1818from .efficientnet_builder import EfficientNetBuilder , decode_arch_def , efficientnet_init_weights
1919from .features import FeatureInfo , FeatureHooks
2020from .helpers import build_model_with_cfg
21- from .layers import SelectAdaptivePool2d , create_conv2d , get_act_fn , hard_sigmoid
21+ from .layers import SelectAdaptivePool2d , Linear , create_conv2d , get_act_fn , hard_sigmoid
2222from .registry import register_model
2323
2424__all__ = ['MobileNetV3' ]
@@ -105,7 +105,7 @@ def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_f
105105 num_pooled_chs = head_chs * self .global_pool .feat_mult ()
106106 self .conv_head = create_conv2d (num_pooled_chs , self .num_features , 1 , padding = pad_type , bias = head_bias )
107107 self .act2 = act_layer (inplace = True )
108- self .classifier = nn . Linear (self .num_features , num_classes ) if num_classes > 0 else nn .Identity ()
108+ self .classifier = Linear (self .num_features , num_classes ) if num_classes > 0 else nn .Identity ()
109109
110110 efficientnet_init_weights (self )
111111
@@ -123,7 +123,7 @@ def reset_classifier(self, num_classes, global_pool='avg'):
123123 self .num_classes = num_classes
124124 # cannot meaningfully change pooling of efficient head after creation
125125 self .global_pool = SelectAdaptivePool2d (pool_type = global_pool )
126- self .classifier = nn . Linear (self .num_features , num_classes ) if num_classes > 0 else nn .Identity ()
126+ self .classifier = Linear (self .num_features , num_classes ) if num_classes > 0 else nn .Identity ()
127127
128128 def forward_features (self , x ):
129129 x = self .conv_stem (x )
0 commit comments