@@ -13,115 +13,119 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
1313
1414 Gets a graph object representing a graph in the graph catalog.
1515
16- .. py :function :: gds.alpha.graph.graphProperty.drop(G: Graph, graph_property: str , ** config: Any) -> " Series[Any]"
16+ .. py :function :: gds.alpha.graph.graphProperty.drop(G: Graph, graph_property: str , ** config: Any) -> Series[Any]
1717
1818 Removes a graph property from a projected graph.
1919
2020.. py :function :: gds.alpha.graph.graphProperty.stream(G: Graph, graph_property: str , ** config: Any) -> DataFrame
2121
2222 Streams the given graph property.
2323
24- .. py :function :: gds.alpha.graph.nodeLabel.mutate(G: Graph, node_label: str , ** config: Any) -> " Series[Any]"
24+ .. py :function :: gds.alpha.graph.nodeLabel.mutate(G: Graph, node_label: str , ** config: Any) -> Series[Any]
2525
2626 Mutates the in-memory graph with the given node Label.
2727
28- .. py :function :: gds.alpha.graph.nodeLabel.write(G: Graph, node_label: str , ** config: Any) -> " Series[Any]"
28+ .. py :function :: gds.alpha.graph.nodeLabel.write(G: Graph, node_label: str , ** config: Any) -> Series[Any]
2929
3030 Writes the given node Label to an online Neo4j database.
3131
32- .. py :function :: gds.beta.graph.export.csv(G: Graph, ** config: Any) -> " Series[Any]"
32+ .. py :function :: gds.beta.graph.export.csv(G: Graph, ** config: Any) -> Series[Any]
3333
3434 Exports a named graph to CSV files.
3535
3636.. py :function :: gds.beta.graph.export.csv.estimate(G: Graph, ** config: Any) -> " Series[Any]
3737
3838 Estimate the required disk space for exporting a named graph to CSV files.
3939
40- .. py :function :: gds.beta.graph.generate(graph_name: str , node_count: int , average_degree: int , ** config: Any) -> Tuple[Graph, " Series[Any]" ]
40+ .. py :function :: gds.beta.graph.generate(graph_name: str , node_count: int , average_degree: int , ** config: Any) -> Tuple[Graph, Series[Any]]
4141
4242 Computes a random graph, which will be stored in the graph catalog.
4343
44- .. py :function :: gds.beta.graph.project.subgraph(graph_name: str ,from_G: Graph,node_filter: str ,relationship_filter: str ,** config: Any,) -> Tuple[Graph, " Series[Any]" ]
44+ .. py :function :: gds.beta.graph.project.subgraph(graph_name: str ,from_G: Graph,node_filter: str ,relationship_filter: str ,** config: Any,) -> Tuple[Graph, Series[Any]]
4545
4646 Creates a named graph in the catalog for use by algorithms.
4747
4848.. py :function :: gds.beta.graph.relationships.stream(G: Graph, relationship_types: List[str ] = [" *" ], ** config: Any) -> TopologyDataFrame
4949
5050 Streams the given relationship source/target pairs
5151
52- .. py :function :: gds.beta.graph.relationships.toUndirected(G: Graph, query: str , relationship_type: str , mutate_relationship_type: str , ** config: Any) -> " Series[Any]"
52+ .. py :function :: gds.beta.graph.relationships.toUndirected(G: Graph, query: str , relationship_type: str , mutate_relationship_type: str , ** config: Any) -> Series[Any]
5353
5454 The ToUndirected procedure converts directed relationships to undirected relationships
5555
56- .. py :function :: gds.beta.graph.relationships.toUndirected.estimate(G: Graph, relationship_type: str , mutate_relationship_type: str , ** config: Any) -> " Series[Any]"
56+ .. py :function :: gds.beta.graph.relationships.toUndirected.estimate(G: Graph, relationship_type: str , mutate_relationship_type: str , ** config: Any) -> Series[Any]
5757
5858 Returns an estimation of the memory consumption for that procedure.
5959
60- .. py :function :: gds.graph.deleteRelationships(G: Graph, relationship_type: str ) -> " Series[Any]"
60+ .. py :function :: gds.graph.deleteRelationships(G: Graph, relationship_type: str ) -> Series[Any]
6161
6262 Delete the relationship type for a given graph stored in the graph-catalog.
6363
64- .. py :function :: gds.graph.drop(G: Graph,failIfMissing: bool = False ,dbName: str = " " ,username: Optional[str ] = None ,) -> Optional[" Series[Any]" ]
64+ .. py :function :: gds.graph.drop(G: Graph,failIfMissing: bool = False ,dbName: str = " " ,username: Optional[str ] = None ,) -> Optional[Series[Any]]
6565
6666 Drops a named graph from the catalog and frees up the resources it occupies.
6767
68- .. py :function :: gds.graph.exists(graph_name: str ) -> " Series[Any]"
68+ .. py :function :: gds.graph.exists(graph_name: str ) -> Series[Any]
6969
7070 Checks if a graph exists in the catalog.
7171
72- .. py :function :: gds.graph.export(G: Graph, ** config: Any) -> " Series[Any]"
72+ .. py :function :: gds.graph.export(G: Graph, ** config: Any) -> Series[Any]
7373
7474 Exports a named graph into a new offline Neo4j database.
7575
7676.. py :function :: gds.graph.list(G: Optional[Graph] = None ) -> DataFrame
7777
7878 Lists information about named graphs stored in the catalog.
7979
80- .. py :function :: gds.graph.nodeProperties.drop(G: Graph, node_properties: List[str ], ** config: Any) -> " Series[Any]"
80+ .. py :function :: gds.graph.nodeProperties.drop(G: Graph, node_properties: List[str ], ** config: Any) -> Series[Any]
8181
8282 Removes node properties from a projected graph.
8383
8484.. py :function :: gds.graph.nodeProperties.stream(G: Graph,relationship_properties: List[str ],relationship_types: Strings = [" *" ],separate_property_columns: bool = False ,** config: Any,) -> DataFrame
8585
8686 Streams the given node properties.
8787
88- .. py :function :: gds.graph.nodeProperties.write(G: Graph, node_properties: List[str ], node_labels: Strings = [" *" ], ** config: Any) -> " Series[Any]"
88+ .. py :function :: gds.graph.nodeProperties.write(G: Graph, node_properties: List[str ], node_labels: Strings = [" *" ], ** config: Any) -> Series[Any]
8989
9090 Writes the given node properties to an online Neo4j database.
9191
9292.. py :function :: gds.graph.nodeProperty.stream(G: Graph, node_properties: str , node_labels: Strings = [" *" ], ** config: Any) -> DataFrame
9393
9494 Streams the given node property.
9595
96- .. py :function :: gds.graph.project(graph_name: str , node_spec: Any, relationship_spec: Any, ** config: Any) -> Tuple[Graph, " Series[Any]" ]
96+ .. py :function :: gds.graph.project(graph_name: str , node_spec: Any, relationship_spec: Any, ** config: Any) -> Tuple[Graph, Series[Any]]
9797
9898 Creates a named graph in the catalog for use by algorithms.
9999
100- .. py :function :: gds.graph.project.cypher(graph_name: str , node_spec: Any, relationship_spec: Any, ** config: Any) -> Tuple[Graph, " Series[Any]" ]
100+ .. py :function :: gds.graph.project.cypher(graph_name: str , node_spec: Any, relationship_spec: Any, ** config: Any) -> Tuple[Graph, Series[Any]]
101101
102102 Creates a named graph in the catalog for use by algorithms.
103103
104- .. py :function :: gds.graph.project.cypher.estimate(node_projection: Any, relationship_projection: Any, ** config: Any) -> " Series[Any]"
104+ .. py :function :: gds.graph.project.cypher.estimate(node_projection: Any, relationship_projection: Any, ** config: Any) -> Series[Any]
105105
106106 Returns an estimation of the memory consumption for that procedure.
107107
108- .. py :function :: gds.graph.project.estimate(node_projection: Any, relationship_projection: Any, ** config: Any) -> " Series[Any]"
108+ .. py :function :: gds.graph.project.estimate(node_projection: Any, relationship_projection: Any, ** config: Any) -> Series[Any]
109109
110110 Returns an estimation of the memory consumption for that procedure.
111111
112- .. py :function :: gds.graph.relationship.write(G: Graph, relationship_type: str , relationship_property: str = " " , ** config: Any) -> " Series[Any]"
112+ .. py :function :: gds.graph.relationship.write(G: Graph, relationship_type: str , relationship_property: str = " " , ** config: Any) -> Series[Any]
113113
114114 Writes the given relationship and an optional relationship property to an online Neo4j database.
115115
116- .. py :function :: gds.graph.relationshipProperties.stream(G: Graph,relationship_properties: List[str ],relationship_types: Strings = [" *" ],separate_property_columns: bool = False ,** config: Any,) -> DataFrame
116+ .. py :function :: gds.graph.relationshipProperties.stream(G: Graph, relationship_properties: List[str ],relationship_types: Union[ str , List[ str ]] = [" *" ],separate_property_columns: bool = False ,** config: Any,) -> DataFrame
117117
118118 Streams the given relationship properties.
119119
120- .. py :function :: gds.graph.relationshipProperty.stream(G: Graph, node_properties: str , node_labels: Strings = [" *" ], ** config: Any) -> DataFrame
120+ .. py :function :: gds.graph.relationshipProperties.write(G: Graph, relationship_type: str , relationship_properties: List[str ], ** config: Any,) -> DataFrame
121+
122+ Write the given relationship properties back to the database.
123+
124+ .. py :function :: gds.graph.relationshipProperty.stream(G: Graph, node_properties: str , node_labels: Union[str , List[str ]] = [" *" ], ** config: Any) -> DataFrame
121125
122126 Streams the given relationship property.
123127
124- .. py :function :: gds.graph.relationships.drop(G: Graph, relationship_type: str ,) -> " Series[Any]"
128+ .. py :function :: gds.graph.relationships.drop(G: Graph, relationship_type: str ,) -> Series[Any]
125129
126130 Delete the relationship type for a given graph stored in the graph-catalog.
127131
@@ -145,11 +149,11 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
145149
146150 Streams the given relationship property.
147151
148- .. py :function :: gds.graph.writeNodeProperties(G: Graph, node_properties: List[str ], node_labels: Strings = [" *" ], ** config: Any) -> " Series[Any]"
152+ .. py :function :: gds.graph.writeNodeProperties(G: Graph, node_properties: List[str ], node_labels: Strings = [" *" ], ** config: Any) -> Series[Any]
149153
150154 Writes the given node properties to an online Neo4j database.
151155
152- .. py :function :: gds.graph.writeRelationship(G: Graph, relationship_type: str , relationship_property: str = " " , ** config: Any) -> " Series[Any]"
156+ .. py :function :: gds.graph.writeRelationship(G: Graph, relationship_type: str , relationship_property: str = " " , ** config: Any) -> Series[Any]
153157
154158 Writes the given relationship and an optional relationship property to an online Neo4j database.
155159
@@ -179,4 +183,4 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
179183
180184.. py :function :: gds.find_node_id(labels: List[str ] = [], properties: Dict[str , Any] = {}) -> int
181185
182- Finds a node id by its labels and properties.
186+ Finds a node id by its labels and properties.
0 commit comments