1- """ PyTorch EfficientNet Family
1+ """ The EfficientNet Family in PyTorch
22
33An implementation of EfficienNet that covers variety of related models with efficient architectures:
44
2525
2626* And likely more...
2727
28+ The majority of the above models (EfficientNet*, MixNet, MnasNet) and original weights were made available
29+ by Mingxing Tan, Quoc Le, and other members of their Google Brain team. Thanks for consistently releasing
30+ the models and weights open source!
31+
2832Hacked together by / Copyright 2021 Ross Wightman
2933"""
3034from functools import partial
@@ -328,16 +332,16 @@ def _cfg(url='', **kwargs):
328332 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
329333 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
330334
331- 'tf_efficientnetv2_s_21kft1k ' : _cfg (
332- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21kft1k -d7dafa41.pth' ,
335+ 'tf_efficientnetv2_s_21ft1k ' : _cfg (
336+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k -d7dafa41.pth' ,
333337 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
334338 input_size = (3 , 300 , 300 ), test_input_size = (3 , 384 , 384 ), pool_size = (10 , 10 ), crop_pct = 1.0 ),
335- 'tf_efficientnetv2_m_21kft1k ' : _cfg (
336- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21kft1k -bf41664a.pth' ,
339+ 'tf_efficientnetv2_m_21ft1k ' : _cfg (
340+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k -bf41664a.pth' ,
337341 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
338342 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
339- 'tf_efficientnetv2_l_21kft1k ' : _cfg (
340- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21kft1k -60127a9d.pth' ,
343+ 'tf_efficientnetv2_l_21ft1k ' : _cfg (
344+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k -60127a9d.pth' ,
341345 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
342346 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
343347
@@ -1925,35 +1929,39 @@ def tf_efficientnetv2_l(pretrained=False, **kwargs):
19251929
19261930
19271931@register_model
1928- def tf_efficientnetv2_s_21kft1k (pretrained = False , ** kwargs ):
1929- """ EfficientNet-V2 Small. Tensorflow compatible variant """
1932+ def tf_efficientnetv2_s_21ft1k (pretrained = False , ** kwargs ):
1933+ """ EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
1934+ """
19301935 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19311936 kwargs ['pad_type' ] = 'same'
1932- model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_21kft1k ' , pretrained = pretrained , ** kwargs )
1937+ model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_21ft1k ' , pretrained = pretrained , ** kwargs )
19331938 return model
19341939
19351940
19361941@register_model
1937- def tf_efficientnetv2_m_21kft1k (pretrained = False , ** kwargs ):
1938- """ EfficientNet-V2 Medium. Tensorflow compatible variant """
1942+ def tf_efficientnetv2_m_21ft1k (pretrained = False , ** kwargs ):
1943+ """ EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
1944+ """
19391945 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19401946 kwargs ['pad_type' ] = 'same'
1941- model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_21kft1k ' , pretrained = pretrained , ** kwargs )
1947+ model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_21ft1k ' , pretrained = pretrained , ** kwargs )
19421948 return model
19431949
19441950
19451951@register_model
1946- def tf_efficientnetv2_l_21kft1k (pretrained = False , ** kwargs ):
1947- """ EfficientNet-V2 Large. Tensorflow compatible variant """
1952+ def tf_efficientnetv2_l_21ft1k (pretrained = False , ** kwargs ):
1953+ """ EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
1954+ """
19481955 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19491956 kwargs ['pad_type' ] = 'same'
1950- model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_21kft1k ' , pretrained = pretrained , ** kwargs )
1957+ model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_21ft1k ' , pretrained = pretrained , ** kwargs )
19511958 return model
19521959
19531960
19541961@register_model
19551962def tf_efficientnetv2_s_21k (pretrained = False , ** kwargs ):
1956- """ EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant """
1963+ """ EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
1964+ """
19571965 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19581966 kwargs ['pad_type' ] = 'same'
19591967 model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_21k' , pretrained = pretrained , ** kwargs )
@@ -1962,7 +1970,8 @@ def tf_efficientnetv2_s_21k(pretrained=False, **kwargs):
19621970
19631971@register_model
19641972def tf_efficientnetv2_m_21k (pretrained = False , ** kwargs ):
1965- """ EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant """
1973+ """ EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
1974+ """
19661975 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19671976 kwargs ['pad_type' ] = 'same'
19681977 model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_21k' , pretrained = pretrained , ** kwargs )
@@ -1971,7 +1980,8 @@ def tf_efficientnetv2_m_21k(pretrained=False, **kwargs):
19711980
19721981@register_model
19731982def tf_efficientnetv2_l_21k (pretrained = False , ** kwargs ):
1974- """ EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant """
1983+ """ EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
1984+ """
19751985 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19761986 kwargs ['pad_type' ] = 'same'
19771987 model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_21k' , pretrained = pretrained , ** kwargs )
0 commit comments