Skip to content

Commit addfc7c

Browse files
author
juntang
committed
adabelief
1 parent fb896c0 commit addfc7c

File tree

5 files changed

+354
-3
lines changed

5 files changed

+354
-3
lines changed

distributed_train_adabelief.sh

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
#!/bin/bash
2+
NUM_PROC=2
3+
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=$NUM_PROC train.py "$@" --model efficientnet_b0 --weight-decay 2.5e-2 --drop 0.2 --drop-path 0.2 --lr 0.002 --batch-size 192 --epochs 400 --sched cosine --opt adabelief --workers 8 --warmup-lr 1e-4 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --bn-momentum 0.1 --mixup 0.2 --mixup-off-epoch 400 --min-lr 1e-5
Lines changed: 101 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
aa: rand-m9-mstd0.5
2+
amp: true
3+
apex_amp: false
4+
aug_splits: 0
5+
batch_size: 192
6+
bn_eps: null
7+
bn_momentum: 0.1
8+
bn_tf: false
9+
channels_last: false
10+
checkpoint_hist: 10
11+
clip_grad: null
12+
clip_mode: norm
13+
color_jitter: 0.4
14+
cooldown_epochs: 10
15+
crop_pct: null
16+
cutmix: 0.0
17+
cutmix_minmax: null
18+
data_dir: /media/juntang/Samsung_T5/ImageNet
19+
dataset: ''
20+
decay_epochs: 30
21+
decay_rate: 0.1
22+
dist_bn: ''
23+
drop: 0.2
24+
drop_block: null
25+
drop_connect: null
26+
drop_path: 0.2
27+
epoch_repeats: 0.0
28+
epochs: 400
29+
eval_metric: top1
30+
experiment: ''
31+
gp: null
32+
hflip: 0.5
33+
img_size: null
34+
initial_checkpoint: ''
35+
input_size: null
36+
interpolation: ''
37+
jsd: false
38+
local_rank: 0
39+
log_interval: 50
40+
lr: 0.002
41+
lr_cycle_limit: 1
42+
lr_cycle_mul: 1.0
43+
lr_noise: null
44+
lr_noise_pct: 0.67
45+
lr_noise_std: 1.0
46+
mean: null
47+
min_lr: 1.0e-05
48+
mixup: 0.2
49+
mixup_mode: batch
50+
mixup_off_epoch: 400
51+
mixup_prob: 1.0
52+
mixup_switch_prob: 0.5
53+
model: efficientnet_b0
54+
model_ema: false
55+
model_ema_decay: 0.9998
56+
model_ema_force_cpu: false
57+
momentum: 0.9
58+
native_amp: false
59+
no_aug: false
60+
no_prefetcher: false
61+
no_resume_opt: false
62+
num_classes: null
63+
opt: adabelief
64+
opt_betas: null
65+
opt_eps: null
66+
output: ''
67+
patience_epochs: 10
68+
pin_mem: false
69+
pretrained: false
70+
ratio:
71+
- 0.75
72+
- 1.3333333333333333
73+
recount: 1
74+
recovery_interval: 0
75+
remode: pixel
76+
reprob: 0.2
77+
resplit: false
78+
resume: ''
79+
save_images: false
80+
scale:
81+
- 0.08
82+
- 1.0
83+
sched: cosine
84+
seed: 42
85+
smoothing: 0.1
86+
split_bn: false
87+
start_epoch: null
88+
std: null
89+
sync_bn: false
90+
torchscript: false
91+
train_interpolation: random
92+
train_split: train
93+
tta: 0
94+
use_multi_epochs_loader: false
95+
val_split: validation
96+
validation_batch_size_multiplier: 1
97+
vflip: 0.0
98+
warmup_epochs: 3
99+
warmup_lr: 0.0001
100+
weight_decay: 0.025
101+
workers: 8

timm/optim/__init__.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,5 +9,5 @@
99
from .radam import RAdam
1010
from .rmsprop_tf import RMSpropTF
1111
from .sgdp import SGDP
12-
13-
from .optim_factory import create_optimizer, create_optimizer_v2, optimizer_kwargs
12+
from .adabelief import AdaBelief
13+
from .optim_factory import create_optimizer, create_optimizer_v2, optimizer_kwargs

timm/optim/adabelief.py

Lines changed: 244 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,244 @@
1+
import math
2+
import torch
3+
from torch.optim.optimizer import Optimizer
4+
from tabulate import tabulate
5+
from colorama import Fore, Back, Style
6+
7+
version_higher = ( torch.__version__ >= "1.5.0" )
8+
9+
class AdaBelief(Optimizer):
10+
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
11+
Arguments:
12+
params (iterable): iterable of parameters to optimize or dicts defining
13+
parameter groups
14+
lr (float, optional): learning rate (default: 1e-3)
15+
betas (Tuple[float, float], optional): coefficients used for computing
16+
running averages of gradient and its square (default: (0.9, 0.999))
17+
eps (float, optional): term added to the denominator to improve
18+
numerical stability (default: 1e-16)
19+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
20+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
21+
algorithm from the paper `On the Convergence of Adam and Beyond`_
22+
(default: False)
23+
weight_decouple (boolean, optional): ( default: True) If set as True, then
24+
the optimizer uses decoupled weight decay as in AdamW
25+
fixed_decay (boolean, optional): (default: False) This is used when weight_decouple
26+
is set as True.
27+
When fixed_decay == True, the weight decay is performed as
28+
$W_{new} = W_{old} - W_{old} \times decay$.
29+
When fixed_decay == False, the weight decay is performed as
30+
$W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the
31+
weight decay ratio decreases with learning rate (lr).
32+
rectify (boolean, optional): (default: True) If set as True, then perform the rectified
33+
update similar to RAdam
34+
degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update
35+
when variance of gradient is high
36+
print_change_log (boolean, optional) (default: True) If set as True, print the modifcation to
37+
default hyper-parameters
38+
reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020
39+
"""
40+
41+
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
42+
weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True,
43+
degenerated_to_sgd=True, print_change_log = True):
44+
45+
# ------------------------------------------------------------------------------
46+
# Print modifications to default arguments
47+
if print_change_log:
48+
print(Fore.RED + 'Please check your arguments if you have upgraded adabelief-pytorch from version 0.0.5.')
49+
print(Fore.RED + 'Modifications to default arguments:')
50+
default_table = tabulate([
51+
['adabelief-pytorch=0.0.5','1e-8','False','False'],
52+
['>=0.1.0 (Current 0.2.0)','1e-16','True','True']],
53+
headers=['eps','weight_decouple','rectify'])
54+
print(Fore.RED + default_table)
55+
56+
recommend_table = tabulate([
57+
['Recommended eps = 1e-8', 'Recommended eps = 1e-16'],
58+
],
59+
headers=['SGD better than Adam (e.g. CNN for Image Classification)','Adam better than SGD (e.g. Transformer, GAN)'])
60+
print(Fore.BLUE + recommend_table)
61+
62+
print(Fore.BLUE +'For a complete table of recommended hyperparameters, see')
63+
print(Fore.BLUE + 'https://github.com/juntang-zhuang/Adabelief-Optimizer')
64+
65+
print(Fore.GREEN + 'You can disable the log message by setting "print_change_log = False", though it is recommended to keep as a reminder.')
66+
67+
print(Style.RESET_ALL)
68+
# ------------------------------------------------------------------------------
69+
70+
if not 0.0 <= lr:
71+
raise ValueError("Invalid learning rate: {}".format(lr))
72+
if not 0.0 <= eps:
73+
raise ValueError("Invalid epsilon value: {}".format(eps))
74+
if not 0.0 <= betas[0] < 1.0:
75+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
76+
if not 0.0 <= betas[1] < 1.0:
77+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
78+
79+
self.degenerated_to_sgd = degenerated_to_sgd
80+
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
81+
for param in params:
82+
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
83+
param['buffer'] = [[None, None, None] for _ in range(10)]
84+
85+
defaults = dict(lr=lr, betas=betas, eps=eps,
86+
weight_decay=weight_decay, amsgrad=amsgrad, buffer=[[None, None, None] for _ in range(10)])
87+
super(AdaBelief, self).__init__(params, defaults)
88+
89+
self.degenerated_to_sgd = degenerated_to_sgd
90+
self.weight_decouple = weight_decouple
91+
self.rectify = rectify
92+
self.fixed_decay = fixed_decay
93+
if self.weight_decouple:
94+
print('Weight decoupling enabled in AdaBelief')
95+
if self.fixed_decay:
96+
print('Weight decay fixed')
97+
if self.rectify:
98+
print('Rectification enabled in AdaBelief')
99+
if amsgrad:
100+
print('AMSGrad enabled in AdaBelief')
101+
102+
def __setstate__(self, state):
103+
super(AdaBelief, self).__setstate__(state)
104+
for group in self.param_groups:
105+
group.setdefault('amsgrad', False)
106+
107+
def reset(self):
108+
for group in self.param_groups:
109+
for p in group['params']:
110+
state = self.state[p]
111+
amsgrad = group['amsgrad']
112+
113+
# State initialization
114+
state['step'] = 0
115+
# Exponential moving average of gradient values
116+
state['exp_avg'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
117+
if version_higher else torch.zeros_like(p.data)
118+
119+
# Exponential moving average of squared gradient values
120+
state['exp_avg_var'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
121+
if version_higher else torch.zeros_like(p.data)
122+
123+
if amsgrad:
124+
# Maintains max of all exp. moving avg. of sq. grad. values
125+
state['max_exp_avg_var'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
126+
if version_higher else torch.zeros_like(p.data)
127+
128+
def step(self, closure=None):
129+
"""Performs a single optimization step.
130+
Arguments:
131+
closure (callable, optional): A closure that reevaluates the model
132+
and returns the loss.
133+
"""
134+
loss = None
135+
if closure is not None:
136+
loss = closure()
137+
138+
for group in self.param_groups:
139+
for p in group['params']:
140+
if p.grad is None:
141+
continue
142+
143+
# cast data type
144+
half_precision = False
145+
if p.data.dtype == torch.float16:
146+
half_precision = True
147+
p.data = p.data.float()
148+
p.grad = p.grad.float()
149+
150+
grad = p.grad.data
151+
if grad.is_sparse:
152+
raise RuntimeError(
153+
'AdaBelief does not support sparse gradients, please consider SparseAdam instead')
154+
amsgrad = group['amsgrad']
155+
156+
state = self.state[p]
157+
158+
beta1, beta2 = group['betas']
159+
160+
# State initialization
161+
if len(state) == 0:
162+
state['step'] = 0
163+
# Exponential moving average of gradient values
164+
state['exp_avg'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
165+
if version_higher else torch.zeros_like(p.data)
166+
# Exponential moving average of squared gradient values
167+
state['exp_avg_var'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
168+
if version_higher else torch.zeros_like(p.data)
169+
if amsgrad:
170+
# Maintains max of all exp. moving avg. of sq. grad. values
171+
state['max_exp_avg_var'] = torch.zeros_like(p.data,memory_format=torch.preserve_format) \
172+
if version_higher else torch.zeros_like(p.data)
173+
174+
# perform weight decay, check if decoupled weight decay
175+
if self.weight_decouple:
176+
if not self.fixed_decay:
177+
p.data.mul_(1.0 - group['lr'] * group['weight_decay'])
178+
else:
179+
p.data.mul_(1.0 - group['weight_decay'])
180+
else:
181+
if group['weight_decay'] != 0:
182+
grad.add_(p.data, alpha=group['weight_decay'])
183+
184+
# get current state variable
185+
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
186+
187+
state['step'] += 1
188+
bias_correction1 = 1 - beta1 ** state['step']
189+
bias_correction2 = 1 - beta2 ** state['step']
190+
191+
# Update first and second moment running average
192+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
193+
grad_residual = grad - exp_avg
194+
exp_avg_var.mul_(beta2).addcmul_( grad_residual, grad_residual, value=1 - beta2)
195+
196+
if amsgrad:
197+
max_exp_avg_var = state['max_exp_avg_var']
198+
# Maintains the maximum of all 2nd moment running avg. till now
199+
torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var)
200+
201+
# Use the max. for normalizing running avg. of gradient
202+
denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
203+
else:
204+
denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
205+
206+
# update
207+
if not self.rectify:
208+
# Default update
209+
step_size = group['lr'] / bias_correction1
210+
p.data.addcdiv_( exp_avg, denom, value=-step_size)
211+
212+
else: # Rectified update, forked from RAdam
213+
buffered = group['buffer'][int(state['step'] % 10)]
214+
if state['step'] == buffered[0]:
215+
N_sma, step_size = buffered[1], buffered[2]
216+
else:
217+
buffered[0] = state['step']
218+
beta2_t = beta2 ** state['step']
219+
N_sma_max = 2 / (1 - beta2) - 1
220+
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
221+
buffered[1] = N_sma
222+
223+
# more conservative since it's an approximated value
224+
if N_sma >= 5:
225+
step_size = math.sqrt(
226+
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
227+
N_sma_max - 2)) / (1 - beta1 ** state['step'])
228+
elif self.degenerated_to_sgd:
229+
step_size = 1.0 / (1 - beta1 ** state['step'])
230+
else:
231+
step_size = -1
232+
buffered[2] = step_size
233+
234+
if N_sma >= 5:
235+
denom = exp_avg_var.sqrt().add_(group['eps'])
236+
p.data.addcdiv_(exp_avg, denom, value=-step_size * group['lr'])
237+
elif step_size > 0:
238+
p.data.add_( exp_avg, alpha=-step_size * group['lr'])
239+
240+
if half_precision:
241+
p.data = p.data.half()
242+
p.grad = p.grad.half()
243+
244+
return loss

timm/optim/optim_factory.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@
1717
from .radam import RAdam
1818
from .rmsprop_tf import RMSpropTF
1919
from .sgdp import SGDP
20+
from .adabelief import AdaBelief
2021

2122
try:
2223
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
@@ -118,7 +119,9 @@ def create_optimizer_v2(
118119
opt_args.pop('eps', None)
119120
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
120121
elif opt_lower == 'adam':
121-
optimizer = optim.Adam(parameters, **opt_args)
122+
optimizer = optim.Adam(parameters, **opt_args)
123+
elif opt_lower == 'adabelief':
124+
optimizer = AdaBelief(parameters, rectify = False, print_change_log = False,**opt_args)
122125
elif opt_lower == 'adamw':
123126
optimizer = optim.AdamW(parameters, **opt_args)
124127
elif opt_lower == 'nadam':

0 commit comments

Comments
 (0)