Skip to content

Commit 18934de

Browse files
committed
Add initial ConvNeXt impl (mods of official code)
1 parent 656757d commit 18934de

File tree

2 files changed

+376
-0
lines changed

2 files changed

+376
-0
lines changed

timm/models/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
from .coat import *
66
from .convit import *
77
from .convmixer import *
8+
from .convnext import *
89
from .crossvit import *
910
from .cspnet import *
1011
from .densenet import *

timm/models/convnext.py

Lines changed: 375 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,375 @@
1+
""" ConvNext
2+
3+
Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
4+
5+
Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below
6+
7+
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
8+
"""
9+
# Copyright (c) Meta Platforms, Inc. and affiliates.
10+
# All rights reserved.
11+
# This source code is licensed under the MIT license
12+
13+
from functools import partial
14+
15+
import torch
16+
import torch.nn as nn
17+
import torch.nn.functional as F
18+
19+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
20+
from .fx_features import register_notrace_module
21+
from .helpers import named_apply, build_model_with_cfg
22+
from .layers import trunc_normal_, ClassifierHead, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp
23+
from .registry import register_model
24+
25+
26+
__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this
27+
28+
29+
def _cfg(url='', **kwargs):
30+
return {
31+
'url': url,
32+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
33+
'crop_pct': 0.875, 'interpolation': 'bicubic',
34+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
35+
'first_conv': 'stem.0', 'classifier': 'head',
36+
**kwargs
37+
}
38+
39+
40+
default_cfgs = dict(
41+
convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"),
42+
convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"),
43+
convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"),
44+
convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"),
45+
46+
convnext_tiny_hnf=_cfg(url='', classifier='head.fc'),
47+
48+
convnext_base_in22k=_cfg(
49+
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
50+
convnext_large_in22k=_cfg(
51+
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841),
52+
convnext_xlarge_in22k=_cfg(
53+
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841),
54+
)
55+
56+
57+
def _is_contiguous(tensor: torch.Tensor) -> bool:
58+
# jit is oh so lovely :/
59+
# if torch.jit.is_tracing():
60+
# return True
61+
if torch.jit.is_scripting():
62+
return tensor.is_contiguous()
63+
else:
64+
return tensor.is_contiguous(memory_format=torch.contiguous_format)
65+
66+
67+
@register_notrace_module
68+
class LayerNorm2d(nn.Module):
69+
r""" LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W).
70+
"""
71+
72+
def __init__(self, normalized_shape, eps=1e-6):
73+
super().__init__()
74+
self.weight = nn.Parameter(torch.ones(normalized_shape))
75+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
76+
self.eps = eps
77+
self.normalized_shape = (normalized_shape,)
78+
79+
def forward(self, x) -> torch.Tensor:
80+
if _is_contiguous(x):
81+
return F.layer_norm(
82+
x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2)
83+
else:
84+
s, u = torch.var_mean(x, dim=1, keepdim=True)
85+
x = (x - u) * torch.rsqrt(s + self.eps)
86+
x = x * self.weight[:, None, None] + self.bias[:, None, None]
87+
return x
88+
89+
90+
class ConvNeXtBlock(nn.Module):
91+
""" ConvNeXt Block
92+
There are two equivalent implementations:
93+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
94+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
95+
96+
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
97+
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
98+
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
99+
100+
Args:
101+
dim (int): Number of input channels.
102+
drop_path (float): Stochastic depth rate. Default: 0.0
103+
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
104+
"""
105+
106+
def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=True, mlp_ratio=4, norm_layer=None):
107+
super().__init__()
108+
norm_layer = norm_layer or (partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6))
109+
mlp_layer = ConvMlp if conv_mlp else Mlp
110+
self.use_conv_mlp = conv_mlp
111+
self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
112+
self.norm = norm_layer(dim)
113+
self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU)
114+
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
115+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
116+
117+
def forward(self, x):
118+
shortcut = x
119+
x = self.conv_dw(x)
120+
if self.use_conv_mlp:
121+
x = self.norm(x)
122+
x = self.mlp(x)
123+
if self.gamma is not None:
124+
x.mul_(self.gamma.reshape(1, -1, 1, 1))
125+
else:
126+
x = x.permute(0, 2, 3, 1)
127+
x = self.norm(x)
128+
x = self.mlp(x)
129+
if self.gamma is not None:
130+
x.mul_(self.gamma)
131+
x = x.permute(0, 3, 1, 2)
132+
x = self.drop_path(x) + shortcut
133+
return x
134+
135+
136+
class ConvNeXtStage(nn.Module):
137+
138+
def __init__(
139+
self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=True,
140+
norm_layer=None, cl_norm_layer=None, cross_stage=False):
141+
super().__init__()
142+
143+
if in_chs != out_chs or stride > 1:
144+
self.downsample = nn.Sequential(
145+
norm_layer(in_chs),
146+
nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride),
147+
)
148+
else:
149+
self.downsample = nn.Identity()
150+
151+
dp_rates = dp_rates or [0.] * depth
152+
self.blocks = nn.Sequential(*[ConvNeXtBlock(
153+
dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
154+
norm_layer=norm_layer if conv_mlp else cl_norm_layer)
155+
for j in range(depth)]
156+
)
157+
158+
def forward(self, x):
159+
x = self.downsample(x)
160+
x = self.blocks(x)
161+
return x
162+
163+
164+
class ConvNeXt(nn.Module):
165+
r""" ConvNeXt
166+
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
167+
168+
Args:
169+
in_chans (int): Number of input image channels. Default: 3
170+
num_classes (int): Number of classes for classification head. Default: 1000
171+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
172+
dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768]
173+
drop_rate (float): Head dropout rate
174+
drop_path_rate (float): Stochastic depth rate. Default: 0.
175+
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
176+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
177+
"""
178+
179+
def __init__(
180+
self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4,
181+
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), ls_init_value=1e-6, conv_mlp=True,
182+
head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0.,
183+
):
184+
super().__init__()
185+
assert output_stride == 32
186+
if norm_layer is None:
187+
norm_layer = partial(LayerNorm2d, eps=1e-6)
188+
cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6)
189+
else:
190+
assert conv_mlp,\
191+
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
192+
cl_norm_layer = norm_layer
193+
194+
partial(LayerNorm2d, eps=1e-6)
195+
self.num_classes = num_classes
196+
self.drop_rate = drop_rate
197+
self.feature_info = []
198+
199+
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
200+
self.stem = nn.Sequential(
201+
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size),
202+
norm_layer(dims[0])
203+
)
204+
205+
self.stages = nn.Sequential()
206+
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
207+
curr_stride = patch_size
208+
prev_chs = dims[0]
209+
stages = []
210+
# 4 feature resolution stages, each consisting of multiple residual blocks
211+
for i in range(4):
212+
stride = 2 if i > 0 else 1
213+
# FIXME support dilation / output_stride
214+
curr_stride *= stride
215+
out_chs = dims[i]
216+
stages.append(ConvNeXtStage(
217+
prev_chs, out_chs, stride=stride,
218+
depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
219+
norm_layer=norm_layer, cl_norm_layer=cl_norm_layer)
220+
)
221+
prev_chs = out_chs
222+
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
223+
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
224+
self.stages = nn.Sequential(*stages)
225+
226+
self.num_features = prev_chs
227+
if head_norm_first:
228+
# norm -> global pool -> fc ordering, like most other nets (not compat with FB weights)
229+
self.norm = norm_layer(self.num_features) # final norm layer
230+
self.pool = None # global pool in ClassifierHead, pool == None being used to differentiate
231+
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
232+
else:
233+
# pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
234+
self.pool = SelectAdaptivePool2d(pool_type=global_pool)
235+
# NOTE when cl_norm_layer != norm_layer we could flatten here and use cl, but makes no performance diff
236+
self.norm = norm_layer(self.num_features)
237+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
238+
239+
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
240+
241+
def get_classifier(self):
242+
return self.head.fc if self.pool is None else self.head
243+
244+
def reset_classifier(self, num_classes=0, global_pool='avg'):
245+
if self.pool is None:
246+
# norm -> global pool -> fc ordering
247+
self.head = ClassifierHead(
248+
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
249+
else:
250+
# pool -> norm -> fc
251+
self.pool = SelectAdaptivePool2d(pool_type=global_pool)
252+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
253+
254+
def forward_features(self, x):
255+
x = self.stem(x)
256+
x = self.stages(x)
257+
if self.pool is None:
258+
# standard head, norm -> spatial pool -> fc
259+
# ideally, last norm is within forward_features, but can only do so if norm precedes pooling
260+
x = self.norm(x)
261+
return x
262+
263+
def forward(self, x):
264+
x = self.forward_features(x)
265+
if self.pool is not None:
266+
# ConvNeXt head, spatial pool -> norm -> fc
267+
# FIXME clean this up
268+
x = self.pool(x)
269+
x = self.norm(x)
270+
if not self.pool.is_identity():
271+
x = x.flatten(1)
272+
if self.drop_rate > 0:
273+
x = F.dropout(x, self.drop_rate, self.training)
274+
x = self.head(x)
275+
return x
276+
277+
278+
def _init_weights(module, name=None, head_init_scale=1.0):
279+
if isinstance(module, nn.Conv2d):
280+
trunc_normal_(module.weight, std=.02)
281+
nn.init.constant_(module.bias, 0)
282+
elif isinstance(module, nn.Linear):
283+
trunc_normal_(module.weight, std=.02)
284+
nn.init.constant_(module.bias, 0)
285+
if name and '.head' in name:
286+
module.weight.data.mul_(head_init_scale)
287+
module.bias.data.mul_(head_init_scale)
288+
289+
290+
def checkpoint_filter_fn(state_dict, model):
291+
""" Remap FB checkpoints -> timm """
292+
if 'model' in state_dict:
293+
state_dict = state_dict['model']
294+
out_dict = {}
295+
import re
296+
for k, v in state_dict.items():
297+
k = k.replace('downsample_layers.0.', 'stem.')
298+
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
299+
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
300+
k = k.replace('dwconv', 'conv_dw')
301+
k = k.replace('pwconv', 'mlp.fc')
302+
if v.ndim == 2 and 'head' not in k:
303+
model_shape = model.state_dict()[k].shape
304+
v = v.reshape(model_shape)
305+
out_dict[k] = v
306+
return out_dict
307+
308+
309+
def _create_convnext(variant, pretrained=False, **kwargs):
310+
model = build_model_with_cfg(
311+
ConvNeXt, variant, pretrained,
312+
default_cfg=default_cfgs[variant],
313+
pretrained_filter_fn=checkpoint_filter_fn,
314+
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
315+
**kwargs)
316+
return model
317+
318+
319+
@register_model
320+
def convnext_tiny(pretrained=False, **kwargs):
321+
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
322+
model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args)
323+
return model
324+
325+
326+
@register_model
327+
def convnext_tiny_hnf(pretrained=False, **kwargs):
328+
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, **kwargs)
329+
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
330+
return model
331+
332+
333+
@register_model
334+
def convnext_small(pretrained=False, **kwargs):
335+
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
336+
model = _create_convnext('convnext_small', pretrained=pretrained, **model_args)
337+
return model
338+
339+
340+
@register_model
341+
def convnext_base(pretrained=False, **kwargs):
342+
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
343+
model = _create_convnext('convnext_base', pretrained=pretrained, **model_args)
344+
return model
345+
346+
347+
@register_model
348+
def convnext_large(pretrained=False, **kwargs):
349+
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
350+
model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
351+
return model
352+
353+
354+
@register_model
355+
def convnext_base_in22k(pretrained=False, **kwargs):
356+
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
357+
model = _create_convnext('convnext_base_in22k', pretrained=pretrained, **model_args)
358+
return model
359+
360+
361+
@register_model
362+
def convnext_large_in22k(pretrained=False, **kwargs):
363+
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
364+
model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
365+
return model
366+
367+
368+
@register_model
369+
def convnext_xlarge_in22k(pretrained=False, **kwargs):
370+
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], conv_mlp=False, **kwargs)
371+
model = _create_convnext('convnext_xlarge_in22k', pretrained=pretrained, **model_args)
372+
return model
373+
374+
375+

0 commit comments

Comments
 (0)