Skip to content

Commit 909705e

Browse files
committed
Remove some redundant requires_grad=True from nn.Parameter in third party code
1 parent c5e0d1c commit 909705e

File tree

4 files changed

+13
-13
lines changed

4 files changed

+13
-13
lines changed

timm/models/beit.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -182,8 +182,8 @@ def __init__(
182182
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
183183

184184
if init_values:
185-
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
186-
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
185+
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
186+
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
187187
else:
188188
self.gamma_1, self.gamma_2 = None, None
189189

timm/models/cait.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -122,8 +122,8 @@ def __init__(
122122
self.norm2 = norm_layer(dim)
123123
mlp_hidden_dim = int(dim * mlp_ratio)
124124
self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
125-
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
126-
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
125+
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
126+
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
127127

128128
def forward(self, x, x_cls):
129129
u = torch.cat((x_cls, x), dim=1)
@@ -189,8 +189,8 @@ def __init__(
189189
self.norm2 = norm_layer(dim)
190190
mlp_hidden_dim = int(dim * mlp_ratio)
191191
self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
192-
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
193-
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
192+
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
193+
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
194194

195195
def forward(self, x):
196196
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))

timm/models/poolformer.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -117,8 +117,8 @@ def __init__(
117117
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
118118

119119
if layer_scale_init_value:
120-
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
121-
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
120+
self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
121+
self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
122122
else:
123123
self.layer_scale_1 = None
124124
self.layer_scale_2 = None

timm/models/xcit.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -230,8 +230,8 @@ def __init__(
230230
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
231231

232232
if eta is not None: # LayerScale Initialization (no layerscale when None)
233-
self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True)
234-
self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True)
233+
self.gamma1 = nn.Parameter(eta * torch.ones(dim))
234+
self.gamma2 = nn.Parameter(eta * torch.ones(dim))
235235
else:
236236
self.gamma1, self.gamma2 = 1.0, 1.0
237237

@@ -308,9 +308,9 @@ def __init__(
308308
self.norm2 = norm_layer(dim)
309309
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
310310

311-
self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True)
312-
self.gamma3 = nn.Parameter(eta * torch.ones(dim), requires_grad=True)
313-
self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True)
311+
self.gamma1 = nn.Parameter(eta * torch.ones(dim))
312+
self.gamma3 = nn.Parameter(eta * torch.ones(dim))
313+
self.gamma2 = nn.Parameter(eta * torch.ones(dim))
314314

315315
def forward(self, x, H: int, W: int):
316316
x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x)))

0 commit comments

Comments
 (0)