Skip to content

Commit ce3d82b

Browse files
committed
Update blurpool.py
clean up code for PR
1 parent 3a287a6 commit ce3d82b

File tree

1 file changed

+9
-23
lines changed

1 file changed

+9
-23
lines changed

timm/models/layers/blurpool.py

Lines changed: 9 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
1-
'''independent attempt to implement
2-
3-
MaxBlurPool2d in a more general fashion(separate maxpooling from BlurPool)
4-
which was again inspired by
1+
'''
2+
BlurPool layer inspired by
3+
Kornia's Max_BlurPool2d
4+
and
55
Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
66
77
'''
@@ -17,8 +17,7 @@ class BlurPool2d(nn.Module):
1717
Corresponds to the Downsample class, which does blurring and subsampling
1818
Args:
1919
channels = Number of input channels
20-
blur_filter_size (int): filter size for blurring. currently supports either 3 or 5 (most common)
21-
defaults to 3.
20+
blur_filter_size (int): binomial filter size for blurring. currently supports 3(default) and 5.
2221
stride (int): downsampling filter stride
2322
Shape:
2423
Returns:
@@ -35,34 +34,21 @@ def __init__(self, channels=None, blur_filter_size=3, stride=2) -> None:
3534

3635
if blur_filter_size == 3:
3736
pad_size = [1] * 4
38-
blur_matrix = torch.Tensor([[1., 2., 1]]) / 4 # binomial kernel b2
37+
blur_matrix = torch.Tensor([[1., 2., 1]]) / 4 # binomial filter b2
3938
else:
4039
pad_size = [2] * 4
41-
blur_matrix = torch.Tensor([[1., 4., 6., 4., 1.]]) / 16 # binomial filter kernel b4
40+
blur_matrix = torch.Tensor([[1., 4., 6., 4., 1.]]) / 16 # binomial filter b4
4241

4342
self.padding = nn.ReflectionPad2d(pad_size)
4443
blur_filter = blur_matrix * blur_matrix.T
4544
self.register_buffer('blur_filter', blur_filter[None, None, :, :].repeat((self.channels, 1, 1, 1)))
4645

47-
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: # type: ignore
46+
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: # type: ignore
4847
if not torch.is_tensor(input_tensor):
4948
raise TypeError("Input input type is not a torch.Tensor. Got {}"
5049
.format(type(input_tensor)))
5150
if not len(input_tensor.shape) == 4:
5251
raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}"
5352
.format(input_tensor.shape))
5453
# apply blur_filter on input
55-
return F.conv2d(self.padding(input_tensor), self.blur_filter, stride=self.stride, groups=input_tensor.shape[1])
56-
57-
58-
######################
59-
# functional interface
60-
######################
61-
62-
63-
'''def blur_pool2d() -> torch.Tensor:
64-
r"""Creates a module that computes pools and blurs and downsample a given
65-
feature map.
66-
See :class:`~kornia.contrib.MaxBlurPool2d` for details.
67-
"""
68-
return BlurPool2d(kernel_size, ceil_mode)(input)'''
54+
return F.conv2d(self.padding(input_tensor), self.blur_filter, stride=self.stride, groups=input_tensor.shape[1])

0 commit comments

Comments
 (0)