Skip to content

Commit a7e8cad

Browse files
committed
Remove pointless densenet configs, add an iabn version of 264 as it makes more sense to try someday...
1 parent e78daf5 commit a7e8cad

File tree

1 file changed

+13
-39
lines changed

1 file changed

+13
-39
lines changed

timm/models/densenet.py

Lines changed: 13 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,7 @@ def _cfg(url=''):
3939
'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'),
4040
'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'),
4141
'densenet264': _cfg(url=''),
42+
'densenet264d_iabn': _cfg(url=''),
4243
'tv_densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'),
4344
}
4445

@@ -331,45 +332,6 @@ def densenet121d(pretrained=False, **kwargs):
331332
return model
332333

333334

334-
@register_model
335-
def densenet121d_evob(pretrained=False, **kwargs):
336-
r"""Densenet-121 model from
337-
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
338-
"""
339-
def norm_act_fn(num_features, **kwargs):
340-
return create_norm_act('EvoNormBatch', num_features, jit=True, **kwargs)
341-
model = _densenet(
342-
'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
343-
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
344-
return model
345-
346-
347-
@register_model
348-
def densenet121d_evos(pretrained=False, **kwargs):
349-
r"""Densenet-121 model from
350-
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
351-
"""
352-
def norm_act_fn(num_features, **kwargs):
353-
return create_norm_act('EvoNormSample', num_features, jit=True, **kwargs)
354-
model = _densenet(
355-
'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
356-
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
357-
return model
358-
359-
360-
@register_model
361-
def densenet121d_iabn(pretrained=False, **kwargs):
362-
r"""Densenet-121 model from
363-
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
364-
"""
365-
def norm_act_fn(num_features, **kwargs):
366-
return create_norm_act('iabn', num_features, **kwargs)
367-
model = _densenet(
368-
'densenet121tn', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep',
369-
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
370-
return model
371-
372-
373335
@register_model
374336
def densenet169(pretrained=False, **kwargs):
375337
r"""Densenet-169 model from
@@ -410,6 +372,18 @@ def densenet264(pretrained=False, **kwargs):
410372
return model
411373

412374

375+
@register_model
376+
def densenet264d_iabn(pretrained=False, **kwargs):
377+
r"""Densenet-264 model with deep stem and Inplace-ABN
378+
"""
379+
def norm_act_fn(num_features, **kwargs):
380+
return create_norm_act('iabn', num_features, **kwargs)
381+
model = _densenet(
382+
'densenet264d_iabn', growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep',
383+
norm_layer=norm_act_fn, pretrained=pretrained, **kwargs)
384+
return model
385+
386+
413387
@register_model
414388
def tv_densenet121(pretrained=False, **kwargs):
415389
r"""Densenet-121 model with original Torchvision weights, from

0 commit comments

Comments
 (0)