|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# How to Use Multi GPUs in Training in TensorFlow " |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "This is a simple codeset to utilize mutiple GPUs (if available) for a example MNIST problem in tensorflow" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "Bascially, we would only have to add two additional lines of code in \"Network\" part to utilize Multiple GPUs" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "strategy = tf.distribute.MirroredStrategy()\n", |
| 31 | + "with strategy.scope():" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": null, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# Import Package\n", |
| 41 | + "import os\n", |
| 42 | + "import numpy as np\n", |
| 43 | + "import tensorflow as tf\n", |
| 44 | + "from tensorflow.keras import layers, models, losses, optimizers, datasets, utils\n", |
| 45 | + "\n", |
| 46 | + "# Data Prepare\n", |
| 47 | + "(train_x, train_y), (test_x, test_y) = datasets.mnist.load_data()\n", |
| 48 | + "train_x, test_x = np.expand_dims(train_x/255., -1), np.expand_dims(test_x/255., -1)\n", |
| 49 | + "print(\"Train Data's Shape : \", train_x.shape, train_y.shape)\n", |
| 50 | + "print(\"Test Data's Shape : \", test_x.shape, test_y.shape)\n", |
| 51 | + "\n", |
| 52 | + "# Build Network\n", |
| 53 | + "strategy = tf.distribute.MirroredStrategy() # New Lines \n", |
| 54 | + "with strategy.scope(): # New Lines\n", |
| 55 | + " cnn = models.Sequential()\n", |
| 56 | + " cnn.add(layers.Conv2D(16, 3, activation='relu', input_shape=(28, 28, 1,)))\n", |
| 57 | + " cnn.add(layers.MaxPool2D())\n", |
| 58 | + " cnn.add(layers.Conv2D(32, 3, activation='relu'))\n", |
| 59 | + " cnn.add(layers.MaxPool2D())\n", |
| 60 | + " cnn.add(layers.Flatten())\n", |
| 61 | + " cnn.add(layers.Dense(10, activation='softmax'))\n", |
| 62 | + "\n", |
| 63 | + " cnn.compile(optimizer=optimizers.Adam(), loss=losses.sparse_categorical_crossentropy, metrics=['accuracy']) \n", |
| 64 | + "print(\"Network Built!\")\n", |
| 65 | + "\n", |
| 66 | + "# Training Network with Multi GPUs\n", |
| 67 | + "epochs=10\n", |
| 68 | + "batch_size_each_gpu = 4096\n", |
| 69 | + "batch_size = batch_size_each_gpu*len(gpus) \n", |
| 70 | + "\n", |
| 71 | + "## ================= ##\n", |
| 72 | + "# Single GPU code \n", |
| 73 | + "# epochs=10\n", |
| 74 | + "# batch_size = 4096\n", |
| 75 | + "## ================= ##\n", |
| 76 | + "\n", |
| 77 | + "history = cnn.fit(train_x, train_y, epochs=10, batch_size=batch_size, validation_data=(test_x, test_y))" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "Adding a single GPU codeset below for comparison" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "# Import Package\n", |
| 94 | + "import os\n", |
| 95 | + "import numpy as np\n", |
| 96 | + "import tensorflow as tf\n", |
| 97 | + "from tensorflow.keras import layers, models, losses, optimizers, datasets, utils\n", |
| 98 | + "\n", |
| 99 | + "# Data Prepare\n", |
| 100 | + "(train_x, train_y), (test_x, test_y) = datasets.mnist.load_data()\n", |
| 101 | + "train_x, test_x = np.expand_dims(train_x/255., -1), np.expand_dims(test_x/255., -1)\n", |
| 102 | + "print(\"Train Data's Shape : \", train_x.shape, train_y.shape)\n", |
| 103 | + "print(\"Test Data's Shape : \", test_x.shape, test_y.shape)\n", |
| 104 | + "\n", |
| 105 | + "# Build Network\n", |
| 106 | + "cnn = models.Sequential()\n", |
| 107 | + "cnn.add(layers.Conv2D(16, 3, activation='relu', input_shape=(28, 28, 1,)))\n", |
| 108 | + "cnn.add(layers.MaxPool2D())\n", |
| 109 | + "cnn.add(layers.Conv2D(32, 3, activation='relu'))\n", |
| 110 | + "cnn.add(layers.MaxPool2D())\n", |
| 111 | + "cnn.add(layers.Flatten())\n", |
| 112 | + "cnn.add(layers.Dense(10, activation='softmax'))\n", |
| 113 | + "\n", |
| 114 | + "cnn.compile(optimizer=optimizers.Adam(), loss=losses.sparse_categorical_crossentropy, metrics=['accuracy']) \n", |
| 115 | + "print(\"Network Built!\")\n", |
| 116 | + "\n", |
| 117 | + "# Training Network\n", |
| 118 | + "epochs=10\n", |
| 119 | + "batch_size = 4096\n", |
| 120 | + "history = cnn.fit(train_x, train_y, epochs=10, batch_size=batch_size, validation_data=(test_x, test_y))" |
| 121 | + ] |
| 122 | + } |
| 123 | + ], |
| 124 | + "metadata": { |
| 125 | + "kernelspec": { |
| 126 | + "display_name": "Python 3", |
| 127 | + "language": "python", |
| 128 | + "name": "python3" |
| 129 | + }, |
| 130 | + "language_info": { |
| 131 | + "codemirror_mode": { |
| 132 | + "name": "ipython", |
| 133 | + "version": 3 |
| 134 | + }, |
| 135 | + "file_extension": ".py", |
| 136 | + "mimetype": "text/x-python", |
| 137 | + "name": "python", |
| 138 | + "nbconvert_exporter": "python", |
| 139 | + "pygments_lexer": "ipython3", |
| 140 | + "version": "3.7.6" |
| 141 | + } |
| 142 | + }, |
| 143 | + "nbformat": 4, |
| 144 | + "nbformat_minor": 4 |
| 145 | +} |
0 commit comments