@@ -92,11 +92,6 @@ def _cfg(url='', **kwargs):
9292 interpolation = 'bilinear' ),
9393
9494 # NOTE experimenting with alternate attention
95- 'eca_efficientnet_b0' : _cfg (
96- url = '' ),
97- 'gc_efficientnet_b0' : _cfg (
98- url = '' ),
99-
10095 'efficientnet_b0' : _cfg (
10196 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth' ),
10297 'efficientnet_b1' : _cfg (
@@ -169,7 +164,7 @@ def _cfg(url='', **kwargs):
169164 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth' ,
170165 input_size = (3 , 224 , 224 ), test_input_size = (3 , 288 , 288 ), pool_size = (7 , 7 ), crop_pct = 1.0 ),
171166 'gc_efficientnetv2_rw_t' : _cfg (
172- url = '' ,
167+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth ' ,
173168 input_size = (3 , 224 , 224 ), test_input_size = (3 , 288 , 288 ), pool_size = (7 , 7 ), crop_pct = 1.0 ),
174169 'efficientnetv2_rw_s' : _cfg (
175170 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth' ,
@@ -362,7 +357,7 @@ def _cfg(url='', **kwargs):
362357 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
363358 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
364359 'tf_efficientnetv2_xl_in21ft1k' : _cfg (
365- url = '' ,
360+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth ' ,
366361 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
367362 input_size = (3 , 384 , 384 ), test_input_size = (3 , 512 , 512 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
368363
@@ -379,7 +374,7 @@ def _cfg(url='', **kwargs):
379374 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
380375 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
381376 'tf_efficientnetv2_xl_in21k' : _cfg (
382- url = '' ,
377+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth ' ,
383378 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
384379 input_size = (3 , 384 , 384 ), test_input_size = (3 , 512 , 512 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
385380
@@ -1276,26 +1271,6 @@ def efficientnet_b0(pretrained=False, **kwargs):
12761271 return model
12771272
12781273
1279- @register_model
1280- def eca_efficientnet_b0 (pretrained = False , ** kwargs ):
1281- """ EfficientNet-B0 w/ ECA attn """
1282- # NOTE experimental config
1283- model = _gen_efficientnet (
1284- 'eca_efficientnet_b0' , se_layer = 'ecam' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
1285- pretrained = pretrained , ** kwargs )
1286- return model
1287-
1288-
1289- @register_model
1290- def gc_efficientnet_b0 (pretrained = False , ** kwargs ):
1291- """ EfficientNet-B0 w/ GlobalContext """
1292- # NOTE experminetal config
1293- model = _gen_efficientnet (
1294- 'gc_efficientnet_b0' , se_layer = 'gc' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
1295- pretrained = pretrained , ** kwargs )
1296- return model
1297-
1298-
12991274@register_model
13001275def efficientnet_b1 (pretrained = False , ** kwargs ):
13011276 """ EfficientNet-B1 """
0 commit comments