|
| 1 | +1341. Movie Rating |
| 2 | +Solved |
| 3 | +Medium |
| 4 | +Topics |
| 5 | +Companies |
| 6 | +SQL Schema |
| 7 | +Pandas Schema |
| 8 | +Table: Movies |
| 9 | + |
| 10 | ++---------------+---------+ |
| 11 | +| Column Name | Type | |
| 12 | ++---------------+---------+ |
| 13 | +| movie_id | int | |
| 14 | +| title | varchar | |
| 15 | ++---------------+---------+ |
| 16 | +movie_id is the primary key (column with unique values) for this table. |
| 17 | +title is the name of the movie. |
| 18 | + |
| 19 | + |
| 20 | +Table: Users |
| 21 | + |
| 22 | ++---------------+---------+ |
| 23 | +| Column Name | Type | |
| 24 | ++---------------+---------+ |
| 25 | +| user_id | int | |
| 26 | +| name | varchar | |
| 27 | ++---------------+---------+ |
| 28 | +user_id is the primary key (column with unique values) for this table. |
| 29 | +The column 'name' has unique values. |
| 30 | +Table: MovieRating |
| 31 | + |
| 32 | ++---------------+---------+ |
| 33 | +| Column Name | Type | |
| 34 | ++---------------+---------+ |
| 35 | +| movie_id | int | |
| 36 | +| user_id | int | |
| 37 | +| rating | int | |
| 38 | +| created_at | date | |
| 39 | ++---------------+---------+ |
| 40 | +(movie_id, user_id) is the primary key (column with unique values) for this table. |
| 41 | +This table contains the rating of a movie by a user in their review. |
| 42 | +created_at is the user's review date. |
| 43 | + |
| 44 | +
|
| 45 | +Write a solution to: |
| 46 | +
|
| 47 | +Find the name of the user who has rated the greatest number of movies. In case of a tie, return the lexicographically smaller user name. |
| 48 | +Find the movie name with the highest average rating in February 2020. In case of a tie, return the lexicographically smaller movie name. |
| 49 | +The result format is in the following example. |
| 50 | +
|
| 51 | + |
| 52 | +
|
| 53 | +Example 1: |
| 54 | +
|
| 55 | +Input: |
| 56 | +Movies table: |
| 57 | ++-------------+--------------+ |
| 58 | +| movie_id | title | |
| 59 | ++-------------+--------------+ |
| 60 | +| 1 | Avengers | |
| 61 | +| 2 | Frozen 2 | |
| 62 | +| 3 | Joker | |
| 63 | ++-------------+--------------+ |
| 64 | +Users table: |
| 65 | ++-------------+--------------+ |
| 66 | +| user_id | name | |
| 67 | ++-------------+--------------+ |
| 68 | +| 1 | Daniel | |
| 69 | +| 2 | Monica | |
| 70 | +| 3 | Maria | |
| 71 | +| 4 | James | |
| 72 | ++-------------+--------------+ |
| 73 | +MovieRating table: |
| 74 | ++-------------+--------------+--------------+-------------+ |
| 75 | +| movie_id | user_id | rating | created_at | |
| 76 | ++-------------+--------------+--------------+-------------+ |
| 77 | +| 1 | 1 | 3 | 2020-01-12 | |
| 78 | +| 1 | 2 | 4 | 2020-02-11 | |
| 79 | +| 1 | 3 | 2 | 2020-02-12 | |
| 80 | +| 1 | 4 | 1 | 2020-01-01 | |
| 81 | +| 2 | 1 | 5 | 2020-02-17 | |
| 82 | +| 2 | 2 | 2 | 2020-02-01 | |
| 83 | +| 2 | 3 | 2 | 2020-03-01 | |
| 84 | +| 3 | 1 | 3 | 2020-02-22 | |
| 85 | +| 3 | 2 | 4 | 2020-02-25 | |
| 86 | ++-------------+--------------+--------------+-------------+ |
| 87 | +Output: |
| 88 | ++--------------+ |
| 89 | +| results | |
| 90 | ++--------------+ |
| 91 | +| Daniel | |
| 92 | +| Frozen 2 | |
| 93 | ++--------------+ |
| 94 | +Explanation: |
| 95 | +Daniel and Monica have rated 3 movies ("Avengers", "Frozen 2" and "Joker") but Daniel is smaller lexicographically. |
| 96 | +Frozen 2 and Joker have a rating average of 3.5 in February but Frozen 2 is smaller lexicographically. |
| 97 | +
|
| 98 | +
|
0 commit comments