@@ -1238,9 +1238,17 @@ def _cfg(url='', **kwargs):
12381238 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth' ,
12391239 hf_hub_id = 'timm/' ),
12401240
1241- 'mobilenet_100.untrained' : _cfg (),
1242- 'mobilenet_100h.untrained' : _cfg (),
1243- 'mobilenet_125.untrained' : _cfg (),
1241+ 'mobilenetv1_100.ra4_e3600_r224_in1k' : _cfg (
1242+ hf_hub_id = 'timm/' ,
1243+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1244+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 0.95 ,
1245+ ),
1246+ 'mobilenetv1_100h.ra4_e3600_r224_in1k' : _cfg (
1247+ hf_hub_id = 'timm/' ,
1248+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1249+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 0.95 ,
1250+ ),
1251+ 'mobilenetv1_125.untrained' : _cfg (),
12441252
12451253 'mobilenetv2_035.untrained' : _cfg (),
12461254 'mobilenetv2_050.lamb_in1k' : _cfg (
@@ -1275,22 +1283,27 @@ def _cfg(url='', **kwargs):
12751283 'efficientnet_b0.ra_in1k' : _cfg (
12761284 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth' ,
12771285 hf_hub_id = 'timm/' ),
1286+ 'efficientnet_b0.ra4_e3600_r224_in1k' : _cfg (
1287+ hf_hub_id = 'timm/' ,
1288+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1289+ crop_pct = 0.9 , test_input_size = (3 , 256 , 256 ), test_crop_pct = 1.0
1290+ ),
12781291 'efficientnet_b1.ft_in1k' : _cfg (
12791292 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth' ,
12801293 hf_hub_id = 'timm/' ,
1281- test_input_size = (3 , 256 , 256 ), crop_pct = 1.0 ),
1294+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 1.0 ),
12821295 'efficientnet_b2.ra_in1k' : _cfg (
12831296 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
12841297 hf_hub_id = 'timm/' ,
1285- input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), test_input_size = (3 , 288 , 288 ), crop_pct = 1.0 ),
1298+ input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), test_input_size = (3 , 288 , 288 ), test_crop_pct = 1.0 ),
12861299 'efficientnet_b3.ra2_in1k' : _cfg (
12871300 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth' ,
12881301 hf_hub_id = 'timm/' ,
1289- input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), crop_pct = 1.0 ),
1302+ input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), test_crop_pct = 1.0 ),
12901303 'efficientnet_b4.ra2_in1k' : _cfg (
12911304 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth' ,
12921305 hf_hub_id = 'timm/' ,
1293- input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), test_input_size = (3 , 384 , 384 ), crop_pct = 1.0 ),
1306+ input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), test_input_size = (3 , 384 , 384 ), test_crop_pct = 1.0 ),
12941307 'efficientnet_b5.sw_in12k_ft_in1k' : _cfg (
12951308 hf_hub_id = 'timm/' ,
12961309 input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 , crop_mode = 'squash' ),
@@ -1826,23 +1839,23 @@ def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet:
18261839
18271840
18281841@register_model
1829- def mobilenet_100 (pretrained = False , ** kwargs ) -> EfficientNet :
1842+ def mobilenetv1_100 (pretrained = False , ** kwargs ) -> EfficientNet :
18301843 """ MobileNet V1 """
1831- model = _gen_mobilenet_v1 ('mobilenet_100 ' , 1.0 , pretrained = pretrained , ** kwargs )
1844+ model = _gen_mobilenet_v1 ('mobilenetv1_100 ' , 1.0 , pretrained = pretrained , ** kwargs )
18321845 return model
18331846
18341847
18351848@register_model
1836- def mobilenet_100h (pretrained = False , ** kwargs ) -> EfficientNet :
1849+ def mobilenetv1_100h (pretrained = False , ** kwargs ) -> EfficientNet :
18371850 """ MobileNet V1 """
1838- model = _gen_mobilenet_v1 ('mobilenet_100h ' , 1.0 , head_conv = True , pretrained = pretrained , ** kwargs )
1851+ model = _gen_mobilenet_v1 ('mobilenetv1_100h ' , 1.0 , head_conv = True , pretrained = pretrained , ** kwargs )
18391852 return model
18401853
18411854
18421855@register_model
1843- def mobilenet_125 (pretrained = False , ** kwargs ) -> EfficientNet :
1856+ def mobilenetv1_125 (pretrained = False , ** kwargs ) -> EfficientNet :
18441857 """ MobileNet V1 """
1845- model = _gen_mobilenet_v1 ('mobilenet_125 ' , 1.25 , pretrained = pretrained , ** kwargs )
1858+ model = _gen_mobilenet_v1 ('mobilenetv1_125 ' , 1.25 , pretrained = pretrained , ** kwargs )
18461859 return model
18471860
18481861
0 commit comments