Skip to content

Commit b1f1228

Browse files
committed
Add ResNet101D, 152D, and 200D weights, remove meh 66d model
1 parent 198f6ea commit b1f1228

File tree

2 files changed

+26
-12
lines changed

2 files changed

+26
-12
lines changed

README.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,12 @@
22

33
## What's New
44

5+
### Dec 18, 2020
6+
* Add ResNet-101D, ResNet-152D, and ResNet-200D weights trained @ 256x256
7+
* 256x256 val (top-1) - 101D (82.33), 152D (83.08), 200D (83.25)
8+
* 288x288 val, 1.0 crop - 101D (82.64), 152D (83.48), 200D (83.76)
9+
* 320x320 val, 1.0 crop - 101D (83.00), 152D (83.66), 200D (84.01)
10+
511
### Dec 7, 2020
612
* Simplify EMA module (ModelEmaV2), compatible with fully torchscripted models
713
* Misc fixes for SiLU ONNX export, default_cfg missing from Feature extraction models, Linear layer w/ AMP + torchscript

timm/models/resnet.py

Lines changed: 20 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -55,13 +55,18 @@ def _cfg(url='', **kwargs):
5555
'resnet50d': _cfg(
5656
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth',
5757
interpolation='bicubic', first_conv='conv1.0'),
58-
'resnet66d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
5958
'resnet101': _cfg(url='', interpolation='bicubic'),
60-
'resnet101d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
59+
'resnet101d': _cfg(
60+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
61+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
6162
'resnet152': _cfg(url='', interpolation='bicubic'),
62-
'resnet152d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
63+
'resnet152d': _cfg(
64+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
65+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
6366
'resnet200': _cfg(url='', interpolation='bicubic'),
64-
'resnet200d': _cfg(url='', interpolation='bicubic', first_conv='conv1.0'),
67+
'resnet200d': _cfg(
68+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
69+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
6570
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
6671
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
6772
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
@@ -142,6 +147,9 @@ def _cfg(url='', **kwargs):
142147
'seresnet152': _cfg(
143148
url='',
144149
interpolation='bicubic'),
150+
'seresnet152d': _cfg(
151+
url='',
152+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
145153

146154
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
147155
'seresnext26_32x4d': _cfg(
@@ -683,14 +691,6 @@ def resnet50d(pretrained=False, **kwargs):
683691
return _create_resnet('resnet50d', pretrained, **model_args)
684692

685693

686-
@register_model
687-
def resnet66d(pretrained=False, **kwargs):
688-
"""Constructs a ResNet-66-D model.
689-
"""
690-
model_args = dict(block=BasicBlock, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
691-
return _create_resnet('resnet66d', pretrained, **model_args)
692-
693-
694694
@register_model
695695
def resnet101(pretrained=False, **kwargs):
696696
"""Constructs a ResNet-101 model.
@@ -1151,6 +1151,14 @@ def seresnet152(pretrained=False, **kwargs):
11511151
return _create_resnet('seresnet152', pretrained, **model_args)
11521152

11531153

1154+
@register_model
1155+
def seresnet152d(pretrained=False, **kwargs):
1156+
model_args = dict(
1157+
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True,
1158+
block_args=dict(attn_layer='se'), **kwargs)
1159+
return _create_resnet('seresnet152d', pretrained, **model_args)
1160+
1161+
11541162
@register_model
11551163
def seresnext26_32x4d(pretrained=False, **kwargs):
11561164
model_args = dict(

0 commit comments

Comments
 (0)