Skip to content

Commit 20ac789

Browse files
authored
Merge pull request #383 from adamnsch/ref-docs-server-ep-coverage-test
Add testing for server endpoint coverage in ref docs
2 parents 4805384 + 034f2bc commit 20ac789

File tree

10 files changed

+400
-320
lines changed

10 files changed

+400
-320
lines changed

doc/sphinx/source/algorithms.rst

Lines changed: 278 additions & 225 deletions
Large diffs are not rendered by default.

doc/sphinx/source/graph.rst

Lines changed: 29 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -13,115 +13,119 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
1313
1414
Gets a graph object representing a graph in the graph catalog.
1515

16-
.. py:function:: gds.alpha.graph.graphProperty.drop(G: Graph, graph_property: str, **config: Any) -> "Series[Any]"
16+
.. py:function:: gds.alpha.graph.graphProperty.drop(G: Graph, graph_property: str, **config: Any) -> Series[Any]
1717
1818
Removes a graph property from a projected graph.
1919

2020
.. py:function:: gds.alpha.graph.graphProperty.stream(G: Graph, graph_property: str, **config: Any) -> DataFrame
2121
2222
Streams the given graph property.
2323

24-
.. py:function:: gds.alpha.graph.nodeLabel.mutate(G: Graph, node_label: str, **config: Any) -> "Series[Any]"
24+
.. py:function:: gds.alpha.graph.nodeLabel.mutate(G: Graph, node_label: str, **config: Any) -> Series[Any]
2525
2626
Mutates the in-memory graph with the given node Label.
2727

28-
.. py:function:: gds.alpha.graph.nodeLabel.write(G: Graph, node_label: str, **config: Any) -> "Series[Any]"
28+
.. py:function:: gds.alpha.graph.nodeLabel.write(G: Graph, node_label: str, **config: Any) -> Series[Any]
2929
3030
Writes the given node Label to an online Neo4j database.
3131

32-
.. py:function:: gds.beta.graph.export.csv(G: Graph, **config: Any) -> "Series[Any]"
32+
.. py:function:: gds.beta.graph.export.csv(G: Graph, **config: Any) -> Series[Any]
3333
3434
Exports a named graph to CSV files.
3535

3636
.. py:function:: gds.beta.graph.export.csv.estimate(G: Graph, **config: Any) -> "Series[Any]
3737
3838
Estimate the required disk space for exporting a named graph to CSV files.
3939

40-
.. py:function:: gds.beta.graph.generate(graph_name: str, node_count: int, average_degree: int, **config: Any) -> Tuple[Graph, "Series[Any]"]
40+
.. py:function:: gds.beta.graph.generate(graph_name: str, node_count: int, average_degree: int, **config: Any) -> Tuple[Graph, Series[Any]]
4141
4242
Computes a random graph, which will be stored in the graph catalog.
4343

44-
.. py:function:: gds.beta.graph.project.subgraph(graph_name: str,from_G: Graph,node_filter: str,relationship_filter: str,**config: Any,) -> Tuple[Graph, "Series[Any]"]
44+
.. py:function:: gds.beta.graph.project.subgraph(graph_name: str,from_G: Graph,node_filter: str,relationship_filter: str,**config: Any,) -> Tuple[Graph, Series[Any]]
4545
4646
Creates a named graph in the catalog for use by algorithms.
4747

4848
.. py:function:: gds.beta.graph.relationships.stream(G: Graph, relationship_types: List[str] = ["*"], **config: Any) -> TopologyDataFrame
4949
5050
Streams the given relationship source/target pairs
5151

52-
.. py:function:: gds.beta.graph.relationships.toUndirected(G: Graph, query: str, relationship_type: str, mutate_relationship_type: str, **config: Any) -> "Series[Any]"
52+
.. py:function:: gds.beta.graph.relationships.toUndirected(G: Graph, query: str, relationship_type: str, mutate_relationship_type: str, **config: Any) -> Series[Any]
5353
5454
The ToUndirected procedure converts directed relationships to undirected relationships
5555

56-
.. py:function:: gds.beta.graph.relationships.toUndirected.estimate(G: Graph, relationship_type: str, mutate_relationship_type: str, **config: Any) -> "Series[Any]"
56+
.. py:function:: gds.beta.graph.relationships.toUndirected.estimate(G: Graph, relationship_type: str, mutate_relationship_type: str, **config: Any) -> Series[Any]
5757
5858
Returns an estimation of the memory consumption for that procedure.
5959

60-
.. py:function:: gds.graph.deleteRelationships(G: Graph, relationship_type: str) -> "Series[Any]"
60+
.. py:function:: gds.graph.deleteRelationships(G: Graph, relationship_type: str) -> Series[Any]
6161
6262
Delete the relationship type for a given graph stored in the graph-catalog.
6363

64-
.. py:function:: gds.graph.drop(G: Graph,failIfMissing: bool = False,dbName: str = "",username: Optional[str] = None,) -> Optional["Series[Any]"]
64+
.. py:function:: gds.graph.drop(G: Graph,failIfMissing: bool = False,dbName: str = "",username: Optional[str] = None,) -> Optional[Series[Any]]
6565
6666
Drops a named graph from the catalog and frees up the resources it occupies.
6767

68-
.. py:function:: gds.graph.exists(graph_name: str) -> "Series[Any]"
68+
.. py:function:: gds.graph.exists(graph_name: str) -> Series[Any]
6969
7070
Checks if a graph exists in the catalog.
7171

72-
.. py:function:: gds.graph.export(G: Graph, **config: Any) -> "Series[Any]"
72+
.. py:function:: gds.graph.export(G: Graph, **config: Any) -> Series[Any]
7373
7474
Exports a named graph into a new offline Neo4j database.
7575

7676
.. py:function:: gds.graph.list(G: Optional[Graph] = None) -> DataFrame
7777
7878
Lists information about named graphs stored in the catalog.
7979

80-
.. py:function:: gds.graph.nodeProperties.drop(G: Graph, node_properties: List[str], **config: Any) -> "Series[Any]"
80+
.. py:function:: gds.graph.nodeProperties.drop(G: Graph, node_properties: List[str], **config: Any) -> Series[Any]
8181
8282
Removes node properties from a projected graph.
8383

8484
.. py:function:: gds.graph.nodeProperties.stream(G: Graph,relationship_properties: List[str],relationship_types: Strings = ["*"],separate_property_columns: bool = False,**config: Any,) -> DataFrame
8585
8686
Streams the given node properties.
8787

88-
.. py:function:: gds.graph.nodeProperties.write(G: Graph, node_properties: List[str], node_labels: Strings = ["*"], **config: Any) -> "Series[Any]"
88+
.. py:function:: gds.graph.nodeProperties.write(G: Graph, node_properties: List[str], node_labels: Strings = ["*"], **config: Any) -> Series[Any]
8989
9090
Writes the given node properties to an online Neo4j database.
9191

9292
.. py:function:: gds.graph.nodeProperty.stream(G: Graph, node_properties: str, node_labels: Strings = ["*"], **config: Any) -> DataFrame
9393
9494
Streams the given node property.
9595

96-
.. py:function:: gds.graph.project(graph_name: str, node_spec: Any, relationship_spec: Any, **config: Any) -> Tuple[Graph, "Series[Any]"]
96+
.. py:function:: gds.graph.project(graph_name: str, node_spec: Any, relationship_spec: Any, **config: Any) -> Tuple[Graph, Series[Any]]
9797
9898
Creates a named graph in the catalog for use by algorithms.
9999

100-
.. py:function:: gds.graph.project.cypher(graph_name: str, node_spec: Any, relationship_spec: Any, **config: Any) -> Tuple[Graph, "Series[Any]"]
100+
.. py:function:: gds.graph.project.cypher(graph_name: str, node_spec: Any, relationship_spec: Any, **config: Any) -> Tuple[Graph, Series[Any]]
101101
102102
Creates a named graph in the catalog for use by algorithms.
103103

104-
.. py:function:: gds.graph.project.cypher.estimate(node_projection: Any, relationship_projection: Any, **config: Any) -> "Series[Any]"
104+
.. py:function:: gds.graph.project.cypher.estimate(node_projection: Any, relationship_projection: Any, **config: Any) -> Series[Any]
105105
106106
Returns an estimation of the memory consumption for that procedure.
107107

108-
.. py:function:: gds.graph.project.estimate(node_projection: Any, relationship_projection: Any, **config: Any) -> "Series[Any]"
108+
.. py:function:: gds.graph.project.estimate(node_projection: Any, relationship_projection: Any, **config: Any) -> Series[Any]
109109
110110
Returns an estimation of the memory consumption for that procedure.
111111

112-
.. py:function:: gds.graph.relationship.write(G: Graph, relationship_type: str, relationship_property: str = "", **config: Any) -> "Series[Any]"
112+
.. py:function:: gds.graph.relationship.write(G: Graph, relationship_type: str, relationship_property: str = "", **config: Any) -> Series[Any]
113113
114114
Writes the given relationship and an optional relationship property to an online Neo4j database.
115115

116-
.. py:function:: gds.graph.relationshipProperties.stream(G: Graph,relationship_properties: List[str],relationship_types: Strings = ["*"],separate_property_columns: bool = False,**config: Any,) -> DataFrame
116+
.. py:function:: gds.graph.relationshipProperties.stream(G: Graph, relationship_properties: List[str],relationship_types: Union[str, List[str]] = ["*"],separate_property_columns: bool = False,**config: Any,) -> DataFrame
117117
118118
Streams the given relationship properties.
119119

120-
.. py:function:: gds.graph.relationshipProperty.stream(G: Graph, node_properties: str, node_labels: Strings = ["*"], **config: Any) -> DataFrame
120+
.. py:function:: gds.graph.relationshipProperties.write(G: Graph, relationship_type: str, relationship_properties: List[str], **config: Any,) -> DataFrame
121+
122+
Write the given relationship properties back to the database.
123+
124+
.. py:function:: gds.graph.relationshipProperty.stream(G: Graph, node_properties: str, node_labels: Union[str, List[str]] = ["*"], **config: Any) -> DataFrame
121125
122126
Streams the given relationship property.
123127

124-
.. py:function:: gds.graph.relationships.drop(G: Graph, relationship_type: str,) -> "Series[Any]"
128+
.. py:function:: gds.graph.relationships.drop(G: Graph, relationship_type: str,) -> Series[Any]
125129
126130
Delete the relationship type for a given graph stored in the graph-catalog.
127131

@@ -145,11 +149,11 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
145149
146150
Streams the given relationship property.
147151

148-
.. py:function:: gds.graph.writeNodeProperties(G: Graph, node_properties: List[str], node_labels: Strings = ["*"], **config: Any) -> "Series[Any]"
152+
.. py:function:: gds.graph.writeNodeProperties(G: Graph, node_properties: List[str], node_labels: Strings = ["*"], **config: Any) -> Series[Any]
149153
150154
Writes the given node properties to an online Neo4j database.
151155

152-
.. py:function:: gds.graph.writeRelationship(G: Graph, relationship_type: str, relationship_property: str = "", **config: Any) -> "Series[Any]"
156+
.. py:function:: gds.graph.writeRelationship(G: Graph, relationship_type: str, relationship_property: str = "", **config: Any) -> Series[Any]
153157
154158
Writes the given relationship and an optional relationship property to an online Neo4j database.
155159

@@ -179,4 +183,4 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
179183

180184
.. py:function:: gds.find_node_id(labels: List[str] = [], properties: Dict[str, Any] = {}) -> int
181185
182-
Finds a node id by its labels and properties.
186+
Finds a node id by its labels and properties.

doc/sphinx/source/graphdatascience.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,5 @@ GraphDataScience
33

44
.. autoclass:: graphdatascience.GraphDataScience
55
:members:
6-
:inherited-members:
6+
:inherited-members:
7+
:exclude-members: __init__

doc/sphinx/source/misc.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
2121
2222
Set a limit; global by, default, but also optionally for a specific user
2323

24-
.. py:function:: gds.alpha.systemMonitor() -> "Series[Any]"
24+
.. py:function:: gds.alpha.systemMonitor() -> Series[Any]
2525
2626
Get an overview of the system's workload and available resources
2727

@@ -33,7 +33,7 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
3333
3434
List progress events for currently running tasks.
3535

36-
.. py:function:: gds.debug.sysInfo() -> "Series[Any]"
36+
.. py:function:: gds.debug.sysInfo() -> Series[Any]
3737
3838
Returns details about the status of the system
3939

doc/sphinx/source/ml.rst

Lines changed: 29 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -9,139 +9,135 @@ These all assume that an object of :class:`.GraphDataScience` is available as `g
99
1010
Get a pipeline object representing a pipeline in the Pipeline Catalog.
1111

12-
.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> "Series[Any]"
12+
.. py:function:: gds.alpha.ml.splitRelationships.mutate(G: Graph, **config: Any) -> Series[Any]
1313
1414
Splits a graph into holdout and remaining relationship types and adds them to the graph.
1515

16-
.. py:function:: gds.alpha.scaleProperties.mutate(G: Graph, **config: Any) -> "Series[Any]"
16+
.. py:function:: gds.alpha.pipeline.nodeRegression.create(name: str) -> Tuple[NRTrainingPipeline, Series[Any]]
1717
18-
Scale node properties
18+
Creates a node regression training pipeline in the pipeline catalog.
1919

20-
.. py:function:: gds.alpha.scaleProperties.stream(G: Graph, **config: Any) -> DataFrame
21-
22-
Scale node properties
23-
24-
.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> "Series[Any]"
20+
.. py:function:: gds.beta.graphSage.mutate(G: Graph, **config: Any) -> Series[Any]
2521
2622
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
2723

28-
.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> "Series[Any]"
24+
.. py:function:: gds.beta.graphSage.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
2925
3026
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3127

3228
.. py:function:: gds.beta.graphSage.stream(G: Graph, **config: Any) -> DataFrame
3329
3430
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
3531

36-
.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> "Series[Any]"
32+
.. py:function:: gds.beta.graphSage.stream.estimate(G: Graph, **config: Any) -> Series[Any]
3733
3834
Returns an estimation of the memory consumption for that procedure.
3935

40-
.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, "Series[Any]"]
36+
.. py:function:: gds.beta.graphSage.train(G: Graph, **config: Any) -> Tuple[MODEL_TYPE, Series[Any]]
4137
4238
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
4339

44-
.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> "Series[Any]"
40+
.. py:function:: gds.beta.graphSage.train.estimate(G: Graph, **config: Any) -> Series[Any]
4541
4642
Returns an estimation of the memory consumption for that procedure.
4743

48-
.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> "Series[Any]"
44+
.. py:function:: gds.beta.graphSage.write(G: Graph, **config: Any) -> Series[Any]
4945
5046
The GraphSage algorithm inductively computes embeddings for nodes based on a their features and neighborhoods.
5147

52-
.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> "Series[Any]"
48+
.. py:function:: gds.beta.graphSage.write.estimate(G: Graph, **config: Any) -> Series[Any]
5349
5450
Returns an estimation of the memory consumption for that procedure.
5551

56-
.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> "Series[Any]"
52+
.. py:function:: gds.beta.hashgnn.mutate(G: Graph, **config: Any) -> Series[Any]
5753
5854
HashGNN creates node embeddings by hashing and message passing.
5955

60-
.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> "Series[Any]"
56+
.. py:function:: gds.beta.hashgnn.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
6157
6258
HashGNN creates node embeddings by hashing and message passing.
6359

6460
.. py:function:: gds.beta.hashgnn.stream(G: Graph, **config: Any) -> DataFrame
6561
6662
HashGNN creates node embeddings by hashing and message passing.
6763

68-
.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> "Series[Any]"
64+
.. py:function:: gds.beta.hashgnn.stream.estimate(G: Graph, **config: Any) -> Series[Any]
6965
7066
HashGNN creates node embeddings by hashing and message passing.
7167

72-
.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> "Series[Any]"
68+
.. py:function:: gds.beta.node2vec.mutate(G: Graph, **config: Any) -> Series[Any]
7369
7470
The Node2Vec algorithm computes embeddings for nodes based on random walks.
7571

76-
.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> "Series[Any]"
72+
.. py:function:: gds.beta.node2vec.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
7773
7874
Returns an estimation of the memory consumption for that procedure.
7975

8076
.. py:function:: gds.beta.node2vec.stream(G: Graph, **config: Any) -> DataFrame
8177
8278
The Node2Vec algorithm computes embeddings for nodes based on random walks.
8379

84-
.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> "Series[Any]"
80+
.. py:function:: gds.beta.node2vec.stream.estimate(G: Graph, **config: Any) -> Series[Any]
8581
8682
Returns an estimation of the memory consumption for that procedure.
8783

88-
.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> "Series[Any]"
84+
.. py:function:: gds.beta.node2vec.write(G: Graph, **config: Any) -> Series[Any]
8985
9086
The Node2Vec algorithm computes embeddings for nodes based on random walks.
9187

92-
.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> "Series[Any]"
88+
.. py:function:: gds.beta.node2vec.write.estimate(G: Graph, **config: Any) -> Series[Any]
9389
9490
Returns an estimation of the memory consumption for that procedure.
9591

96-
.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> "Series[Any]"
92+
.. py:function:: gds.beta.pipeline.drop(pipeline: TrainingPipeline[PipelineModel]) -> Series[Any]
9793
9894
Drops a pipeline and frees up the resources it occupies.
9995

100-
.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> "Series[Any]"
96+
.. py:function:: gds.beta.pipeline.exists(pipeline_name: str) -> Series[Any]
10197
10298
Checks if a given pipeline exists in the pipeline catalog.
10399

104-
.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, "Series[Any]"]
100+
.. py:function:: gds.beta.pipeline.linkPrediction.create(name: str) -> Tuple[LPTrainingPipeline, Series[Any]]
105101
106102
Creates a link prediction pipeline in the pipeline catalog.
107103

108104
.. py:function:: gds.beta.pipeline.list(pipeline: Optional[TrainingPipeline[PipelineModel]] = None) -> DataFrame
109105
110106
Lists all pipelines contained in the pipeline catalog.
111107

112-
.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, "Series[Any]"]
108+
.. py:function:: gds.beta.pipeline.nodeClassification.create(name: str) -> Tuple[NCTrainingPipeline, Series[Any]]
113109
114110
Creates a node classification training pipeline in the pipeline catalog.
115111

116-
.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> "Series[Any]"
112+
.. py:function:: gds.fastRP.mutate(G: Graph, **config: Any) -> Series[Any]
117113
118114
Random Projection produces node embeddings via the fastrp algorithm
119115

120-
.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> "Series[Any]"
116+
.. py:function:: gds.fastRP.mutate.estimate(G: Graph, **config: Any) -> Series[Any]
121117
122118
Random Projection produces node embeddings via the fastrp algorithm
123119

124-
.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> "Series[Any]"
120+
.. py:function:: gds.fastRP.stats(G: Graph, **config: Any) -> Series[Any]
125121
126122
Random Projection produces node embeddings via the fastrp algorithm
127123

128-
.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> "Series[Any]"
124+
.. py:function:: gds.fastRP.stats.estimate(G: Graph, **config: Any) -> Series[Any]
129125
130126
Random Projection produces node embeddings via the fastrp algorithm
131127

132128
.. py:function:: gds.fastRP.stream(G: Graph, **config: Any) -> DataFrame
133129
134130
Random Projection produces node embeddings via the fastrp algorithm
135131

136-
.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> "Series[Any]"
132+
.. py:function:: gds.fastRP.stream.estimate(G: Graph, **config: Any) -> Series[Any]
137133
138134
Random Projection produces node embeddings via the fastrp algorithm
139135

140-
.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> "Series[Any]"
136+
.. py:function:: gds.fastRP.write(G: Graph, **config: Any) -> Series[Any]
141137
142138
Random Projection produces node embeddings via the fastrp algorithm
143139

144-
.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> "Series[Any]"
140+
.. py:function:: gds.fastRP.write.estimate(G: Graph, **config: Any) -> Series[Any]
145141
146142
Random Projection produces node embeddings via the fastrp algorithm
147143

0 commit comments

Comments
 (0)