@@ -55,13 +55,18 @@ def _cfg(url='', **kwargs):
5555 'resnet50d' : _cfg (
5656 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth' ,
5757 interpolation = 'bicubic' , first_conv = 'conv1.0' ),
58- 'resnet66d' : _cfg (url = '' , interpolation = 'bicubic' , first_conv = 'conv1.0' ),
5958 'resnet101' : _cfg (url = '' , interpolation = 'bicubic' ),
60- 'resnet101d' : _cfg (url = '' , interpolation = 'bicubic' , first_conv = 'conv1.0' ),
59+ 'resnet101d' : _cfg (
60+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth' ,
61+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 ),
6162 'resnet152' : _cfg (url = '' , interpolation = 'bicubic' ),
62- 'resnet152d' : _cfg (url = '' , interpolation = 'bicubic' , first_conv = 'conv1.0' ),
63+ 'resnet152d' : _cfg (
64+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth' ,
65+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 ),
6366 'resnet200' : _cfg (url = '' , interpolation = 'bicubic' ),
64- 'resnet200d' : _cfg (url = '' , interpolation = 'bicubic' , first_conv = 'conv1.0' ),
67+ 'resnet200d' : _cfg (
68+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth' ,
69+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 ),
6570 'tv_resnet34' : _cfg (url = 'https://download.pytorch.org/models/resnet34-333f7ec4.pth' ),
6671 'tv_resnet50' : _cfg (url = 'https://download.pytorch.org/models/resnet50-19c8e357.pth' ),
6772 'tv_resnet101' : _cfg (url = 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth' ),
@@ -142,6 +147,9 @@ def _cfg(url='', **kwargs):
142147 'seresnet152' : _cfg (
143148 url = '' ,
144149 interpolation = 'bicubic' ),
150+ 'seresnet152d' : _cfg (
151+ url = '' ,
152+ interpolation = 'bicubic' , first_conv = 'conv1.0' , input_size = (3 , 256 , 256 ), crop_pct = 0.94 ),
145153
146154 # Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
147155 'seresnext26_32x4d' : _cfg (
@@ -683,14 +691,6 @@ def resnet50d(pretrained=False, **kwargs):
683691 return _create_resnet ('resnet50d' , pretrained , ** model_args )
684692
685693
686- @register_model
687- def resnet66d (pretrained = False , ** kwargs ):
688- """Constructs a ResNet-66-D model.
689- """
690- model_args = dict (block = BasicBlock , layers = [3 , 4 , 23 , 3 ], stem_width = 32 , stem_type = 'deep' , avg_down = True , ** kwargs )
691- return _create_resnet ('resnet66d' , pretrained , ** model_args )
692-
693-
694694@register_model
695695def resnet101 (pretrained = False , ** kwargs ):
696696 """Constructs a ResNet-101 model.
@@ -1151,6 +1151,14 @@ def seresnet152(pretrained=False, **kwargs):
11511151 return _create_resnet ('seresnet152' , pretrained , ** model_args )
11521152
11531153
1154+ @register_model
1155+ def seresnet152d (pretrained = False , ** kwargs ):
1156+ model_args = dict (
1157+ block = Bottleneck , layers = [3 , 8 , 36 , 3 ], stem_width = 32 , stem_type = 'deep' , avg_down = True ,
1158+ block_args = dict (attn_layer = 'se' ), ** kwargs )
1159+ return _create_resnet ('seresnet152d' , pretrained , ** model_args )
1160+
1161+
11541162@register_model
11551163def seresnext26_32x4d (pretrained = False , ** kwargs ):
11561164 model_args = dict (
0 commit comments