@@ -39,6 +39,7 @@ def _cfg(url=''):
3939 'densenet201' : _cfg (url = 'https://download.pytorch.org/models/densenet201-c1103571.pth' ),
4040 'densenet161' : _cfg (url = 'https://download.pytorch.org/models/densenet161-8d451a50.pth' ),
4141 'densenet264' : _cfg (url = '' ),
42+ 'densenet264d_iabn' : _cfg (url = '' ),
4243 'tv_densenet121' : _cfg (url = 'https://download.pytorch.org/models/densenet121-a639ec97.pth' ),
4344}
4445
@@ -331,45 +332,6 @@ def densenet121d(pretrained=False, **kwargs):
331332 return model
332333
333334
334- @register_model
335- def densenet121d_evob (pretrained = False , ** kwargs ):
336- r"""Densenet-121 model from
337- `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
338- """
339- def norm_act_fn (num_features , ** kwargs ):
340- return create_norm_act ('EvoNormBatch' , num_features , jit = True , ** kwargs )
341- model = _densenet (
342- 'densenet121d' , growth_rate = 32 , block_config = (6 , 12 , 24 , 16 ), stem_type = 'deep' ,
343- norm_layer = norm_act_fn , pretrained = pretrained , ** kwargs )
344- return model
345-
346-
347- @register_model
348- def densenet121d_evos (pretrained = False , ** kwargs ):
349- r"""Densenet-121 model from
350- `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
351- """
352- def norm_act_fn (num_features , ** kwargs ):
353- return create_norm_act ('EvoNormSample' , num_features , jit = True , ** kwargs )
354- model = _densenet (
355- 'densenet121d' , growth_rate = 32 , block_config = (6 , 12 , 24 , 16 ), stem_type = 'deep' ,
356- norm_layer = norm_act_fn , pretrained = pretrained , ** kwargs )
357- return model
358-
359-
360- @register_model
361- def densenet121d_iabn (pretrained = False , ** kwargs ):
362- r"""Densenet-121 model from
363- `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
364- """
365- def norm_act_fn (num_features , ** kwargs ):
366- return create_norm_act ('iabn' , num_features , ** kwargs )
367- model = _densenet (
368- 'densenet121tn' , growth_rate = 32 , block_config = (6 , 12 , 24 , 16 ), stem_type = 'deep' ,
369- norm_layer = norm_act_fn , pretrained = pretrained , ** kwargs )
370- return model
371-
372-
373335@register_model
374336def densenet169 (pretrained = False , ** kwargs ):
375337 r"""Densenet-169 model from
@@ -410,6 +372,18 @@ def densenet264(pretrained=False, **kwargs):
410372 return model
411373
412374
375+ @register_model
376+ def densenet264d_iabn (pretrained = False , ** kwargs ):
377+ r"""Densenet-264 model with deep stem and Inplace-ABN
378+ """
379+ def norm_act_fn (num_features , ** kwargs ):
380+ return create_norm_act ('iabn' , num_features , ** kwargs )
381+ model = _densenet (
382+ 'densenet264d_iabn' , growth_rate = 48 , block_config = (6 , 12 , 64 , 48 ), stem_type = 'deep' ,
383+ norm_layer = norm_act_fn , pretrained = pretrained , ** kwargs )
384+ return model
385+
386+
413387@register_model
414388def tv_densenet121 (pretrained = False , ** kwargs ):
415389 r"""Densenet-121 model with original Torchvision weights, from
0 commit comments