# Use Cases and Tutorials Real-world implementation examples and complete code samples for Cortex Linux. --- ## Table of Contents 1. [Automated Debugging](#automated-debugging) 2. [DevOps Optimization](#devops-optimization) 3. [Architecture Planning](#architecture-planning) 4. [Code Review Automation](#code-review-automation) 5. [System Monitoring and Analysis](#system-monitoring-and-analysis) 6. [Configuration Optimization](#configuration-optimization) 7. [Documentation Generation](#documentation-generation) --- ## Automated Debugging ### Scenario: Application Error Analysis Automatically analyze error logs and provide actionable debugging suggestions. #### Implementation ```python #!/usr/bin/env python3 """ Automated error log analysis using Cortex AI """ from cortex import AI import sys import json from pathlib import Path from datetime import datetime class ErrorAnalyzer: def __init__(self): self.ai = AI() def analyze_error_log(self, log_path: str) -> dict: """Analyze error log file and return structured analysis.""" log_content = Path(log_path).read_text() query = f""" Analyze this error log and provide: 1. Error classification (type, severity) 2. Root cause analysis 3. Suggested fixes with code examples 4. Prevention strategies Error log: {log_content} """ result = self.ai.reason(query, context={ "application": "web_server", "language": "Python", "environment": "production" }) return { "timestamp": datetime.now().isoformat(), "log_file": log_path, "analysis": result.result, "confidence": result.confidence } def analyze_stack_trace(self, stack_trace: str) -> dict: """Analyze Python stack trace.""" query = f""" Analyze this Python stack trace: {stack_trace} Provide: - Error location and type - Call chain analysis - Suggested fixes - Related documentation links """ result = self.ai.debug( error_log=stack_trace, context={"language": "Python"} ) return { "error_type": result.analysis.get("error_type"), "location": result.analysis.get("location"), "suggestions": result.suggestions, "code_fixes": result.code_fixes } def main(): analyzer = ErrorAnalyzer() if len(sys.argv) < 2: print("Usage: error_analyzer.py ") sys.exit(1) log_file = sys.argv[1] print(f"Analyzing {log_file}...") analysis = analyzer.analyze_error_log(log_file) print("\n" + "="*80) print("ERROR ANALYSIS") print("="*80) print(f"File: {analysis['log_file']}") print(f"Timestamp: {analysis['timestamp']}") print(f"Confidence: {analysis['confidence']:.2%}") print("\nAnalysis:") print(analysis['analysis']) # Save to file output_file = f"{log_file}.analysis.json" with open(output_file, 'w') as f: json.dump(analysis, f, indent=2) print(f"\nAnalysis saved to: {output_file}") if __name__ == "__main__": main() ``` #### Bash Implementation ```bash #!/bin/bash # Automated error log analyzer LOG_FILE="${1:-/var/log/app/error.log}" OUTPUT_DIR="/var/log/app/analysis" mkdir -p "$OUTPUT_DIR" # Analyze error log ANALYSIS=$(cortex-ai debug "$LOG_FILE" --format json) # Extract key information ERROR_TYPE=$(echo "$ANALYSIS" | jq -r '.analysis.error_type') SEVERITY=$(echo "$ANALYSIS" | jq -r '.analysis.severity') SUGGESTIONS=$(echo "$ANALYSIS" | jq -r '.suggestions[]') # Generate report REPORT_FILE="$OUTPUT_DIR/error_analysis_$(date +%Y%m%d_%H%M%S).md" cat > "$REPORT_FILE" << EOF # Error Analysis Report **Timestamp**: $(date) **Log File**: $LOG_FILE **Error Type**: $ERROR_TYPE **Severity**: $SEVERITY ## Suggested Fixes $SUGGESTIONS ## Full Analysis \`\`\` $(echo "$ANALYSIS" | jq -r '.analysis') \`\`\` EOF echo "Analysis complete: $REPORT_FILE" ``` #### Integration with Monitoring ```python # Integration with monitoring system import subprocess from cortex import AI def monitor_and_debug(): """Monitor application and auto-debug on errors.""" ai = AI() # Watch log file process = subprocess.Popen( ['tail', '-f', '/var/log/app/error.log'], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) error_buffer = [] for line in process.stdout: line = line.decode('utf-8') # Detect error lines if 'ERROR' in line or 'Exception' in line: error_buffer.append(line) # Analyze when buffer reaches threshold if len(error_buffer) >= 10: error_text = '\n'.join(error_buffer) result = ai.debug( error_log=error_text, context={"application": "monitored_app"} ) # Send alert send_alert(result) error_buffer = [] ``` --- ## DevOps Optimization ### Scenario: Infrastructure Configuration Optimization Automatically analyze and optimize infrastructure configurations (Ansible, Terraform, Kubernetes). #### Ansible Playbook Optimization ```python #!/usr/bin/env python3 """ Optimize Ansible playbooks using Cortex AI """ from cortex import AI from pathlib import Path import yaml class AnsibleOptimizer: def __init__(self): self.ai = AI() def optimize_playbook(self, playbook_path: str) -> dict: """Analyze and optimize Ansible playbook.""" playbook_content = Path(playbook_path).read_text() result = self.ai.optimize( target="ansible_playbook", content=playbook_content, goals=["performance", "maintainability", "best_practices"] ) return { "original": playbook_content, "optimizations": result.optimizations, "improved_playbook": self._apply_optimizations( playbook_content, result.optimizations ) } def _apply_optimizations(self, original: str, optimizations: list) -> str: """Apply suggested optimizations to playbook.""" # Implementation would apply code changes # This is a simplified version optimized = original for opt in optimizations: if 'optimized_code' in opt: # Apply optimization pass return optimized # Example usage optimizer = AnsibleOptimizer() result = optimizer.optimize_playbook("deploy.yml") print("Optimizations suggested:") for opt in result['optimizations']: print(f"- {opt['description']}") print(f" Improvement: {opt['improvement_estimate']}") ``` #### Terraform Configuration Analysis ```bash #!/bin/bash # Terraform configuration optimizer TERRAFORM_DIR="${1:-.}" # Analyze Terraform files for tf_file in $(find "$TERRAFORM_DIR" -name "*.tf"); do echo "Analyzing $tf_file..." ANALYSIS=$(cortex-ai optimize "$tf_file" \ --target terraform \ --goals "cost_optimization,security,best_practices" \ --format json) # Extract recommendations RECS=$(echo "$ANALYSIS" | jq -r '.optimizations[] | "\(.type): \(.description)"') echo "Recommendations for $tf_file:" echo "$RECS" echo "" done # Generate optimization report cortex-ai plan "Optimize Terraform infrastructure" \ --requirements "Reduce costs, improve security, follow best practices" \ --config "$TERRAFORM_DIR" \ --output terraform_optimization_plan.md ``` #### Kubernetes Resource Optimization ```python #!/usr/bin/env python3 """ Kubernetes resource optimization """ from cortex import AI import yaml import json class K8sOptimizer: def __init__(self): self.ai = AI() def optimize_deployment(self, deployment_yaml: str) -> dict: """Optimize Kubernetes deployment.""" deployment = yaml.safe_load(deployment_yaml) # Extract resource requests/limits resources = self._extract_resources(deployment) query = f""" Analyze this Kubernetes deployment and optimize: 1. Resource requests and limits 2. Replica count 3. Health checks 4. Security contexts Current configuration: {json.dumps(resources, indent=2)} """ result = self.ai.optimize( target="kubernetes_deployment", content=deployment_yaml, goals=["resource_efficiency", "high_availability", "security"] ) return { "current": deployment, "recommendations": result.optimizations, "optimized": yaml.safe_load(result.optimizations[0]['optimized_code']) } def _extract_resources(self, deployment: dict) -> dict: """Extract resource configuration.""" containers = deployment.get('spec', {}).get('template', {}).get('spec', {}).get('containers', []) resources = {} for container in containers: resources[container['name']] = container.get('resources', {}) return resources # Example optimizer = K8sOptimizer() with open('deployment.yaml') as f: deployment_yaml = f.read() result = optimizer.optimize_deployment(deployment_yaml) print("Optimization recommendations:") for rec in result['recommendations']: print(f"- {rec['description']}") ``` --- ## Architecture Planning ### Scenario: System Design Assistance Use Cortex AI to assist in system architecture design and technology selection. #### Architecture Planning Tool ```python #!/usr/bin/env python3 """ Architecture planning assistant """ from cortex import AI import json from typing import Dict, List class ArchitecturePlanner: def __init__(self): self.ai = AI() def design_system(self, requirements: Dict) -> Dict: """Design system architecture based on requirements.""" query = f""" Design a system architecture based on these requirements: Functional Requirements: {requirements.get('functional', [])} Non-Functional Requirements: {requirements.get('non_functional', {})} Constraints: {requirements.get('constraints', [])} Provide: 1. High-level architecture diagram (textual) 2. Technology stack recommendations 3. Component breakdown 4. Data flow 5. Security considerations 6. Scalability strategy """ result = self.ai.plan( task="Design system architecture", requirements=json.dumps(requirements), format="markdown" ) return { "architecture": result.plan, "estimated_complexity": result.risk_level, "confidence": result.confidence } def compare_technologies(self, technologies: List[str], use_case: str) -> Dict: """Compare technology options for a use case.""" query = f""" Compare these technologies for the use case: {use_case} Technologies: {', '.join(technologies)} Provide comparison on: 1. Performance 2. Scalability 3. Ease of use 4. Community support 5. Cost 6. Best fit recommendation """ result = self.ai.reason(query) return { "comparison": result.result, "recommendation": self._extract_recommendation(result.result) } def _extract_recommendation(self, comparison_text: str) -> str: """Extract recommendation from comparison text.""" # Simple extraction - could be improved with NLP if "recommend" in comparison_text.lower(): # Extract recommendation pass return "See comparison above" # Example usage planner = ArchitecturePlanner() requirements = { "functional": [ "User authentication and authorization", "Real-time data processing", "RESTful API", "Web dashboard" ], "non_functional": { "scalability": "Handle 1M+ users", "availability": "99.9% uptime", "latency": "< 100ms API response" }, "constraints": [ "Must use open-source technologies", "Budget: $10k/month infrastructure", "Team size: 5 developers" ] } architecture = planner.design_system(requirements) print(architecture['architecture']) # Technology comparison tech_comparison = planner.compare_technologies( ["PostgreSQL", "MongoDB", "Cassandra"], "Storing user profiles and session data" ) print(tech_comparison['comparison']) ``` #### Complete Example: Microservices Architecture ```bash #!/bin/bash # Generate microservices architecture plan REQUIREMENTS_FILE="requirements.json" # Create requirements cat > "$REQUIREMENTS_FILE" << EOF { "application_type": "e-commerce platform", "expected_users": "100000", "features": [ "User management", "Product catalog", "Shopping cart", "Payment processing", "Order management" ], "constraints": { "budget": "$5000/month", "team_size": 8, "timeline": "6 months" } } EOF # Generate architecture plan cortex-ai plan "Design microservices architecture for e-commerce platform" \ --requirements "$REQUIREMENTS_FILE" \ --format markdown \ --output architecture_plan.md # Generate technology recommendations cortex-ai reason "Recommend technology stack for microservices e-commerce platform with 100k users, $5k/month budget" \ --output tech_stack.md echo "Architecture plan generated: architecture_plan.md" echo "Technology recommendations: tech_stack.md" ``` --- ## Code Review Automation ### Scenario: Automated Code Review Automatically review code changes and provide feedback. #### Git Hook Integration ```python #!/usr/bin/env python3 """ Pre-commit hook for automated code review """ from cortex import AI import subprocess import sys from pathlib import Path class CodeReviewer: def __init__(self): self.ai = AI() def review_diff(self, diff: str) -> dict: """Review git diff and provide feedback.""" query = f""" Review this code diff and provide feedback on: 1. Code quality and style 2. Potential bugs 3. Security issues 4. Performance concerns 5. Best practices Diff: {diff} """ result = self.ai.reason(query, context={ "review_type": "code_review", "severity": "critical" }) return { "review": result.result, "confidence": result.confidence, "should_block": self._should_block_commit(result.result) } def _should_block_commit(self, review_text: str) -> bool: """Determine if commit should be blocked.""" blocking_keywords = [ "security vulnerability", "critical bug", "data leak", "SQL injection", "XSS vulnerability" ] review_lower = review_text.lower() return any(keyword in review_lower for keyword in blocking_keywords) def main(): reviewer = CodeReviewer() # Get staged changes result = subprocess.run( ['git', 'diff', '--cached'], capture_output=True, text=True ) if not result.stdout: print("No changes to review") sys.exit(0) # Review changes review = reviewer.review_diff(result.stdout) print("="*80) print("CODE REVIEW") print("="*80) print(review['review']) print("="*80) if review['should_block']: print("\n⚠️ BLOCKING ISSUES DETECTED") print("Please address the issues above before committing.") sys.exit(1) else: print("\n✓ Review complete. No blocking issues.") sys.exit(0) if __name__ == "__main__": main() ``` #### Setup Git Hook ```bash #!/bin/bash # Setup pre-commit hook HOOK_FILE=".git/hooks/pre-commit" cat > "$HOOK_FILE" << 'EOF' #!/bin/bash python3 /path/to/code_reviewer.py EOF chmod +x "$HOOK_FILE" echo "Pre-commit hook installed" ``` #### Pull Request Review ```python #!/usr/bin/env python3 """ Automated PR review using Cortex AI """ from cortex import AI import requests import os class PRReviewer: def __init__(self): self.ai = AI() self.github_token = os.getenv('GITHUB_TOKEN') def review_pr(self, repo: str, pr_number: int): """Review GitHub pull request.""" # Fetch PR diff diff = self._fetch_pr_diff(repo, pr_number) # Review code review = self.ai.reason( f"Review this pull request diff:\n\n{diff}\n\n" "Provide feedback on code quality, bugs, security, and best practices." ) # Post review comment self._post_review_comment(repo, pr_number, review.result) def _fetch_pr_diff(self, repo: str, pr_number: int) -> str: """Fetch PR diff from GitHub.""" url = f"https://api.github.com/repos/{repo}/pulls/{pr_number}" headers = {"Authorization": f"token {self.github_token}"} response = requests.get(f"{url}.diff", headers=headers) return response.text def _post_review_comment(self, repo: str, pr_number: int, comment: str): """Post review comment to PR.""" url = f"https://api.github.com/repos/{repo}/pulls/{pr_number}/comments" headers = { "Authorization": f"token {self.github_token}", "Accept": "application/vnd.github.v3+json" } # Post as review comment # Implementation details... ``` --- ## System Monitoring and Analysis ### Scenario: Automated System Health Analysis Continuously monitor system metrics and provide intelligent analysis. #### System Metrics Analyzer ```python #!/usr/bin/env python3 """ System metrics monitoring and analysis """ from cortex import AI import psutil import json from datetime import datetime from typing import Dict class SystemAnalyzer: def __init__(self): self.ai = AI() def collect_metrics(self) -> Dict: """Collect system metrics.""" return { "timestamp": datetime.now().isoformat(), "cpu": { "percent": psutil.cpu_percent(interval=1), "count": psutil.cpu_count(), "per_cpu": psutil.cpu_percent(percpu=True, interval=1) }, "memory": { "total": psutil.virtual_memory().total, "available": psutil.virtual_memory().available, "percent": psutil.virtual_memory().percent, "used": psutil.virtual_memory().used }, "disk": { "total": psutil.disk_usage('/').total, "used": psutil.disk_usage('/').used, "percent": psutil.disk_usage('/').percent }, "network": { "bytes_sent": psutil.net_io_counters().bytes_sent, "bytes_recv": psutil.net_io_counters().bytes_recv } } def analyze_metrics(self, metrics: Dict) -> Dict: """Analyze system metrics and provide recommendations.""" metrics_json = json.dumps(metrics, indent=2) query = f""" Analyze these system metrics and provide: 1. Health assessment 2. Performance issues 3. Resource bottlenecks 4. Optimization recommendations 5. Alerts for critical issues Metrics: {metrics_json} """ result = self.ai.reason(query) return { "metrics": metrics, "analysis": result.result, "confidence": result.confidence, "alerts": self._extract_alerts(result.result) } def _extract_alerts(self, analysis: str) -> list: """Extract alert-worthy issues from analysis.""" alerts = [] # Simple keyword-based extraction if "critical" in analysis.lower() or "urgent" in analysis.lower(): alerts.append("Critical issue detected") return alerts # Continuous monitoring analyzer = SystemAnalyzer() while True: metrics = analyzer.collect_metrics() analysis = analyzer.analyze_metrics(metrics) print(f"[{analysis['metrics']['timestamp']}] System Analysis:") print(analysis['analysis']) if analysis['alerts']: print("⚠️ ALERTS:", analysis['alerts']) time.sleep(300) # Analyze every 5 minutes ``` --- ## Configuration Optimization ### Scenario: Nginx Configuration Optimization ```bash #!/bin/bash # Nginx configuration optimizer NGINX_CONFIG="/etc/nginx/nginx.conf" BACKUP_DIR="/etc/nginx/backups" # Create backup mkdir -p "$BACKUP_DIR" cp "$NGINX_CONFIG" "$BACKUP_DIR/nginx.conf.$(date +%Y%m%d_%H%M%S)" # Analyze and optimize OPTIMIZATION=$(cortex-ai optimize "$NGINX_CONFIG" \ --target nginx \ --goals "performance,security" \ --format json) # Extract optimized configuration OPTIMIZED_CONFIG=$(echo "$OPTIMIZATION" | jq -r '.optimizations[0].optimized_code') # Save optimized config echo "$OPTIMIZED_CONFIG" > "$NGINX_CONFIG.optimized" # Test configuration if nginx -t -c "$NGINX_CONFIG.optimized"; then echo "Optimized configuration is valid" echo "Review changes: diff $NGINX_CONFIG $NGINX_CONFIG.optimized" echo "Apply with: cp $NGINX_CONFIG.optimized $NGINX_CONFIG && systemctl reload nginx" else echo "Optimized configuration has errors" echo "Keeping original configuration" fi ``` --- ## Documentation Generation ### Scenario: Auto-generate API Documentation ```python #!/usr/bin/env python3 """ Generate API documentation from code """ from cortex import AI import ast import inspect class DocGenerator: def __init__(self): self.ai = AI() def generate_docstring(self, function_code: str) -> str: """Generate docstring for a function.""" query = f""" Generate a comprehensive docstring for this Python function following Google style: {function_code} Include: - Description - Args with types - Returns with type - Raises - Examples """ result = self.ai.reason(query) return result.result def generate_api_docs(self, module_path: str) -> str: """Generate complete API documentation for a module.""" # Parse module and extract functions/classes # Generate documentation for each # Format as Markdown # Implementation... pass # Example generator = DocGenerator() function_code = """ def process_user_data(user_id: int, data: dict) -> bool: # Process user data return True """ docstring = generator.generate_docstring(function_code) print(docstring) ``` --- ## Next Steps - **Explore More Examples**: Check GitHub repository for additional examples - **API Reference**: [AI Integration Guide](AI-Integration.md) - **Contributing**: [Developer Documentation](Developer-Documentation.md) --- *Last updated: 2024*