.7, + "peak_memory_mb": 13620, + "disk_read_mb": 134, "disk_write_mb": 1 } } diff --git a/results/task_denoising/data/metric_info.json b/results/task_denoising/data/metric_info.json index c1430898..4111313e 100644 --- a/results/task_denoising/data/metric_info.json +++ b/results/task_denoising/data/metric_info.json @@ -8,9 +8,9 @@ "paper_reference": { "doi": "10.1101/786269" }, - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/metrics/mse/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/metrics/mse/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76", + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0", "maximize": false }, { @@ -22,9 +22,9 @@ "paper_reference": { "doi": "10.1101/786269" }, - "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/f5021bb07bb8638aef9164cc64e742dde4c7fe76/src/metrics/poisson/config.vsh.yaml", + "implementation_url": "https://github.com/openproblems-bio/task_denoising/blob/bfa2730431d47be21afe1c62fc4f2139036126a0/src/metrics/poisson/config.vsh.yaml", "code_version": null, - "commit_sha": "f5021bb07bb8638aef9164cc64e742dde4c7fe76", + "commit_sha": "bfa2730431d47be21afe1c62fc4f2139036126a0", "maximize": false } ] diff --git a/results/task_denoising/data/quality_control.json b/results/task_denoising/data/quality_control.json index 12229024..50f40b7e 100644 --- a/results/task_denoising/data/quality_control.json +++ b/results/task_denoising/data/quality_control.json @@ -332,62 +332,62 @@ { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/dkd' %missing", + "name": "Dataset 'openproblems_v1/zebrafish' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hypomap' %missing", + "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/immune_cells' %missing", + "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", + "name": "Dataset 'openproblems_v1/cengen' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/zebrafish' %missing", + "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/zebrafish\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/pancreas' %missing", + "name": "Dataset 'cellxgene_census/hcla' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", @@ -412,92 +412,92 @@ { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/mouse_pancreas_atlas' %missing", + "name": "Dataset 'cellxgene_census/gtex_v9' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/mouse_pancreas_atlas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/cengen' %missing", + "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/cengen\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tenx_1k_pbmc' %missing", + "name": "Dataset 'cellxgene_census/dkd' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tenx_1k_pbmc\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/dkd\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/tnbc_wu2021' %missing", + "name": "Dataset 'cellxgene_census/hypomap' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/tnbc_wu2021\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hypomap\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/mouse_blood_olsson_labelled' %missing", + "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/mouse_blood_olsson_labelled\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/immune_cell_atlas' %missing", + "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/immune_cell_atlas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'openproblems_v1/allen_brain_atlas' %missing", + "name": "Dataset 'openproblems_v1/immune_cells' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/allen_brain_atlas\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/immune_cells\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/hcla' %missing", + "name": "Dataset 'openproblems_v1/pancreas' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/hcla\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: openproblems_v1/pancreas\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", "category": "Raw results", - "name": "Dataset 'cellxgene_census/gtex_v9' %missing", + "name": "Dataset 'cellxgene_census/tabula_sapiens' %missing", "value": 0.0, "severity": 0, "severity_value": 0.0, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/gtex_v9\n Percentage missing: 0%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_denoising\n dataset id: cellxgene_census/tabula_sapiens\n Percentage missing: 0%\n" }, { "task_id": "task_denoising", @@ -543,81 +543,81 @@ "task_id": "task_denoising", "category": "Scaling", "name": "Worst score alra mse", - "value": -9.969, + "value": -9.7075, "severity": 3, - "severity_value": 9.969, + "severity_value": 9.7075, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Worst score: -9.969%\n" + "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Worst score: -9.7075%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score alra mse", - "value": 0.0165, + "value": 0.0259, "severity": 0, - "severity_value": 0.00825, + "severity_value": 0.01295, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Best score: 0.0165%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: mse\n Best score: 0.0259%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score dca mse", - "value": -8.5615, + "value": -8.4292, "severity": 3, - "severity_value": 8.5615, + "severity_value": 8.4292, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Worst score: -8.5615%\n" + "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Worst score: -8.4292%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score dca mse", - "value": 0.2022, + "value": 0.1986, "severity": 0, - "severity_value": 0.1011, + "severity_value": 0.0993, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Best score: 0.2022%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: mse\n Best score: 0.1986%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score knn_smoothing mse", - "value": -7.5287, + "value": -7.4691, "severity": 3, - "severity_value": 7.5287, + "severity_value": 7.4691, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: -7.5287%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Worst score: -7.4691%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score knn_smoothing mse", - "value": 0.1754, + "value": 0.1747, "severity": 0, - "severity_value": 0.0877, + "severity_value": 0.08735, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.1754%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: mse\n Best score: 0.1747%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score magic mse", - "value": -7.6733, + "value": -7.6469, "severity": 3, - "severity_value": 7.6733, + "severity_value": 7.6469, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Worst score: -7.6733%\n" + "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Worst score: -7.6469%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score magic mse", - "value": 0.2036, + "value": 0.203, "severity": 0, - "severity_value": 0.1018, + "severity_value": 0.1015, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Best score: 0.2036%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: mse\n Best score: 0.203%\n" }, { "task_id": "task_denoising", @@ -663,80 +663,80 @@ "task_id": "task_denoising", "category": "Scaling", "name": "Worst score alra poisson", - "value": -8.3054, + "value": -6.5285, "severity": 3, - "severity_value": 8.3054, + "severity_value": 6.5285, "code": "worst_score >= -1", - "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Worst score: -8.3054%\n" + "message": "Method alra performs much worse than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Worst score: -6.5285%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score alra poisson", - "value": 0.4408, + "value": 0.4568, "severity": 0, - "severity_value": 0.2204, + "severity_value": 0.2284, "code": "best_score <= 2", - "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.4408%\n" + "message": "Method alra performs a lot better than baselines.\n Task id: task_denoising\n Method id: alra\n Metric id: poisson\n Best score: 0.4568%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score dca poisson", - "value": -179.6428, + "value": -59.3394, "severity": 3, - "severity_value": 179.6428, + "severity_value": 59.3394, "code": "worst_score >= -1", - "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Worst score: -179.6428%\n" + "message": "Method dca performs much worse than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Worst score: -59.3394%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score dca poisson", - "value": 0.4328, + "value": 0.4417, "severity": 0, - "severity_value": 0.2164, + "severity_value": 0.22085, "code": "best_score <= 2", - "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Best score: 0.4328%\n" + "message": "Method dca performs a lot better than baselines.\n Task id: task_denoising\n Method id: dca\n Metric id: poisson\n Best score: 0.4417%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score knn_smoothing poisson", - "value": -13.4067, + "value": -13.3967, "severity": 3, - "severity_value": 13.4067, + "severity_value": 13.3967, "code": "worst_score >= -1", - "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -13.4067%\n" + "message": "Method knn_smoothing performs much worse than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Worst score: -13.3967%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score knn_smoothing poisson", - "value": 11.5947, + "value": 11.1446, "severity": 3, - "severity_value": 5.79735, + "severity_value": 5.5723, "code": "best_score <= 2", - "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 11.5947%\n" + "message": "Method knn_smoothing performs a lot better than baselines.\n Task id: task_denoising\n Method id: knn_smoothing\n Metric id: poisson\n Best score: 11.1446%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Worst score magic poisson", - "value": -0.7606, + "value": -0.7618, "severity": 0, - "severity_value": 0.7606, + "severity_value": 0.7618, "code": "worst_score >= -1", - "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Worst score: -0.7606%\n" + "message": "Method magic performs much worse than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Worst score: -0.7618%\n" }, { "task_id": "task_denoising", "category": "Scaling", "name": "Best score magic poisson", - "value": 0.5873, + "value": 0.5245, "severity": 0, - "severity_value": 0.29365, + "severity_value": 0.26225, "code": "best_score <= 2", - "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5873%\n" + "message": "Method magic performs a lot better than baselines.\n Task id: task_denoising\n Method id: magic\n Metric id: poisson\n Best score: 0.5245%\n" } ] \ No newline at end of file diff --git a/results/task_denoising/data/results.json b/results/task_denoising/data/results.json index c7f018de..5d3aaa8b 100644 --- a/results/task_denoising/data/results.json +++ b/results/task_denoising/data/results.json @@ -3,22 +3,22 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "alra", "metric_values": { - "mse": 0.2283, - "poisson": 0.8195 + "mse": 0.2262, + "poisson": 0.8953 }, "scaled_scores": { - "mse": 0.0165, - "poisson": -3.0453 + "mse": 0.0259, + "poisson": -3.4294 }, - "mean_score": 0.0082, + "mean_score": 0.013, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 818, - "cpu_pct": 111.5, + "duration_sec": 672, + "cpu_pct": 103.1, "peak_memory_mb": 25191, "disk_read_mb": 288, - "disk_write_mb": 772 + "disk_write_mb": 845 }, "task_id": "task_denoising" }, @@ -26,20 +26,20 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "dca", "metric_values": { - "mse": 0.1934, - "poisson": 0.2291 + "mse": 0.1936, + "poisson": 0.2292 }, "scaled_scores": { - "mse": 0.1667, - "poisson": -0.0553 + "mse": 0.1662, + "poisson": -0.0559 }, - "mean_score": 0.0834, + "mean_score": 0.0831, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 419, - "cpu_pct": 2410.2, - "peak_memory_mb": 18535, + "duration_sec": 409, + "cpu_pct": 3141.5, + "peak_memory_mb": 18023, "disk_read_mb": 322, "disk_write_mb": 894 }, @@ -49,19 +49,19 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2014, - "poisson": 2.0693 + "mse": 0.2015, + "poisson": 2.0694 }, "scaled_scores": { - "mse": 0.1323, - "poisson": -9.375 + "mse": 0.1322, + "poisson": -9.3763 }, "mean_score": 0.0661, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 133, - "cpu_pct": 1327, + "duration_sec": 126, + "cpu_pct": 1245, "peak_memory_mb": 17818, "disk_read_mb": 290, "disk_write_mb": 139 @@ -72,19 +72,19 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "magic", "metric_values": { - "mse": 0.1933, + "mse": 0.1934, "poisson": 0.2307 }, "scaled_scores": { "mse": 0.1671, - "poisson": -0.0635 + "poisson": -0.0634 }, "mean_score": 0.0835, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 140, - "cpu_pct": 914.7, + "duration_sec": 148, + "cpu_pct": 867.2, "peak_memory_mb": 11981, "disk_read_mb": 302, "disk_write_mb": 1434 @@ -95,7 +95,7 @@ "dataset_id": "cellxgene_census/dkd", "method_id": "no_denoising", "metric_values": { - "mse": 0.2321, + "mse": 0.2322, "poisson": 0.2182 }, "scaled_scores": { @@ -106,9 +106,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 13.2, - "cpu_pct": 302.4, - "peak_memory_mb": 3175, + "duration_sec": 12.2, + "cpu_pct": 200.8, + "peak_memory_mb": 5837, "disk_read_mb": 278, "disk_write_mb": 102 }, @@ -129,9 +129,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 8.7, - "cpu_pct": 224.8, - "peak_memory_mb": 3175, + "duration_sec": 9, + "cpu_pct": 201.9, + "peak_memory_mb": 5837, "disk_read_mb": 327, "disk_write_mb": 61 }, @@ -141,22 +141,22 @@ "dataset_id": "cellxgene_census/gtex_v9", "method_id": "alra", "metric_values": { - "mse": 0.2399, - "poisson": 0.4625 + "mse": 0.2575, + "poisson": 0.375 }, "scaled_scores": { - "mse": -0.1875, - "poisson": -6.6007 + "mse": -0.1796, + "poisson": -5.6215 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1581, - "cpu_pct": 108.7, - "peak_memory_mb": 56832, - "disk_read_mb": 230, - "disk_write_mb": 1229 + "duration_sec": 915, + "cpu_pct": 103.2, + "peak_memory_mb": 31130, + "disk_read_mb": 124, + "disk_write_mb": 495 }, "task_id": "task_denoising" }, @@ -164,22 +164,22 @@ "dataset_id": "cellxgene_census/gtex_v9", "method_id": "dca", "metric_values": { - "mse": 0.1792, - "poisson": 0.0709 + "mse": 0.1944, + "poisson": 0.0635 }, "scaled_scores": { - "mse": 0.1128, - "poisson": -0.0775 + "mse": 0.1097, + "poisson": -0.049 }, - "mean_score": 0.0564, + "mean_score": 0.0549, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 926, - "cpu_pct": 3398.3, - "peak_memory_mb": 20173, - "disk_read_mb": 265, - "disk_write_mb": 1844 + "duration_sec": 469, + "cpu_pct": 3313, + "peak_memory_mb": 18023, + "disk_read_mb": 159, + "disk_write_mb": 953 }, "task_id": "task_denoising" }, @@ -187,22 +187,22 @@ "dataset_id": "cellxgene_census/gtex_v9", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2031, - "poisson": 0.6407 + "mse": 0.2263, + "poisson": 0.5858 }, "scaled_scores": { - "mse": -0.0052, - "poisson": -9.568 + "mse": -0.0365, + "poisson": -9.3945 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 477, - "cpu_pct": 454.3, - "peak_memory_mb": 35328, - "disk_read_mb": 233, - "disk_write_mb": 183 + "duration_sec": 145, + "cpu_pct": 999.9, + "peak_memory_mb": 19354, + "disk_read_mb": 126, + "disk_write_mb": 94 }, "task_id": "task_denoising" }, @@ -210,22 +210,22 @@ "dataset_id": "cellxgene_census/gtex_v9", "method_id": "magic", "metric_values": { - "mse": 0.1816, - "poisson": 0.0688 + "mse": 0.2005, + "poisson": 0.0627 }, "scaled_scores": { - "mse": 0.101, - "poisson": -0.0422 + "mse": 0.0816, + "poisson": -0.035 }, - "mean_score": 0.0505, + "mean_score": 0.0408, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 344, - "cpu_pct": 2049.5, - "peak_memory_mb": 19047, - "disk_read_mb": 245, - "disk_write_mb": 2765 + "duration_sec": 195, + "cpu_pct": 936.7, + "peak_memory_mb": 12186, + "disk_read_mb": 138, + "disk_write_mb": 1434 }, "task_id": "task_denoising" }, @@ -233,8 +233,8 @@ "dataset_id": "cellxgene_census/gtex_v9", "method_id": "no_denoising", "metric_values": { - "mse": 0.202, - "poisson": 0.0663 + "mse": 0.2183, + "poisson": 0.0608 }, "scaled_scores": { "mse": 0, @@ -244,11 +244,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 11.7, - "cpu_pct": 184.8, - "peak_memory_mb": 3072, - "disk_read_mb": 221, - "disk_write_mb": 80 + "duration_sec": 6.7, + "cpu_pct": 232.1, + "peak_memory_mb": 5632, + "disk_read_mb": 114, + "disk_write_mb": 39 }, "task_id": "task_denoising" }, @@ -257,7 +257,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0062 + "poisson": 0.0049 }, "scaled_scores": { "mse": 1, @@ -267,11 +267,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 7.2, - "cpu_pct": 299.9, - "peak_memory_mb": 3072, - "disk_read_mb": 253, - "disk_write_mb": 47 + "duration_sec": 5.3, + "cpu_pct": 273.6, + "peak_memory_mb": 5632, + "disk_read_mb": 129, + "disk_write_mb": 23 }, "task_id": "task_denoising" }, @@ -280,21 +280,21 @@ "method_id": "alra", "metric_values": { "mse": 0.2233, - "poisson": 0.7062 + "poisson": 0.7059 }, "scaled_scores": { - "mse": -0.2783, - "poisson": -3.5821 + "mse": -0.2782, + "poisson": -3.58 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1183, - "cpu_pct": 101.3, + "duration_sec": 1571, + "cpu_pct": 102.7, "peak_memory_mb": 34304, "disk_read_mb": 379, - "disk_write_mb": 953 + "disk_write_mb": 952 }, "task_id": "task_denoising" }, @@ -313,9 +313,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 877, - "cpu_pct": 3463.3, - "peak_memory_mb": 19456, + "duration_sec": 868, + "cpu_pct": 3478.8, + "peak_memory_mb": 19149, "disk_read_mb": 413, "disk_write_mb": 1434 }, @@ -336,8 +336,8 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 262, - "cpu_pct": 707.7, + "duration_sec": 257, + "cpu_pct": 709.2, "peak_memory_mb": 27956, "disk_read_mb": 381, "disk_write_mb": 194 @@ -352,15 +352,15 @@ "poisson": 0.1844 }, "scaled_scores": { - "mse": 0.16, + "mse": 0.1599, "poisson": -0.0746 }, "mean_score": 0.08, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 263, - "cpu_pct": 1305.3, + "duration_sec": 288, + "cpu_pct": 1215.9, "peak_memory_mb": 15770, "disk_read_mb": 393, "disk_write_mb": 2253 @@ -382,8 +382,8 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 15.5, - "cpu_pct": 151.3, + "duration_sec": 15.9, + "cpu_pct": 146.6, "peak_memory_mb": 5940, "disk_read_mb": 369, "disk_write_mb": 138 @@ -406,8 +406,8 @@ "resources": { "exit_code": 0, "duration_sec": 11.5, - "cpu_pct": 317.9, - "peak_memory_mb": 3277, + "cpu_pct": 148.4, + "peak_memory_mb": 5940, "disk_read_mb": 443, "disk_write_mb": 84 }, @@ -417,22 +417,22 @@ "dataset_id": "cellxgene_census/hypomap", "method_id": "alra", "metric_values": { - "mse": 0.2679, - "poisson": 0.4097 + "mse": 0.1848, + "poisson": 0.4527 }, "scaled_scores": { - "mse": -0.0808, - "poisson": -1.7334 + "mse": -0.0574, + "poisson": -2.5987 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 327, - "cpu_pct": 112.6, - "peak_memory_mb": 13210, - "disk_read_mb": 108, - "disk_write_mb": 171 + "duration_sec": 993, + "cpu_pct": 101.8, + "peak_memory_mb": 32564, + "disk_read_mb": 265, + "disk_write_mb": 665 }, "task_id": "task_denoising" }, @@ -440,22 +440,22 @@ "dataset_id": "cellxgene_census/hypomap", "method_id": "dca", "metric_values": { - "mse": 0.2054, - "poisson": 0.1641 + "mse": 0.1428, + "poisson": 0.1408 }, "scaled_scores": { - "mse": 0.1713, - "poisson": -0.0333 + "mse": 0.1834, + "poisson": -0.044 }, - "mean_score": 0.0857, + "mean_score": 0.0917, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 140, - "cpu_pct": 3125.1, - "peak_memory_mb": 16794, - "disk_read_mb": 143, - "disk_write_mb": 363 + "duration_sec": 775, + "cpu_pct": 3755.2, + "peak_memory_mb": 19456, + "disk_read_mb": 300, + "disk_write_mb": 1229 }, "task_id": "task_denoising" }, @@ -463,22 +463,22 @@ "dataset_id": "cellxgene_census/hypomap", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2187, - "poisson": 1.4981 + "mse": 0.1525, + "poisson": 1.3154 }, "scaled_scores": { - "mse": 0.1176, - "poisson": -9.2664 + "mse": 0.1276, + "poisson": -9.6643 }, - "mean_score": 0.0588, + "mean_score": 0.0638, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 54.1, - "cpu_pct": 2048.3, - "peak_memory_mb": 10445, - "disk_read_mb": 110, - "disk_write_mb": 52 + "duration_sec": 164, + "cpu_pct": 1094.1, + "peak_memory_mb": 23040, + "disk_read_mb": 267, + "disk_write_mb": 152 }, "task_id": "task_denoising" }, @@ -486,22 +486,22 @@ "dataset_id": "cellxgene_census/hypomap", "method_id": "magic", "metric_values": { - "mse": 0.2066, - "poisson": 0.1637 + "mse": 0.145, + "poisson": 0.1417 }, "scaled_scores": { - "mse": 0.1664, - "poisson": -0.031 + "mse": 0.1706, + "poisson": -0.0513 }, - "mean_score": 0.0832, + "mean_score": 0.0853, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 52.3, - "cpu_pct": 1314.1, - "peak_memory_mb": 8295, - "disk_read_mb": 122, - "disk_write_mb": 518 + "duration_sec": 286, + "cpu_pct": 720.6, + "peak_memory_mb": 14336, + "disk_read_mb": 279, + "disk_write_mb": 1536 }, "task_id": "task_denoising" }, @@ -509,8 +509,8 @@ "dataset_id": "cellxgene_census/hypomap", "method_id": "no_denoising", "metric_values": { - "mse": 0.2479, - "poisson": 0.1593 + "mse": 0.1748, + "poisson": 0.1354 }, "scaled_scores": { "mse": 0, @@ -520,11 +520,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 6.4, - "cpu_pct": 261.8, - "peak_memory_mb": 2970, - "disk_read_mb": 98, - "disk_write_mb": 33 + "duration_sec": 12.7, + "cpu_pct": 192.4, + "peak_memory_mb": 5837, + "disk_read_mb": 255, + "disk_write_mb": 96 }, "task_id": "task_denoising" }, @@ -533,7 +533,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0148 + "poisson": 0.0133 }, "scaled_scores": { "mse": 1, @@ -543,11 +543,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 4.4, - "cpu_pct": 258.1, - "peak_memory_mb": 2970, - "disk_read_mb": 114, - "disk_write_mb": 20 + "duration_sec": 9.3, + "cpu_pct": 237.9, + "peak_memory_mb": 5837, + "disk_read_mb": 300, + "disk_write_mb": 58 }, "task_id": "task_denoising" }, @@ -555,22 +555,22 @@ "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "alra", "metric_values": { - "mse": 0.2004, - "poisson": 0.6209 + "mse": 0.1825, + "poisson": 0.585 }, "scaled_scores": { - "mse": -0.2612, - "poisson": -4.3737 + "mse": -0.193, + "poisson": -2.8663 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1942, - "cpu_pct": 184.4, - "peak_memory_mb": 48333, - "disk_read_mb": 341, - "disk_write_mb": 1229 + "duration_sec": 902, + "cpu_pct": 101.9, + "peak_memory_mb": 30720, + "disk_read_mb": 276, + "disk_write_mb": 597 }, "task_id": "task_denoising" }, @@ -578,22 +578,22 @@ "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "dca", "metric_values": { - "mse": 0.1282, - "poisson": 0.1457 + "mse": 0.1253, + "poisson": 0.2006 }, "scaled_scores": { - "mse": 0.1933, - "poisson": -0.126 + "mse": 0.1809, + "poisson": -0.1787 }, - "mean_score": 0.0966, + "mean_score": 0.0904, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 557, - "cpu_pct": 3209.3, - "peak_memory_mb": 19764, - "disk_read_mb": 376, - "disk_write_mb": 1639 + "duration_sec": 512, + "cpu_pct": 3221.3, + "peak_memory_mb": 18330, + "disk_read_mb": 311, + "disk_write_mb": 965 }, "task_id": "task_denoising" }, @@ -601,22 +601,22 @@ "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1353, - "poisson": 1.3915 + "mse": 0.1301, + "poisson": 1.6529 }, "scaled_scores": { - "mse": 0.1483, - "poisson": -11.2598 + "mse": 0.1492, + "poisson": -10.3325 }, - "mean_score": 0.0742, + "mean_score": 0.0746, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 291, - "cpu_pct": 884.3, - "peak_memory_mb": 30516, - "disk_read_mb": 344, - "disk_write_mb": 195 + "duration_sec": 182, + "cpu_pct": 695.8, + "peak_memory_mb": 19047, + "disk_read_mb": 278, + "disk_write_mb": 134 }, "task_id": "task_denoising" }, @@ -624,22 +624,22 @@ "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "magic", "metric_values": { - "mse": 0.1292, - "poisson": 0.1487 + "mse": 0.1249, + "poisson": 0.1916 }, "scaled_scores": { - "mse": 0.1873, - "poisson": -0.1528 + "mse": 0.1832, + "poisson": -0.1159 }, - "mean_score": 0.0937, + "mean_score": 0.0916, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 321, - "cpu_pct": 1815.7, - "peak_memory_mb": 16896, - "disk_read_mb": 356, - "disk_write_mb": 2356 + "duration_sec": 168, + "cpu_pct": 939.1, + "peak_memory_mb": 12391, + "disk_read_mb": 290, + "disk_write_mb": 1434 }, "task_id": "task_denoising" }, @@ -647,8 +647,8 @@ "dataset_id": "cellxgene_census/immune_cell_atlas", "method_id": "no_denoising", "metric_values": { - "mse": 0.1589, - "poisson": 0.1316 + "mse": 0.1529, + "poisson": 0.1751 }, "scaled_scores": { "mse": 0, @@ -658,11 +658,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 15.1, - "cpu_pct": 248.7, - "peak_memory_mb": 3175, - "disk_read_mb": 332, - "disk_write_mb": 123 + "duration_sec": 12, + "cpu_pct": 157.8, + "peak_memory_mb": 5837, + "disk_read_mb": 266, + "disk_write_mb": 99 }, "task_id": "task_denoising" }, @@ -671,7 +671,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0197 + "poisson": 0.032 }, "scaled_scores": { "mse": 1, @@ -681,11 +681,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 10.8, - "cpu_pct": 193.2, - "peak_memory_mb": 3277, - "disk_read_mb": 398, - "disk_write_mb": 74 + "duration_sec": 8.4, + "cpu_pct": 212.9, + "peak_memory_mb": 5837, + "disk_read_mb": 323, + "disk_write_mb": 61 }, "task_id": "task_denoising" }, @@ -693,22 +693,22 @@ "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "alra", "metric_values": { - "mse": 0.1639, - "poisson": 0.2911 + "mse": 0.1688, + "poisson": 0.2395 }, "scaled_scores": { - "mse": -0.1997, - "poisson": -8.3054 + "mse": -0.1817, + "poisson": -6.5285 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1445, - "cpu_pct": 119.3, - "peak_memory_mb": 49460, - "disk_read_mb": 540, - "disk_write_mb": 955 + "duration_sec": 665, + "cpu_pct": 103, + "peak_memory_mb": 26829, + "disk_read_mb": 285, + "disk_write_mb": 416 }, "task_id": "task_denoising" }, @@ -716,22 +716,22 @@ "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "dca", "metric_values": { - "mse": 0.1136, - "poisson": 0.0685 + "mse": 0.1188, + "poisson": 0.0622 }, "scaled_scores": { "mse": 0.1688, - "poisson": -0.9206 + "poisson": -0.6515 }, "mean_score": 0.0844, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 633, - "cpu_pct": 2926.6, - "peak_memory_mb": 20890, - "disk_read_mb": 575, - "disk_write_mb": 1639 + "duration_sec": 365, + "cpu_pct": 3011.7, + "peak_memory_mb": 17613, + "disk_read_mb": 320, + "disk_write_mb": 811 }, "task_id": "task_denoising" }, @@ -739,22 +739,22 @@ "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1187, - "poisson": -0.3087 + "mse": 0.1243, + "poisson": -0.2938 }, "scaled_scores": { - "mse": 0.1309, - "poisson": 11.5947 + "mse": 0.13, + "poisson": 11.1446 }, - "mean_score": 0.5655, + "mean_score": 0.565, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 348, - "cpu_pct": 679.5, - "peak_memory_mb": 31949, - "disk_read_mb": 542, - "disk_write_mb": 276 + "duration_sec": 119, + "cpu_pct": 1056.2, + "peak_memory_mb": 16896, + "disk_read_mb": 288, + "disk_write_mb": 138 }, "task_id": "task_denoising" }, @@ -762,22 +762,22 @@ "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "magic", "metric_values": { - "mse": 0.1132, - "poisson": 0.023 + "mse": 0.1188, + "poisson": 0.0267 }, "scaled_scores": { - "mse": 0.1712, - "poisson": 0.5873 + "mse": 0.1684, + "poisson": 0.5245 }, - "mean_score": 0.3792, + "mean_score": 0.3465, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 292, - "cpu_pct": 1836.2, - "peak_memory_mb": 19559, - "disk_read_mb": 554, - "disk_write_mb": 2356 + "duration_sec": 133, + "cpu_pct": 1054.9, + "peak_memory_mb": 11367, + "disk_read_mb": 300, + "disk_write_mb": 1127 }, "task_id": "task_denoising" }, @@ -785,8 +785,8 @@ "dataset_id": "cellxgene_census/mouse_pancreas_atlas", "method_id": "no_denoising", "metric_values": { - "mse": 0.1366, - "poisson": 0.0106 + "mse": 0.1429, + "poisson": 0.0123 }, "scaled_scores": { "mse": 0, @@ -796,11 +796,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 27.2, - "cpu_pct": 168.3, - "peak_memory_mb": 3380, - "disk_read_mb": 530, - "disk_write_mb": 206 + "duration_sec": 17.2, + "cpu_pct": 167, + "peak_memory_mb": 5837, + "disk_read_mb": 276, + "disk_write_mb": 104 }, "task_id": "task_denoising" }, @@ -809,7 +809,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0407 + "poisson": 0.0425 }, "scaled_scores": { "mse": 1, @@ -819,11 +819,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 16.3, - "cpu_pct": 254.6, - "peak_memory_mb": 3482, - "disk_read_mb": 640, - "disk_write_mb": 125 + "duration_sec": 8.2, + "cpu_pct": 188.6, + "peak_memory_mb": 5837, + "disk_read_mb": 332, + "disk_write_mb": 64 }, "task_id": "task_denoising" }, @@ -831,22 +831,22 @@ "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "alra", "metric_values": { - "mse": 0.1158, - "poisson": 0.4732 + "mse": 0.1085, + "poisson": 0.4269 }, "scaled_scores": { - "mse": -0.197, - "poisson": -2.6531 + "mse": -0.2082, + "poisson": -2.9498 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 2091, - "cpu_pct": 100.7, - "peak_memory_mb": 68096, - "disk_read_mb": 565, - "disk_write_mb": 1332 + "duration_sec": 1261, + "cpu_pct": 100.6, + "peak_memory_mb": 39936, + "disk_read_mb": 321, + "disk_write_mb": 635 }, "task_id": "task_denoising" }, @@ -854,22 +854,22 @@ "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "dca", "metric_values": { - "mse": 0.0819, - "poisson": 0.1669 + "mse": 0.0769, + "poisson": 0.1512 }, "scaled_scores": { - "mse": 0.1531, - "poisson": -0.143 + "mse": 0.1445, + "poisson": -0.2202 }, - "mean_score": 0.0766, + "mean_score": 0.0723, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1210, - "cpu_pct": 3744, - "peak_memory_mb": 22836, - "disk_read_mb": 600, - "disk_write_mb": 2458 + "duration_sec": 997, + "cpu_pct": 3818.4, + "peak_memory_mb": 20583, + "disk_read_mb": 356, + "disk_write_mb": 1434 }, "task_id": "task_denoising" }, @@ -877,22 +877,22 @@ "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.0847, - "poisson": 1.5087 + "mse": 0.0792, + "poisson": 1.3443 }, "scaled_scores": { - "mse": 0.124, - "poisson": -11.1368 + "mse": 0.1185, + "poisson": -12.0345 }, - "mean_score": 0.062, + "mean_score": 0.0592, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 532, - "cpu_pct": 514, - "peak_memory_mb": 41370, - "disk_read_mb": 567, - "disk_write_mb": 284 + "duration_sec": 174, + "cpu_pct": 1143.4, + "peak_memory_mb": 24986, + "disk_read_mb": 324, + "disk_write_mb": 159 }, "task_id": "task_denoising" }, @@ -900,22 +900,22 @@ "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "magic", "metric_values": { - "mse": 0.0829, - "poisson": 0.1717 + "mse": 0.0771, + "poisson": 0.1537 }, "scaled_scores": { - "mse": 0.1424, - "poisson": -0.1828 + "mse": 0.1417, + "poisson": -0.245 }, - "mean_score": 0.0712, + "mean_score": 0.0709, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 373, - "cpu_pct": 1033.1, - "peak_memory_mb": 22631, - "disk_read_mb": 579, - "disk_write_mb": 3277 + "duration_sec": 301, + "cpu_pct": 729.1, + "peak_memory_mb": 15360, + "disk_read_mb": 336, + "disk_write_mb": 1844 }, "task_id": "task_denoising" }, @@ -923,8 +923,8 @@ "dataset_id": "cellxgene_census/tabula_sapiens", "method_id": "no_denoising", "metric_values": { - "mse": 0.0967, - "poisson": 0.1494 + "mse": 0.0898, + "poisson": 0.129 }, "scaled_scores": { "mse": 0, @@ -934,11 +934,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 26.4, - "cpu_pct": 162.3, - "peak_memory_mb": 3380, - "disk_read_mb": 555, - "disk_write_mb": 214 + "duration_sec": 15.4, + "cpu_pct": 180.5, + "peak_memory_mb": 5837, + "disk_read_mb": 312, + "disk_write_mb": 119 }, "task_id": "task_denoising" }, @@ -947,7 +947,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0274 + "poisson": 0.028 }, "scaled_scores": { "mse": 1, @@ -957,11 +957,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 18.8, - "cpu_pct": 219.4, - "peak_memory_mb": 3584, - "disk_read_mb": 679, - "disk_write_mb": 132 + "duration_sec": 10.5, + "cpu_pct": 183.3, + "peak_memory_mb": 5940, + "disk_read_mb": 381, + "disk_write_mb": 74 }, "task_id": "task_denoising" }, @@ -969,22 +969,22 @@ "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "alra", "metric_values": { - "mse": 0.0333, - "poisson": -4.5411 + "mse": 0.0326, + "poisson": -4.9902 }, "scaled_scores": { - "mse": -9.969, - "poisson": 0.4285 + "mse": -9.7075, + "poisson": 0.4568 }, - "mean_score": 0.2143, + "mean_score": 0.2284, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 2313, - "cpu_pct": 101.6, - "peak_memory_mb": 45568, - "disk_read_mb": 1434, - "disk_write_mb": 1434 + "duration_sec": 1330, + "cpu_pct": 100.3, + "peak_memory_mb": 33690, + "disk_read_mb": 1024, + "disk_write_mb": 952 }, "task_id": "task_denoising" }, @@ -992,22 +992,22 @@ "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "dca", "metric_values": { - "mse": 0.029, - "poisson": -4.6108 + "mse": 0.0287, + "poisson": -4.7424 }, "scaled_scores": { - "mse": -8.5615, - "poisson": 0.4328 + "mse": -8.4292, + "poisson": 0.4417 }, - "mean_score": 0.2164, + "mean_score": 0.2208, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1369, - "cpu_pct": 3681.6, - "peak_memory_mb": 25703, - "disk_read_mb": 1434, - "disk_write_mb": 2151 + "duration_sec": 1115, + "cpu_pct": 3742.8, + "peak_memory_mb": 20890, + "disk_read_mb": 1024, + "disk_write_mb": 1536 }, "task_id": "task_denoising" }, @@ -1015,22 +1015,22 @@ "dataset_id": "openproblems_v1/allen_brain_atlas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.0259, - "poisson": -100.6294 + "mse": 0.0258, + "poisson": -100.3855 }, "scaled_scores": { - "mse": -7.5287, - "poisson": 6.2847 + "mse": -7.4691, + "poisson": 6.284 }, "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 296, - "cpu_pct": 575, - "peak_memory_mb": 31437, - "disk_read_mb": 1434, - "disk_write_mb": 589 + "duration_sec": 195, + "cpu_pct": 911.1, + "peak_memory_mb": 23143, + "disk_read_mb": 1024, + "disk_write_mb": 422 }, "task_id": "task_denoising" }, @@ -1039,21 +1039,21 @@ "method_id": "magic", "metric_values": { "mse": 0.0263, - "poisson": -5.739 + "poisson": -5.7063 }, "scaled_scores": { - "mse": -7.6733, - "poisson": 0.5015 + "mse": -7.6469, + "poisson": 0.5006 }, - "mean_score": 0.2508, + "mean_score": 0.2503, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 383, - "cpu_pct": 864.4, - "peak_memory_mb": 20583, - "disk_read_mb": 1434, - "disk_write_mb": 3175 + "duration_sec": 262, + "cpu_pct": 709.7, + "peak_memory_mb": 16180, + "disk_read_mb": 1024, + "disk_write_mb": 2253 }, "task_id": "task_denoising" }, @@ -1062,7 +1062,7 @@ "method_id": "no_denoising", "metric_values": { "mse": 0.003, - "poisson": -13.9177 + "poisson": -13.8822 }, "scaled_scores": { "mse": 0, @@ -1072,11 +1072,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 97, - "cpu_pct": 145.3, - "peak_memory_mb": 4301, - "disk_read_mb": 1434, - "disk_write_mb": 747 + "duration_sec": 87, + "cpu_pct": 111.6, + "peak_memory_mb": 6554, + "disk_read_mb": 1016, + "disk_write_mb": 526 }, "task_id": "task_denoising" }, @@ -1085,7 +1085,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 2.4902 + "poisson": 2.4886 }, "scaled_scores": { "mse": 1, @@ -1095,11 +1095,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 83, - "cpu_pct": 188.9, - "peak_memory_mb": 5428, - "disk_read_mb": 2560, - "disk_write_mb": 626 + "duration_sec": 52.3, + "cpu_pct": 106.4, + "peak_memory_mb": 7373, + "disk_read_mb": 1844, + "disk_write_mb": 443 }, "task_id": "task_denoising" }, @@ -1107,22 +1107,22 @@ "dataset_id": "openproblems_v1/cengen", "method_id": "alra", "metric_values": { - "mse": 0.2711, - "poisson": 0.2414 + "mse": 0.2697, + "poisson": 0.2235 }, "scaled_scores": { - "mse": -0.7447, - "poisson": -4.2131 + "mse": -0.7043, + "poisson": -3.7107 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 805, - "cpu_pct": 102.5, - "peak_memory_mb": 25805, - "disk_read_mb": 99, - "disk_write_mb": 243 + "duration_sec": 573, + "cpu_pct": 102.8, + "peak_memory_mb": 22938, + "disk_read_mb": 82, + "disk_write_mb": 172 }, "task_id": "task_denoising" }, @@ -1130,22 +1130,22 @@ "dataset_id": "openproblems_v1/cengen", "method_id": "dca", "metric_values": { - "mse": 0.1596, - "poisson": 8.1016 + "mse": 0.1621, + "poisson": 2.7683 }, "scaled_scores": { - "mse": -0.0274, - "poisson": -179.6428 + "mse": -0.0242, + "poisson": -59.3394 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 236, - "cpu_pct": 2586.9, - "peak_memory_mb": 17818, - "disk_read_mb": 134, - "disk_write_mb": 889 + "duration_sec": 346, + "cpu_pct": 2844.2, + "peak_memory_mb": 17204, + "disk_read_mb": 117, + "disk_write_mb": 666 }, "task_id": "task_denoising" }, @@ -1153,22 +1153,22 @@ "dataset_id": "openproblems_v1/cengen", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1747, - "poisson": 0.5477 + "mse": 0.1778, + "poisson": 0.5638 }, "scaled_scores": { - "mse": -0.1243, - "poisson": -11.0499 + "mse": -0.1237, + "poisson": -11.1505 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 164, - "cpu_pct": 855.7, - "peak_memory_mb": 19661, - "disk_read_mb": 101, - "disk_write_mb": 71 + "duration_sec": 136, + "cpu_pct": 755, + "peak_memory_mb": 15668, + "disk_read_mb": 85, + "disk_write_mb": 54 }, "task_id": "task_denoising" }, @@ -1176,22 +1176,22 @@ "dataset_id": "openproblems_v1/cengen", "method_id": "magic", "metric_values": { - "mse": 0.1626, - "poisson": 0.0586 + "mse": 0.1663, + "poisson": 0.06 }, "scaled_scores": { - "mse": -0.0463, - "poisson": -0.132 + "mse": -0.0507, + "poisson": -0.1368 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 210, - "cpu_pct": 1246, - "peak_memory_mb": 11879, - "disk_read_mb": 113, - "disk_write_mb": 1127 + "duration_sec": 224, + "cpu_pct": 641, + "peak_memory_mb": 10240, + "disk_read_mb": 97, + "disk_write_mb": 825 }, "task_id": "task_denoising" }, @@ -1199,8 +1199,8 @@ "dataset_id": "openproblems_v1/cengen", "method_id": "no_denoising", "metric_values": { - "mse": 0.1554, - "poisson": 0.0526 + "mse": 0.1582, + "poisson": 0.0537 }, "scaled_scores": { "mse": 0, @@ -1210,11 +1210,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 8.1, - "cpu_pct": 122.4, + "duration_sec": 14.5, + "cpu_pct": 117.1, "peak_memory_mb": 5632, - "disk_read_mb": 89, - "disk_write_mb": 31 + "disk_read_mb": 73, + "disk_write_mb": 24 }, "task_id": "task_denoising" }, @@ -1223,7 +1223,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0078 + "poisson": 0.008 }, "scaled_scores": { "mse": 1, @@ -1233,11 +1233,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 4.1, - "cpu_pct": 307.2, - "peak_memory_mb": 2970, - "disk_read_mb": 105, - "disk_write_mb": 19 + "duration_sec": 8.7, + "cpu_pct": 68.8, + "peak_memory_mb": 5632, + "disk_read_mb": 85, + "disk_write_mb": 15 }, "task_id": "task_denoising" }, @@ -1246,21 +1246,21 @@ "method_id": "alra", "metric_values": { "mse": 0.382, - "poisson": 1.2291 + "poisson": 1.2218 }, "scaled_scores": { - "mse": -0.215, - "poisson": -3.146 + "mse": -0.2146, + "poisson": -3.1266 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 368, - "cpu_pct": 123.4, - "peak_memory_mb": 14746, - "disk_read_mb": 256, - "disk_write_mb": 662 + "duration_sec": 352, + "cpu_pct": 102.4, + "peak_memory_mb": 16999, + "disk_read_mb": 240, + "disk_write_mb": 613 }, "task_id": "task_denoising" }, @@ -1268,22 +1268,22 @@ "dataset_id": "openproblems_v1/immune_cells", "method_id": "dca", "metric_values": { - "mse": 0.2528, + "mse": 0.2534, "poisson": 0.343 }, "scaled_scores": { - "mse": 0.196, - "poisson": -0.0298 + "mse": 0.1942, + "poisson": -0.0316 }, - "mean_score": 0.098, + "mean_score": 0.0971, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 312, - "cpu_pct": 2695.6, - "peak_memory_mb": 17408, - "disk_read_mb": 291, - "disk_write_mb": 514 + "duration_sec": 460, + "cpu_pct": 2742.3, + "peak_memory_mb": 16896, + "disk_read_mb": 275, + "disk_write_mb": 480 }, "task_id": "task_denoising" }, @@ -1292,21 +1292,21 @@ "method_id": "knn_smoothing", "metric_values": { "mse": 0.2613, - "poisson": 2.9776 + "poisson": 2.9689 }, "scaled_scores": { - "mse": 0.1688, - "poisson": -9.2953 + "mse": 0.169, + "poisson": -9.2798 }, - "mean_score": 0.0844, + "mean_score": 0.0845, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 104, - "cpu_pct": 1030.6, - "peak_memory_mb": 13517, - "disk_read_mb": 258, - "disk_write_mb": 107 + "duration_sec": 93, + "cpu_pct": 1117, + "peak_memory_mb": 12903, + "disk_read_mb": 243, + "disk_write_mb": 100 }, "task_id": "task_denoising" }, @@ -1314,22 +1314,22 @@ "dataset_id": "openproblems_v1/immune_cells", "method_id": "magic", "metric_values": { - "mse": 0.2509, - "poisson": 0.3442 + "mse": 0.251, + "poisson": 0.3436 }, "scaled_scores": { - "mse": 0.2019, - "poisson": -0.0339 + "mse": 0.202, + "poisson": -0.0338 }, - "mean_score": 0.1009, + "mean_score": 0.101, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 109, - "cpu_pct": 1287.9, - "peak_memory_mb": 10036, - "disk_read_mb": 270, - "disk_write_mb": 910 + "duration_sec": 101, + "cpu_pct": 1265.8, + "peak_memory_mb": 9524, + "disk_read_mb": 255, + "disk_write_mb": 848 }, "task_id": "task_denoising" }, @@ -1337,8 +1337,8 @@ "dataset_id": "openproblems_v1/immune_cells", "method_id": "no_denoising", "metric_values": { - "mse": 0.3144, - "poisson": 0.3345 + "mse": 0.3145, + "poisson": 0.334 }, "scaled_scores": { "mse": 0, @@ -1348,11 +1348,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 14.2, - "cpu_pct": 208.7, - "peak_memory_mb": 3072, - "disk_read_mb": 246, - "disk_write_mb": 92 + "duration_sec": 10, + "cpu_pct": 216.2, + "peak_memory_mb": 5735, + "disk_read_mb": 231, + "disk_write_mb": 86 }, "task_id": "task_denoising" }, @@ -1361,7 +1361,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0502 + "poisson": 0.0501 }, "scaled_scores": { "mse": 1, @@ -1371,11 +1371,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 10.3, - "cpu_pct": 175, + "duration_sec": 12, + "cpu_pct": 154.6, "peak_memory_mb": 5837, - "disk_read_mb": 295, - "disk_write_mb": 56 + "disk_read_mb": 276, + "disk_write_mb": 52 }, "task_id": "task_denoising" }, @@ -1383,22 +1383,22 @@ "dataset_id": "openproblems_v1/mouse_blood_olsson_labelled", "method_id": "alra", "metric_values": { - "mse": 0.0497, - "poisson": 0.4089 + "mse": 0.0501, + "poisson": 0.4235 }, "scaled_scores": { - "mse": -0.2376, - "poisson": -1.8314 + "mse": -0.2476, + "poisson": -1.941 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 376, - "cpu_pct": 109, + "duration_sec": 269, + "cpu_pct": 107.7, "peak_memory_mb": 11264, "disk_read_mb": 68, - "disk_write_mb": 54 + "disk_write_mb": 56 }, "task_id": "task_denoising" }, @@ -1407,21 +1407,21 @@ "method_id": "dca", "metric_values": { "mse": 0.0448, - "poisson": 0.2157 + "poisson": 0.2122 }, "scaled_scores": { - "mse": -0.1153, - "poisson": -0.417 + "mse": -0.1159, + "poisson": -0.3926 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 292, - "cpu_pct": 3512.1, - "peak_memory_mb": 25600, + "duration_sec": 283, + "cpu_pct": 4208.4, + "peak_memory_mb": 25293, "disk_read_mb": 103, - "disk_write_mb": 268 + "disk_write_mb": 267 }, "task_id": "task_denoising" }, @@ -1430,18 +1430,18 @@ "method_id": "knn_smoothing", "metric_values": { "mse": 0.0452, - "poisson": 1.9903 + "poisson": 1.9872 }, "scaled_scores": { - "mse": -0.125, - "poisson": -13.4067 + "mse": -0.1252, + "poisson": -13.3967 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 60, - "cpu_pct": 3729, + "duration_sec": 37.5, + "cpu_pct": 1693.3, "peak_memory_mb": 9216, "disk_read_mb": 70, "disk_write_mb": 15 @@ -1456,15 +1456,15 @@ "poisson": 0.2626 }, "scaled_scores": { - "mse": -0.1147, - "poisson": -0.7606 + "mse": -0.1152, + "poisson": -0.7618 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 21.2, - "cpu_pct": 717.5, + "duration_sec": 18, + "cpu_pct": 801.6, "peak_memory_mb": 7783, "disk_read_mb": 82, "disk_write_mb": 66 @@ -1476,7 +1476,7 @@ "method_id": "no_denoising", "metric_values": { "mse": 0.0402, - "poisson": 0.1587 + "poisson": 0.1586 }, "scaled_scores": { "mse": 0, @@ -1486,8 +1486,8 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3.2, - "cpu_pct": 389.3, + "duration_sec": 4.1, + "cpu_pct": 352.8, "peak_memory_mb": 5632, "disk_read_mb": 58, "disk_write_mb": 17 @@ -1509,8 +1509,8 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3.2, - "cpu_pct": 404.9, + "duration_sec": 3.7, + "cpu_pct": 386.6, "peak_memory_mb": 5632, "disk_read_mb": 77, "disk_write_mb": 13 @@ -1521,22 +1521,22 @@ "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "alra", "metric_values": { - "mse": 0.0487, - "poisson": -5.0847 + "mse": 0.049, + "poisson": -4.9448 }, "scaled_scores": { - "mse": -3.3577, - "poisson": 0.4408 + "mse": -3.3807, + "poisson": 0.4316 }, - "mean_score": 0.2204, + "mean_score": 0.2158, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 304, - "cpu_pct": 104.1, + "duration_sec": 277, + "cpu_pct": 105.8, "peak_memory_mb": 13210, "disk_read_mb": 279, - "disk_write_mb": 164 + "disk_write_mb": 165 }, "task_id": "task_denoising" }, @@ -1545,19 +1545,19 @@ "method_id": "dca", "metric_values": { "mse": 0.0476, - "poisson": -2.6147 + "poisson": -2.2847 }, "scaled_scores": { - "mse": -3.2592, - "poisson": 0.2796 + "mse": -3.2526, + "poisson": 0.258 }, - "mean_score": 0.1398, + "mean_score": 0.129, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 107, - "cpu_pct": 2777.1, - "peak_memory_mb": 18125, + "duration_sec": 111, + "cpu_pct": 2735.4, + "peak_memory_mb": 17920, "disk_read_mb": 314, "disk_write_mb": 358 }, @@ -1568,18 +1568,18 @@ "method_id": "knn_smoothing", "metric_values": { "mse": 0.0451, - "poisson": -54.8468 + "poisson": -53.9782 }, "scaled_scores": { - "mse": -3.0342, - "poisson": 3.6883 + "mse": -3.0322, + "poisson": 3.6305 }, "mean_score": 0.5, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 54.7, - "cpu_pct": 2477.3, + "duration_sec": 55.2, + "cpu_pct": 1590.2, "peak_memory_mb": 9626, "disk_read_mb": 282, "disk_write_mb": 100 @@ -1590,19 +1590,19 @@ "dataset_id": "openproblems_v1/mouse_hspc_nestorowa2016", "method_id": "magic", "metric_values": { - "mse": 0.046, - "poisson": -2.5968 + "mse": 0.0461, + "poisson": -2.6259 }, "scaled_scores": { - "mse": -3.1183, - "poisson": 0.2785 + "mse": -3.1159, + "poisson": 0.2803 }, - "mean_score": 0.1392, + "mean_score": 0.1401, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 96, - "cpu_pct": 300.9, + "duration_sec": 66, + "cpu_pct": 739.4, "peak_memory_mb": 8295, "disk_read_mb": 294, "disk_write_mb": 569 @@ -1614,7 +1614,7 @@ "method_id": "no_denoising", "metric_values": { "mse": 0.0112, - "poisson": -13.653 + "poisson": -13.6576 }, "scaled_scores": { "mse": 0, @@ -1624,8 +1624,8 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 15.5, - "cpu_pct": 154, + "duration_sec": 15.8, + "cpu_pct": 140.2, "peak_memory_mb": 5837, "disk_read_mb": 270, "disk_write_mb": 118 @@ -1637,7 +1637,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 1.6704 + "poisson": 1.6706 }, "scaled_scores": { "mse": 1, @@ -1647,10 +1647,10 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 14.7, - "cpu_pct": 176.3, - "peak_memory_mb": 3277, - "disk_read_mb": 403, + "duration_sec": 19.6, + "cpu_pct": 120.1, + "peak_memory_mb": 5940, + "disk_read_mb": 404, "disk_write_mb": 90 }, "task_id": "task_denoising" @@ -1659,22 +1659,22 @@ "dataset_id": "openproblems_v1/pancreas", "method_id": "alra", "metric_values": { - "mse": 0.2348, - "poisson": 2.6636 + "mse": 0.3229, + "poisson": 0.5842 }, "scaled_scores": { - "mse": -0.2628, - "poisson": -0.6607 + "mse": -0.1803, + "poisson": -2.0175 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1062, - "cpu_pct": 101.6, - "peak_memory_mb": 38605, - "disk_read_mb": 632, - "disk_write_mb": 831 + "duration_sec": 193, + "cpu_pct": 110.1, + "peak_memory_mb": 11879, + "disk_read_mb": 95, + "disk_write_mb": 145 }, "task_id": "task_denoising" }, @@ -1682,22 +1682,22 @@ "dataset_id": "openproblems_v1/pancreas", "method_id": "dca", "metric_values": { - "mse": 0.1842, - "poisson": 0.7471 + "mse": 0.2339, + "poisson": 0.2298 }, "scaled_scores": { - "mse": 0.0094, - "poisson": -0.1066 + "mse": 0.145, + "poisson": -0.0873 }, - "mean_score": 0.0047, + "mean_score": 0.0725, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 314, - "cpu_pct": 2518.7, - "peak_memory_mb": 19354, - "disk_read_mb": 667, - "disk_write_mb": 1229 + "duration_sec": 97, + "cpu_pct": 2373.7, + "peak_memory_mb": 16282, + "disk_read_mb": 130, + "disk_write_mb": 221 }, "task_id": "task_denoising" }, @@ -1705,22 +1705,22 @@ "dataset_id": "openproblems_v1/pancreas", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1849, - "poisson": -11.6639 + "mse": 0.2424, + "poisson": 2.1033 }, "scaled_scores": { - "mse": 0.0055, - "poisson": 3.4819 + "mse": 0.1141, + "poisson": -10.2918 }, - "mean_score": 0.5027, + "mean_score": 0.057, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 222, - "cpu_pct": 616.6, - "peak_memory_mb": 23860, - "disk_read_mb": 635, - "disk_write_mb": 261 + "duration_sec": 39.2, + "cpu_pct": 2332.5, + "peak_memory_mb": 8602, + "disk_read_mb": 98, + "disk_write_mb": 39 }, "task_id": "task_denoising" }, @@ -1728,22 +1728,22 @@ "dataset_id": "openproblems_v1/pancreas", "method_id": "magic", "metric_values": { - "mse": 0.1828, - "poisson": -0.2842 + "mse": 0.2351, + "poisson": 0.2352 }, "scaled_scores": { - "mse": 0.0167, - "poisson": 0.1916 + "mse": 0.1409, + "poisson": -0.1166 }, - "mean_score": 0.1042, + "mean_score": 0.0704, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 242, - "cpu_pct": 1239.9, - "peak_memory_mb": 15770, - "disk_read_mb": 647, - "disk_write_mb": 1946 + "duration_sec": 36.3, + "cpu_pct": 1265, + "peak_memory_mb": 7271, + "disk_read_mb": 110, + "disk_write_mb": 350 }, "task_id": "task_denoising" }, @@ -1751,22 +1751,22 @@ "dataset_id": "openproblems_v1/pancreas", "method_id": "no_denoising", "metric_values": { - "mse": 0.1859, - "poisson": -3.08 + "mse": 0.2736, + "poisson": 0.2138 }, "scaled_scores": { "mse": 0, - "poisson": 1 + "poisson": 0 }, - "mean_score": 0.5, + "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 30.1, - "cpu_pct": 228.1, - "peak_memory_mb": 3482, - "disk_read_mb": 623, - "disk_write_mb": 257 + "duration_sec": 4.2, + "cpu_pct": 284.7, + "peak_memory_mb": 5632, + "disk_read_mb": 86, + "disk_write_mb": 27 }, "task_id": "task_denoising" }, @@ -1775,21 +1775,21 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.3786 + "poisson": 0.0302 }, "scaled_scores": { "mse": 1, - "poisson": 0 + "poisson": 1 }, - "mean_score": 0.5, + "mean_score": 1, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 22.9, - "cpu_pct": 169.3, - "peak_memory_mb": 3789, - "disk_read_mb": 883, - "disk_write_mb": 183 + "duration_sec": 3.6, + "cpu_pct": 448.8, + "peak_memory_mb": 5632, + "disk_read_mb": 100, + "disk_write_mb": 16 }, "task_id": "task_denoising" }, @@ -1797,22 +1797,22 @@ "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "alra", "metric_values": { - "mse": 0.3031, - "poisson": 0.6013 + "mse": 0.3095, + "poisson": 0.7263 }, "scaled_scores": { - "mse": -0.1186, - "poisson": -1.1677 + "mse": -0.1424, + "poisson": -1.6524 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 62, - "cpu_pct": 128.8, + "duration_sec": 76, + "cpu_pct": 120.8, "peak_memory_mb": 7168, "disk_read_mb": 54, - "disk_write_mb": 40 + "disk_write_mb": 49 }, "task_id": "task_denoising" }, @@ -1820,19 +1820,19 @@ "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "dca", "metric_values": { - "mse": 0.2174, + "mse": 0.2173, "poisson": 0.3101 }, "scaled_scores": { "mse": 0.1978, - "poisson": -0.0358 + "poisson": -0.0352 }, "mean_score": 0.0989, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 52, - "cpu_pct": 2417.5, + "duration_sec": 49.2, + "cpu_pct": 2156.4, "peak_memory_mb": 15872, "disk_read_mb": 89, "disk_write_mb": 65 @@ -1843,19 +1843,19 @@ "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.2234, - "poisson": 2.7261 + "mse": 0.2236, + "poisson": 2.7154 }, "scaled_scores": { - "mse": 0.1754, - "poisson": -9.4262 + "mse": 0.1747, + "poisson": -9.3812 }, - "mean_score": 0.0877, + "mean_score": 0.0873, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 17.9, - "cpu_pct": 3560.4, + "duration_sec": 17.1, + "cpu_pct": 3433.2, "peak_memory_mb": 6452, "disk_read_mb": 57, "disk_write_mb": 13 @@ -1866,19 +1866,19 @@ "dataset_id": "openproblems_v1/tenx_1k_pbmc", "method_id": "magic", "metric_values": { - "mse": 0.2158, - "poisson": 0.3145 + "mse": 0.2159, + "poisson": 0.3147 }, "scaled_scores": { - "mse": 0.2036, - "poisson": -0.0528 + "mse": 0.203, + "poisson": -0.0531 }, - "mean_score": 0.1018, + "mean_score": 0.1015, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 12.9, - "cpu_pct": 787.1, + "duration_sec": 19.2, + "cpu_pct": 1743.5, "peak_memory_mb": 6247, "disk_read_mb": 69, "disk_write_mb": 110 @@ -1890,7 +1890,7 @@ "method_id": "no_denoising", "metric_values": { "mse": 0.2709, - "poisson": 0.3009 + "poisson": 0.301 }, "scaled_scores": { "mse": 0, @@ -1900,9 +1900,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3.5, - "cpu_pct": 411.4, - "peak_memory_mb": 2868, + "duration_sec": 13.4, + "cpu_pct": 100.5, + "peak_memory_mb": 2765, "disk_read_mb": 45, "disk_write_mb": 11 }, @@ -1913,7 +1913,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0436 + "poisson": 0.0437 }, "scaled_scores": { "mse": 1, @@ -1923,9 +1923,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 3, - "cpu_pct": 396.8, - "peak_memory_mb": 2868, + "duration_sec": 13, + "cpu_pct": 92.2, + "peak_memory_mb": 2765, "disk_read_mb": 51, "disk_write_mb": 7 }, @@ -1936,21 +1936,21 @@ "method_id": "alra", "metric_values": { "mse": 0.2245, - "poisson": 0.457 + "poisson": 0.4584 }, "scaled_scores": { - "mse": -0.2429, - "poisson": -1.9135 + "mse": -0.2431, + "poisson": -1.9252 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 522, - "cpu_pct": 109.6, + "duration_sec": 336, + "cpu_pct": 105.5, "peak_memory_mb": 14951, "disk_read_mb": 128, - "disk_write_mb": 205 + "disk_write_mb": 206 }, "task_id": "task_denoising" }, @@ -1958,20 +1958,20 @@ "dataset_id": "openproblems_v1/tenx_5k_pbmc", "method_id": "dca", "metric_values": { - "mse": 0.1441, - "poisson": 0.178 + "mse": 0.1448, + "poisson": 0.1785 }, "scaled_scores": { - "mse": 0.2022, - "poisson": -0.0263 + "mse": 0.1986, + "poisson": -0.0303 }, - "mean_score": 0.1011, + "mean_score": 0.0993, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 222, - "cpu_pct": 2616.7, - "peak_memory_mb": 16794, + "duration_sec": 190, + "cpu_pct": 2705, + "peak_memory_mb": 16692, "disk_read_mb": 162, "disk_write_mb": 407 }, @@ -1982,21 +1982,21 @@ "method_id": "knn_smoothing", "metric_values": { "mse": 0.1532, - "poisson": 1.576 + "poisson": 1.5739 }, "scaled_scores": { "mse": 0.1521, - "poisson": -9.4828 + "poisson": -9.476 }, - "mean_score": 0.0761, + "mean_score": 0.076, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 65, - "cpu_pct": 1625.5, + "duration_sec": 86, + "cpu_pct": 1097.2, "peak_memory_mb": 11060, "disk_read_mb": 130, - "disk_write_mb": 64 + "disk_write_mb": 63 }, "task_id": "task_denoising" }, @@ -2004,19 +2004,19 @@ "dataset_id": "openproblems_v1/tenx_5k_pbmc", "method_id": "magic", "metric_values": { - "mse": 0.1443, - "poisson": 0.1808 + "mse": 0.1442, + "poisson": 0.1807 }, "scaled_scores": { - "mse": 0.2013, + "mse": 0.2014, "poisson": -0.0452 }, - "mean_score": 0.1006, + "mean_score": 0.1007, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 59.7, - "cpu_pct": 1090.5, + "duration_sec": 61, + "cpu_pct": 566.6, "peak_memory_mb": 8602, "disk_read_mb": 142, "disk_write_mb": 612 @@ -2028,7 +2028,7 @@ "method_id": "no_denoising", "metric_values": { "mse": 0.1806, - "poisson": 0.1742 + "poisson": 0.174 }, "scaled_scores": { "mse": 0, @@ -2038,9 +2038,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 241.1, - "peak_memory_mb": 2970, + "duration_sec": 8.8, + "cpu_pct": 226.7, + "peak_memory_mb": 5632, "disk_read_mb": 118, "disk_write_mb": 41 }, @@ -2061,9 +2061,9 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 6.1, - "cpu_pct": 296.6, - "peak_memory_mb": 2970, + "duration_sec": 4.9, + "cpu_pct": 324.6, + "peak_memory_mb": 5632, "disk_read_mb": 140, "disk_write_mb": 25 }, @@ -2073,22 +2073,22 @@ "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "alra", "metric_values": { - "mse": 0.2029, - "poisson": 0.7032 + "mse": 0.2104, + "poisson": 0.7691 }, "scaled_scores": { - "mse": -0.3249, - "poisson": -4.9864 + "mse": -0.3016, + "poisson": -5.1419 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1912, - "cpu_pct": 101, - "peak_memory_mb": 57037, - "disk_read_mb": 416, - "disk_write_mb": 1229 + "duration_sec": 698, + "cpu_pct": 102.7, + "peak_memory_mb": 26420, + "disk_read_mb": 224, + "disk_write_mb": 669 }, "task_id": "task_denoising" }, @@ -2096,22 +2096,22 @@ "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "dca", "metric_values": { - "mse": 0.1331, - "poisson": 0.162 + "mse": 0.1405, + "poisson": 0.1733 }, "scaled_scores": { "mse": 0.1308, - "poisson": -0.2236 + "poisson": -0.2296 }, "mean_score": 0.0654, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 814, - "cpu_pct": 3442.5, - "peak_memory_mb": 20480, - "disk_read_mb": 451, - "disk_write_mb": 1946 + "duration_sec": 596, + "cpu_pct": 3360.8, + "peak_memory_mb": 18125, + "disk_read_mb": 258, + "disk_write_mb": 943 }, "task_id": "task_denoising" }, @@ -2119,22 +2119,22 @@ "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1398, - "poisson": 1.4912 + "mse": 0.1476, + "poisson": 1.6297 }, "scaled_scores": { - "mse": 0.0874, - "poisson": -11.9217 + "mse": 0.0871, + "poisson": -12.2366 }, - "mean_score": 0.0437, + "mean_score": 0.0436, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 502, - "cpu_pct": 455.3, - "peak_memory_mb": 36352, - "disk_read_mb": 419, - "disk_write_mb": 243 + "duration_sec": 130, + "cpu_pct": 1128.1, + "peak_memory_mb": 18842, + "disk_read_mb": 226, + "disk_write_mb": 124 }, "task_id": "task_denoising" }, @@ -2142,22 +2142,22 @@ "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "magic", "metric_values": { - "mse": 0.1335, - "poisson": 0.1576 + "mse": 0.142, + "poisson": 0.1705 }, "scaled_scores": { - "mse": 0.1284, - "poisson": -0.1843 + "mse": 0.1218, + "poisson": -0.2068 }, - "mean_score": 0.0642, + "mean_score": 0.0609, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 381, - "cpu_pct": 1440.8, - "peak_memory_mb": 20071, - "disk_read_mb": 431, - "disk_write_mb": 2560 + "duration_sec": 142, + "cpu_pct": 1081.9, + "peak_memory_mb": 12186, + "disk_read_mb": 238, + "disk_write_mb": 1332 }, "task_id": "task_denoising" }, @@ -2165,8 +2165,8 @@ "dataset_id": "openproblems_v1/tnbc_wu2021", "method_id": "no_denoising", "metric_values": { - "mse": 0.1531, - "poisson": 0.1366 + "mse": 0.1617, + "poisson": 0.1454 }, "scaled_scores": { "mse": 0, @@ -2176,11 +2176,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 22.1, - "cpu_pct": 153.7, - "peak_memory_mb": 3277, - "disk_read_mb": 407, - "disk_write_mb": 162 + "duration_sec": 10.4, + "cpu_pct": 180.8, + "peak_memory_mb": 5735, + "disk_read_mb": 214, + "disk_write_mb": 82 }, "task_id": "task_denoising" }, @@ -2189,7 +2189,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.023 + "poisson": 0.0241 }, "scaled_scores": { "mse": 1, @@ -2199,11 +2199,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 14.2, - "cpu_pct": 220.8, - "peak_memory_mb": 3380, - "disk_read_mb": 494, - "disk_write_mb": 99 + "duration_sec": 8, + "cpu_pct": 216.8, + "peak_memory_mb": 5837, + "disk_read_mb": 258, + "disk_write_mb": 50 }, "task_id": "task_denoising" }, @@ -2211,22 +2211,22 @@ "dataset_id": "openproblems_v1/zebrafish", "method_id": "alra", "metric_values": { - "mse": 0.2168, - "poisson": 0.6528 + "mse": 0.2179, + "poisson": 0.5611 }, "scaled_scores": { - "mse": -0.1332, - "poisson": -2.7236 + "mse": -0.1359, + "poisson": -2.1736 }, "mean_score": 0, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 1249, - "cpu_pct": 101.1, - "peak_memory_mb": 43520, - "disk_read_mb": 367, - "disk_write_mb": 1127 + "duration_sec": 959, + "cpu_pct": 101.4, + "peak_memory_mb": 23962, + "disk_read_mb": 248, + "disk_write_mb": 594 }, "task_id": "task_denoising" }, @@ -2234,22 +2234,22 @@ "dataset_id": "openproblems_v1/zebrafish", "method_id": "dca", "metric_values": { - "mse": 0.1599, - "poisson": 0.1956 + "mse": 0.1608, + "poisson": 0.196 }, "scaled_scores": { - "mse": 0.1641, - "poisson": -0.0262 + "mse": 0.1619, + "poisson": -0.0252 }, - "mean_score": 0.082, + "mean_score": 0.081, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 732, - "cpu_pct": 3259.2, - "peak_memory_mb": 19354, - "disk_read_mb": 402, - "disk_write_mb": 1434 + "duration_sec": 447, + "cpu_pct": 3106.5, + "peak_memory_mb": 18023, + "disk_read_mb": 283, + "disk_write_mb": 934 }, "task_id": "task_denoising" }, @@ -2257,22 +2257,22 @@ "dataset_id": "openproblems_v1/zebrafish", "method_id": "knn_smoothing", "metric_values": { - "mse": 0.1659, - "poisson": 1.7876 + "mse": 0.1664, + "poisson": 1.7937 }, "scaled_scores": { - "mse": 0.1328, - "poisson": -9.4176 + "mse": 0.1324, + "poisson": -9.4247 }, - "mean_score": 0.0664, + "mean_score": 0.0662, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 241, - "cpu_pct": 749.4, - "peak_memory_mb": 27136, - "disk_read_mb": 370, - "disk_write_mb": 208 + "duration_sec": 136, + "cpu_pct": 1056.6, + "peak_memory_mb": 18740, + "disk_read_mb": 251, + "disk_write_mb": 137 }, "task_id": "task_denoising" }, @@ -2280,22 +2280,22 @@ "dataset_id": "openproblems_v1/zebrafish", "method_id": "magic", "metric_values": { - "mse": 0.1599, - "poisson": 0.1976 + "mse": 0.1606, + "poisson": 0.1984 }, "scaled_scores": { - "mse": 0.164, - "poisson": -0.0382 + "mse": 0.163, + "poisson": -0.0397 }, - "mean_score": 0.082, + "mean_score": 0.0815, "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 482, - "cpu_pct": 789.9, - "peak_memory_mb": 15565, - "disk_read_mb": 382, - "disk_write_mb": 2560 + "duration_sec": 160, + "cpu_pct": 1012.4, + "peak_memory_mb": 12084, + "disk_read_mb": 263, + "disk_write_mb": 1639 }, "task_id": "task_denoising" }, @@ -2303,8 +2303,8 @@ "dataset_id": "openproblems_v1/zebrafish", "method_id": "no_denoising", "metric_values": { - "mse": 0.1913, - "poisson": 0.1911 + "mse": 0.1918, + "poisson": 0.1917 }, "scaled_scores": { "mse": 0, @@ -2314,11 +2314,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 14.5, - "cpu_pct": 172.8, - "peak_memory_mb": 5940, - "disk_read_mb": 358, - "disk_write_mb": 136 + "duration_sec": 11.9, + "cpu_pct": 161.7, + "peak_memory_mb": 5735, + "disk_read_mb": 239, + "disk_write_mb": 90 }, "task_id": "task_denoising" }, @@ -2327,7 +2327,7 @@ "method_id": "perfect_denoising", "metric_values": { "mse": 0, - "poisson": 0.0216 + "poisson": 0.0217 }, "scaled_scores": { "mse": 1, @@ -2337,11 +2337,11 @@ "normalization_id": "log_cp10k", "resources": { "exit_code": 0, - "duration_sec": 11.1, - "cpu_pct": 252.4, - "peak_memory_mb": 3277, - "disk_read_mb": 432, - "disk_write_mb": 83 + "duration_sec": 9.8, + "cpu_pct": 209.8, + "peak_memory_mb": 5837, + "disk_read_mb": 288, + "disk_write_mb": 55 }, "task_id": "task_denoising" }