Skip to content

Commit d72ddaf

Browse files
committed
Fix some checkpoint / model str regressions
1 parent ecdeb47 commit d72ddaf

File tree

4 files changed

+14
-11
lines changed

4 files changed

+14
-11
lines changed

tests/test_models.py

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,15 @@ def test_model_default_cfgs(model_name, batch_size):
8686
assert any([k.startswith(first_conv) for k in state_dict.keys()]), f'{first_conv} not in model params'
8787

8888

89+
if 'GITHUB_ACTIONS' not in os.environ:
90+
@pytest.mark.timeout(120)
91+
@pytest.mark.parametrize('model_name', list_models())
92+
@pytest.mark.parametrize('batch_size', [1])
93+
def test_model_load_pretrained(model_name, batch_size):
94+
"""Run a single forward pass with each model"""
95+
create_model(model_name, pretrained=True)
96+
97+
8998
EXCLUDE_JIT_FILTERS = [
9099
'*iabn*', 'tresnet*', # models using inplace abn unlikely to ever be scriptable
91100
'dla*', 'hrnet*', # hopefully fix at some point

timm/models/cspnet.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -433,7 +433,7 @@ def cspresnext50(pretrained=False, **kwargs):
433433
@register_model
434434
def cspresnext50_iabn(pretrained=False, **kwargs):
435435
norm_layer = get_norm_act_layer('iabn')
436-
return _create_cspnet('cspresnext50', pretrained=pretrained, norm_layer=norm_layer, **kwargs)
436+
return _create_cspnet('cspresnext50_iabn', pretrained=pretrained, norm_layer=norm_layer, **kwargs)
437437

438438

439439
@register_model
@@ -444,7 +444,7 @@ def cspdarknet53(pretrained=False, **kwargs):
444444
@register_model
445445
def cspdarknet53_iabn(pretrained=False, **kwargs):
446446
norm_layer = get_norm_act_layer('iabn')
447-
return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs)
447+
return _create_cspnet('cspdarknet53_iabn', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs)
448448

449449

450450
@register_model

timm/models/res2net.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -189,7 +189,7 @@ def res2net50_48w_2s(pretrained=False, **kwargs):
189189
"""
190190
model_args = dict(
191191
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2), **kwargs)
192-
return _create_res2net('res2net50_26w_8s', pretrained, **model_args)
192+
return _create_res2net('res2net50_48w_2s', pretrained, **model_args)
193193

194194

195195
@register_model
@@ -200,7 +200,7 @@ def res2net50_14w_8s(pretrained=False, **kwargs):
200200
"""
201201
model_args = dict(
202202
block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8), **kwargs)
203-
return _create_res2net('res2net50_26w_8s', pretrained, **model_args)
203+
return _create_res2net('res2net50_14w_8s', pretrained, **model_args)
204204

205205

206206
@register_model

timm/models/resnet.py

Lines changed: 1 addition & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -624,7 +624,7 @@ def resnet26d(pretrained=False, **kwargs):
624624
"""Constructs a ResNet-26 v1d model.
625625
This is technically a 28 layer ResNet, sticking with 'd' modifier from Gluon for now.
626626
"""
627-
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_type='deep', avg_down=True, **kwargs)
627+
model_args = dict(block=Bottleneck, layers=[2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
628628
return _create_resnet('resnet26d', pretrained, **model_args)
629629

630630

@@ -1129,9 +1129,3 @@ def senet154(pretrained=False, **kwargs):
11291129
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep',
11301130
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se'), **kwargs)
11311131
return _create_resnet('senet154', pretrained, **model_args)
1132-
1133-
1134-
@register_model
1135-
def eseresnet50(pretrained=False, **kwargs):
1136-
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], block_args=dict(attn_layer='ese'), **kwargs)
1137-
return _create_resnet('seresnet50', pretrained, **model_args)

0 commit comments

Comments
 (0)