Skip to content

Commit 1d368bc

Browse files
committed
docs: Update IntegratedML Custom Models documentation
- Fill out Model Registration and Deployment section with details from Confluence - Add comprehensive tutorial on customizing and updating models - Include step-by-step deployment methods for containers - Add SQL examples and common customization patterns - Clean up examples directory structure
1 parent 2de25b2 commit 1d368bc

File tree

4 files changed

+333
-350
lines changed

4 files changed

+333
-350
lines changed

README.md

Lines changed: 38 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,14 @@
1-
# 🚀 IntegratedML Custom Models
1+
# IntegratedML Custom Models
22

3-
> **Bring Your Python ML Models Directly into SQL** - The future of in-database machine learning with InterSystems IRIS 2025.2
3+
> Deploy custom Python ML models directly within SQL queries using InterSystems IRIS 2025.2
44
55
[![IRIS 2025.2](https://img.shields.io/badge/IRIS-2025.2-blue.svg)](https://www.intersystems.com)
66
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org)
77
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
88

9-
## 🌟 Overview
9+
## Overview
1010

11-
IntegratedML Custom Models revolutionizes machine learning workflows by enabling data scientists to deploy custom Python models directly within SQL queries. No more data movement, no more ETL pipelines - just pure ML power right where your data lives.
11+
IntegratedML Custom Models allows you to deploy custom Python models directly within SQL queries. This feature enables in-database machine learning without data movement, making it easier to integrate ML models into existing database workflows.
1212

1313
```sql
1414
-- Train your custom Python model with a single SQL command
@@ -30,45 +30,45 @@ SELECT customer_id,
3030
FROM NewApplications
3131
```
3232

33-
## 🎯 Key Features
33+
## Key Features
3434

35-
- **🔌 Seamless Integration**: Deploy any scikit-learn compatible model directly in SQL
36-
- **⚡ Real-time Predictions**: Sub-50ms latency for mission-critical applications
37-
- **🎨 Custom Models**: Bring your own Python models with domain-specific logic
38-
- **📊 No Data Movement**: Train and predict on live data without exports
39-
- **🔧 Production Ready**: Built for enterprise scale and reliability
35+
- **SQL Integration**: Deploy scikit-learn compatible models directly in SQL
36+
- **Low Latency**: Sub-50ms prediction latency for real-time applications
37+
- **Custom Models**: Use your own Python models with domain-specific logic
38+
- **In-Database Processing**: Train and predict without data exports
39+
- **Scalable**: Designed for production workloads
4040

41-
## 📦 Demo Showcase
41+
## Demo Applications
4242

43-
### 1. 💳 Credit Risk Assessment
44-
Advanced financial risk modeling with custom feature engineering for loan default prediction.
43+
### 1. Credit Risk Assessment
44+
Financial risk modeling with custom feature engineering for loan default prediction.
4545

46-
- **Model**: Custom ensemble classifier with financial domain expertise
47-
- **Performance**: 100% accuracy on 10,000+ records
46+
- **Model**: Custom ensemble classifier
47+
- **Test Data**: 10,000 records
4848
- **Training Time**: ~2.3 seconds
4949

50-
### 2. 🚨 Fraud Detection
51-
Real-time transaction fraud detection using ensemble methods combining neural networks, rules, and anomaly detection.
50+
### 2. Fraud Detection
51+
Transaction fraud detection using ensemble methods.
5252

5353
- **Model**: Multi-model ensemble (Neural + Rules + Anomaly)
54-
- **Scale**: Processes 25,000+ transactions
54+
- **Test Data**: 25,000 transactions
5555
- **Latency**: <50ms per prediction
5656

57-
### 3. 📈 Sales Forecasting
58-
Hybrid time-series forecasting combining Facebook Prophet with LightGBM for retail sales prediction.
57+
### 3. Sales Forecasting
58+
Time-series forecasting combining Prophet with LightGBM.
5959

6060
- **Model**: Prophet + LightGBM hybrid
61-
- **Accuracy**: 26.9% MAPE on yearly data
62-
- **Features**: Seasonality, holidays, promotions
61+
- **Accuracy**: 26.9% MAPE
62+
- **Features**: Seasonality, holidays
6363

64-
### 4. 🧬 DNA Similarity Analysis
65-
Genomic sequence analysis using custom similarity algorithms for pathogenicity prediction.
64+
### 4. DNA Similarity Analysis
65+
Sequence analysis using custom similarity algorithms.
6666

67-
- **Model**: K-NN with custom DNA distance metrics
68-
- **Scale**: 5,000+ sequences
69-
- **Features**: GC content, motif search, sequence alignment
67+
- **Model**: K-NN with custom distance metrics
68+
- **Test Data**: 5,000 sequences
69+
- **Features**: GC content, motif search
7070

71-
## 🚀 Quick Start
71+
## Quick Start
7272

7373
### Prerequisites
7474

@@ -106,14 +106,11 @@ make demo-sales
106106
make demo-dna
107107
```
108108

109-
## 📚 Documentation
109+
## Documentation
110110

111111
- [Quick Start Guide](docs/QUICK_GUIDE_CUSTOM_MODELS.md)
112-
- [Architecture Overview](docs/architecture.md)
113-
- [API Reference](docs/api_reference.md)
114-
- [Custom Model Development](docs/custom_model_guide.md)
115112

116-
## 🏗️ Architecture
113+
## Architecture
117114

118115
```
119116
┌─────────────────────────────────────────────────────────────┐
@@ -133,7 +130,7 @@ make demo-dna
133130
└─────────────────────────────────────────────────────────────┘
134131
```
135132

136-
## 🧪 Testing
133+
## Testing
137134

138135
```bash
139136
# Run all tests
@@ -156,7 +153,7 @@ pytest demos/fraud_detection/tests/ -v
156153
| Sales Forecasting | 365 days × 5 stores | 0.4s | 26.9% MAPE |
157154
| DNA Similarity | 5,000 sequences | 1.7s | 50.5% accuracy |
158155

159-
## 🛠️ Development
156+
## Development
160157

161158
### Project Structure
162159

@@ -206,7 +203,7 @@ USING {
206203
}
207204
```
208205

209-
## 🤝 Contributing
206+
## Contributing
210207

211208
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
212209

@@ -216,25 +213,13 @@ We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) f
216213
4. Push to the branch (`git push origin feature/AmazingFeature`)
217214
5. Open a Pull Request
218215

219-
## 📄 License
216+
## License
220217

221218
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
222219

223-
## 🙏 Acknowledgments
220+
## Support
224221

225-
- InterSystems IRIS team for the IntegratedML platform
226-
- The scikit-learn community for the amazing ML ecosystem
227-
- All contributors who made this project possible
222+
For support with IntegratedML Custom Models:
228223

229-
## 📞 Support
230-
231-
- 📧 Email: support@intersystems.com
232-
- 💬 Community: [InterSystems Developer Community](https://community.intersystems.com)
233-
- 🐛 Issues: [GitHub Issues](https://github.com/intersystems/integratedml-custom-models/issues)
234-
235-
---
236-
237-
<p align="center">
238-
<b>Built with ❤️ by the InterSystems Team</b><br>
239-
<i>Empowering data scientists to bring ML directly to their data</i>
240-
</p>
224+
- [InterSystems Developer Community](https://community.intersystems.com)
225+
- [InterSystems Support](https://www.intersystems.com/support/)

0 commit comments

Comments
 (0)