|
6 | 6 | import intel_extension_for_pytorch as ipex |
7 | 7 |
|
8 | 8 | model_names = sorted(name for name in models.__dict__ |
9 | | - if name.islower() and not name.startswith("__") |
10 | | - and callable(models.__dict__[name])) |
| 9 | + if name.islower() and not name.startswith("__") |
| 10 | + and callable(models.__dict__[name])) |
11 | 11 |
|
12 | 12 | class AverageMeter(object): |
13 | | - """Computes and stores the average and current value""" |
14 | | - def __init__(self, name, fmt=':f'): |
15 | | - self.name = name |
16 | | - self.fmt = fmt |
17 | | - self.reset() |
18 | | - |
19 | | - def reset(self): |
20 | | - self.val = 0 |
21 | | - self.avg = 0 |
22 | | - self.sum = 0 |
23 | | - self.count = 0 |
24 | | - |
25 | | - def update(self, val, n=1): |
26 | | - self.val = val |
27 | | - self.sum += val * n |
28 | | - self.count += n |
29 | | - self.avg = self.sum / self.count |
30 | | - |
31 | | - def __str__(self): |
32 | | - fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' |
33 | | - return fmtstr.format(**self.__dict__) |
| 13 | + """Computes and stores the average and current value""" |
| 14 | + def __init__(self, name, fmt=':f'): |
| 15 | + self.name = name |
| 16 | + self.fmt = fmt |
| 17 | + self.reset() |
| 18 | + |
| 19 | + def reset(self): |
| 20 | + self.val = 0 |
| 21 | + self.avg = 0 |
| 22 | + self.sum = 0 |
| 23 | + self.count = 0 |
| 24 | + |
| 25 | + def update(self, val, n=1): |
| 26 | + self.val = val |
| 27 | + self.sum += val * n |
| 28 | + self.count += n |
| 29 | + self.avg = self.sum / self.count |
| 30 | + |
| 31 | + def __str__(self): |
| 32 | + fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' |
| 33 | + return fmtstr.format(**self.__dict__) |
34 | 34 |
|
35 | 35 | class ProgressMeter(object): |
36 | | - def __init__(self, num_batches, meters, prefix=""): |
37 | | - self.batch_fmtstr = self._get_batch_fmtstr(num_batches) |
38 | | - self.meters = meters |
39 | | - self.prefix = prefix |
| 36 | + def __init__(self, num_batches, meters, prefix=""): |
| 37 | + self.batch_fmtstr = self._get_batch_fmtstr(num_batches) |
| 38 | + self.meters = meters |
| 39 | + self.prefix = prefix |
40 | 40 |
|
41 | | - def display(self, batch): |
42 | | - entries = [self.prefix + self.batch_fmtstr.format(batch)] |
43 | | - entries += [str(meter) for meter in self.meters] |
44 | | - print('\t'.join(entries)) |
| 41 | + def display(self, batch): |
| 42 | + entries = [self.prefix + self.batch_fmtstr.format(batch)] |
| 43 | + entries += [str(meter) for meter in self.meters] |
| 44 | + print('\t'.join(entries)) |
45 | 45 |
|
46 | | - def _get_batch_fmtstr(self, num_batches): |
47 | | - num_digits = len(str(num_batches // 1)) |
48 | | - fmt = '{:' + str(num_digits) + 'd}' |
49 | | - return '[' + fmt + '/' + fmt.format(num_batches) + ']' |
| 46 | + def _get_batch_fmtstr(self, num_batches): |
| 47 | + num_digits = len(str(num_batches // 1)) |
| 48 | + fmt = '{:' + str(num_digits) + 'd}' |
| 49 | + return '[' + fmt + '/' + fmt.format(num_batches) + ']' |
50 | 50 |
|
51 | 51 | def accuracy(output, target, topk=(1,)): |
52 | | - """Computes the accuracy over the k top predictions for the specified values of k""" |
53 | | - with torch.no_grad(): |
54 | | - maxk = max(topk) |
55 | | - batch_size = target.size(0) |
| 52 | + """Computes the accuracy over the k top predictions for the specified values of k""" |
| 53 | + with torch.no_grad(): |
| 54 | + maxk = max(topk) |
| 55 | + batch_size = target.size(0) |
56 | 56 |
|
57 | | - _, pred = output.topk(maxk, 1, True, True) |
58 | | - pred = pred.t() |
59 | | - correct = pred.eq(target.view(1, -1).expand_as(pred)) |
| 57 | + _, pred = output.topk(maxk, 1, True, True) |
| 58 | + pred = pred.t() |
| 59 | + correct = pred.eq(target.view(1, -1).expand_as(pred)) |
60 | 60 |
|
61 | | - res = [] |
62 | | - for k in topk: |
63 | | - correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) |
64 | | - res.append(correct_k.mul_(100.0 / batch_size)) |
65 | | - return res |
| 61 | + res = [] |
| 62 | + for k in topk: |
| 63 | + correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) |
| 64 | + res.append(correct_k.mul_(100.0 / batch_size)) |
| 65 | + return res |
66 | 66 |
|
67 | 67 | def validate(val_loader, model, criterion, args): |
68 | 68 |
|
69 | | - # switch to evaluate mode |
70 | | - model.eval() |
71 | | - |
72 | | - def eval_func(model): |
73 | | - batch_time = AverageMeter('Time', ':6.3f') |
74 | | - losses = AverageMeter('Loss', ':.4e') |
75 | | - top1 = AverageMeter('Acc@1', ':6.2f') |
76 | | - top5 = AverageMeter('Acc@5', ':6.2f') |
77 | | - number_iter = len(val_loader) |
78 | | - |
79 | | - progress = ProgressMeter( |
80 | | - number_iter, |
81 | | - [batch_time, losses, top1, top5], |
82 | | - prefix='Test: ') |
83 | | - print('Evaluating RESNET: total Steps: {}'.format(number_iter)) |
84 | | - with torch.no_grad(): |
85 | | - for i, (images, target) in enumerate(val_loader): |
86 | | - images = images.contiguous(memory_format=torch.channels_last) |
87 | | - output = model(images) |
88 | | - loss = criterion(output, target) |
89 | | - # measure accuracy and record loss |
90 | | - acc1, acc5 = accuracy(output, target, topk=(1, 5)) |
91 | | - losses.update(loss.item(), images.size(0)) |
92 | | - top1.update(acc1[0], images.size(0)) |
93 | | - top5.update(acc5[0], images.size(0)) |
94 | | - if i % args.print_freq == 0: |
95 | | - progress.display(i) |
96 | | - |
97 | | - # TODO: this should also be done with the ProgressMeter |
98 | | - print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' |
99 | | - .format(top1=top1, top5=top5)) |
100 | | - |
101 | | - return top1.avg.item() |
102 | | - |
103 | | - print(".........runing calibration step.........") |
104 | | - from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig |
105 | | - qconfig = QConfig( |
106 | | - activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_symmetric, dtype=torch.qint8), |
107 | | - weight= PerChannelMinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric)) |
108 | | - x = torch.randn(1, 3, 224, 224) |
109 | | - prepared_model = ipex.quantization.prepare(model, qconfig, x, inplace=True) |
110 | | - with torch.no_grad(): |
111 | | - for i, (images, target) in enumerate(val_loader): |
112 | | - images = images.contiguous(memory_format=torch.channels_last) |
113 | | - prepared_model(images) |
114 | | - if i == 4: |
115 | | - break |
116 | | - print(".........calibration step done.........") |
117 | | - |
118 | | - print(".........runing autotuning step.........") |
119 | | - tuned_model = ipex.quantization.autotune(prepared_model, val_loader, eval_func, sampling_sizes=[300]) |
120 | | - print(".........autotuning step done.........") |
121 | | - |
122 | | - print(".........runing int8 inference.........") |
123 | | - converted_model = ipex.quantization.convert(tuned_model) |
| 69 | + # switch to evaluate mode |
| 70 | + model.eval() |
| 71 | + |
| 72 | + def eval_func(model): |
| 73 | + batch_time = AverageMeter('Time', ':6.3f') |
| 74 | + losses = AverageMeter('Loss', ':.4e') |
| 75 | + top1 = AverageMeter('Acc@1', ':6.2f') |
| 76 | + top5 = AverageMeter('Acc@5', ':6.2f') |
| 77 | + number_iter = len(val_loader) |
| 78 | + |
| 79 | + progress = ProgressMeter( |
| 80 | + number_iter, |
| 81 | + [batch_time, losses, top1, top5], |
| 82 | + prefix='Test: ') |
| 83 | + print('Evaluating RESNET: total Steps: {}'.format(number_iter)) |
124 | 84 | with torch.no_grad(): |
125 | | - for i, (images, target) in enumerate(val_loader): |
126 | | - images = images.contiguous(memory_format=torch.channels_last) |
127 | | - traced_model = torch.jit.trace(converted_model, images) |
128 | | - traced_model = torch.jit.freeze(traced_model) |
129 | | - break |
130 | | - |
131 | | - eval_func(traced_model) |
132 | | - |
133 | | - return |
| 85 | + for i, (images, target) in enumerate(val_loader): |
| 86 | + images = images.contiguous(memory_format=torch.channels_last) |
| 87 | + output = model(images) |
| 88 | + loss = criterion(output, target) |
| 89 | + # measure accuracy and record loss |
| 90 | + acc1, acc5 = accuracy(output, target, topk=(1, 5)) |
| 91 | + losses.update(loss.item(), images.size(0)) |
| 92 | + top1.update(acc1[0], images.size(0)) |
| 93 | + top5.update(acc5[0], images.size(0)) |
| 94 | + if i % args.print_freq == 0: |
| 95 | + progress.display(i) |
| 96 | + |
| 97 | + # TODO: this should also be done with the ProgressMeter |
| 98 | + print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' |
| 99 | + .format(top1=top1, top5=top5)) |
| 100 | + |
| 101 | + return top1.avg.item() |
| 102 | + |
| 103 | + print(".........runing calibration step.........") |
| 104 | + from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig |
| 105 | + qconfig = QConfig( |
| 106 | + activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_symmetric, dtype=torch.qint8), |
| 107 | + weight= PerChannelMinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric)) |
| 108 | + x = torch.randn(1, 3, 224, 224) |
| 109 | + prepared_model = ipex.quantization.prepare(model, qconfig, x, inplace=True) |
| 110 | + with torch.no_grad(): |
| 111 | + for i, (images, target) in enumerate(val_loader): |
| 112 | + images = images.contiguous(memory_format=torch.channels_last) |
| 113 | + prepared_model(images) |
| 114 | + if i == 4: |
| 115 | + break |
| 116 | + print(".........calibration step done.........") |
| 117 | + |
| 118 | + print(".........runing autotuning step.........") |
| 119 | + tuned_model = ipex.quantization.autotune(prepared_model, val_loader, eval_func, sampling_sizes=[300]) |
| 120 | + print(".........autotuning step done.........") |
| 121 | + |
| 122 | + print(".........runing int8 inference.........") |
| 123 | + converted_model = ipex.quantization.convert(tuned_model) |
| 124 | + with torch.no_grad(): |
| 125 | + for i, (images, target) in enumerate(val_loader): |
| 126 | + images = images.contiguous(memory_format=torch.channels_last) |
| 127 | + traced_model = torch.jit.trace(converted_model, images) |
| 128 | + traced_model = torch.jit.freeze(traced_model) |
| 129 | + break |
| 130 | + |
| 131 | + eval_func(traced_model) |
| 132 | + |
| 133 | + return |
134 | 134 |
|
135 | 135 | def main(args): |
136 | | - print("=> using pre-trained model '{}'".format(args.arch)) |
137 | | - model = models.__dict__[args.arch](pretrained=True) |
138 | | - |
139 | | - assert args.data != None, "please set dataset path if you want to using real data" |
140 | | - valdir = os.path.join(args.data, 'val') |
141 | | - normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], |
142 | | - std=[0.229, 0.224, 0.225]) |
143 | | - criterion = torch.nn.CrossEntropyLoss() |
144 | | - |
145 | | - val_loader = torch.utils.data.DataLoader( |
146 | | - datasets.ImageFolder(valdir, transforms.Compose([ |
147 | | - transforms.Resize(256), |
148 | | - transforms.CenterCrop(224), |
149 | | - transforms.ToTensor(), |
150 | | - normalize, |
151 | | - ])), |
152 | | - batch_size=args.batch_size, shuffle=False, |
153 | | - num_workers=args.workers, pin_memory=True) |
154 | | - |
155 | | - validate(val_loader, model, criterion, args) |
| 136 | + print("=> using pre-trained model '{}'".format(args.arch)) |
| 137 | + model = models.__dict__[args.arch](pretrained=True) |
| 138 | + |
| 139 | + assert args.data != None, "please set dataset path if you want to using real data" |
| 140 | + valdir = os.path.join(args.data, 'val') |
| 141 | + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], |
| 142 | + std=[0.229, 0.224, 0.225]) |
| 143 | + criterion = torch.nn.CrossEntropyLoss() |
| 144 | + |
| 145 | + val_loader = torch.utils.data.DataLoader( |
| 146 | + datasets.ImageFolder(valdir, transforms.Compose([ |
| 147 | + transforms.Resize(256), |
| 148 | + transforms.CenterCrop(224), |
| 149 | + transforms.ToTensor(), |
| 150 | + normalize, |
| 151 | + ])), |
| 152 | + batch_size=args.batch_size, shuffle=False, |
| 153 | + num_workers=args.workers, pin_memory=True) |
| 154 | + |
| 155 | + validate(val_loader, model, criterion, args) |
156 | 156 |
|
157 | 157 | if __name__ == '__main__': |
158 | | - import argparse |
159 | | - parser = argparse.ArgumentParser() |
160 | | - parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet', |
161 | | - help='path to dataset (default: imagenet)') |
162 | | - parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', |
163 | | - choices=model_names, |
164 | | - help='model architecture: ' + |
165 | | - ' | '.join(model_names) + |
166 | | - ' (default: resnet18)') |
167 | | - parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
168 | | - help='number of data loading workers (default: 4)') |
169 | | - parser.add_argument('-b', '--batch-size', default=56, type=int, |
170 | | - metavar='N', |
171 | | - help='mini-batch size (default: 256), this is the total ' |
172 | | - 'batch size of all GPUs on the current node when ' |
173 | | - 'using Data Parallel or Distributed Data Parallel') |
174 | | - parser.add_argument('-p', '--print-freq', default=10, type=int, |
175 | | - metavar='N', help='print frequency (default: 10)') |
176 | | - main(parser.parse_args()) |
| 158 | + import argparse |
| 159 | + parser = argparse.ArgumentParser() |
| 160 | + parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet', |
| 161 | + help='path to dataset (default: imagenet)') |
| 162 | + parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', |
| 163 | + choices=model_names, |
| 164 | + help='model architecture: ' + |
| 165 | + ' | '.join(model_names) + |
| 166 | + ' (default: resnet18)') |
| 167 | + parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
| 168 | + help='number of data loading workers (default: 4)') |
| 169 | + parser.add_argument('-b', '--batch-size', default=56, type=int, |
| 170 | + metavar='N', |
| 171 | + help='mini-batch size (default: 256), this is the total ' |
| 172 | + 'batch size of all GPUs on the current node when ' |
| 173 | + 'using Data Parallel or Distributed Data Parallel') |
| 174 | + parser.add_argument('-p', '--print-freq', default=10, type=int, |
| 175 | + metavar='N', help='print frequency (default: 10)') |
| 176 | + main(parser.parse_args()) |
0 commit comments